đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Current Electricity

Example

1. What do you mean by current electricity?
2. Name the three types of electrical conductors?

D Watch Video Solution
3. Does a semiconductor diode and resistor have similar electrical properties?

- Watch Video Solution

4. What is the effective resistance when two or more resistors are connected in series?

- Watch Video Solution

5. What is the effective resistance when two or more resistors are connected in parallel?
(D) Watch Video Solution
6. Name the laws used for analyzing complicated circuits?

D Watch Video Solution
7. Give the basic difference between the electrical properties of a semiconductor diode and resistor?

D Watch Video Solution
8. Define junction.

D Watch Video Solution
9. Define loop or mesh.

- Watch Video Solution

10. Define branch.

D Watch Video Solution
11. State the uses of Kirchhoff's Laws.

D Watch Video Solution

12. Are Kirchhoff's Laws applicable for both AC and DC currents.

D Watch Video Solution

13. State Kirchhoff's Laws.
14. Explain : Kirchhoff's first laws is in accordance with law of conservation of charge.

D Watch Video Solution

15. Explain: Kirchhoff's second law is in accordance with law of conservation of energy.

D Watch Video Solution

16. State and explain the sign conventions for Kirchhoff's first law.

D Watch Video Solution
17. State and explain the sign conventions for

Kirchhoff's first law.

D Watch Video Solution
18. Write down Steps followed while solving a problem using Kirchhoff's laws:

D Watch Video Solution

19. Figure shows currents in a part of electrical circuit. Find the current I?

- Watch Video Solution

20. Two batteries of 7 volt and 13 volt and internal resistances 1 ohm and 2 ohm respectively are connected in parallel with a resistance of 12 ohm. Find the current through each branch of the circuit and the potential difference across 12-ohm resistance.

D Watch Video Solution

21. A battery of emf 4 volt and internal resistance 1Ω is connected in parallel with
another battery of emf 1 V and internal resistance 1Ω (with their like poles connected together). The combination is used to send current through an external resistance of 2Ω.

Calculate the current through the external resistance.

D Watch Video Solution

22. Two cells of emf 1.5 Volt and 2 Volt having respective internal resistances of 1Ω and 2Ω are connected in parallel so asto send current
in same direction through an external resistance of 5Ω. Find the current through the external resistance.

D Watch Video Solution

23. A voltmeter has a resistance 30Ω. What will
be its reading, when it is connected across a cell of emf 2 V having internal resistance 10Ω ?
24. A set of three coils having resistances 10Ω,
12Ω and 15Ω are connected in parallel. This combination is connected in series with series combination of three coils of the same resistances. Calculate the total resistance and current through the circuit, if a battery of emf 4.1 Volt is used for drawing current.

- Watch Video Solution

25. A voltmeter has a resistance of 100Ω. What
will be its reading when it is connected across
a cell of emf 2 V and internal resistance 20Ω ?

- Watch Video Solution

26. Name the factors affecting the resistance of a material.

- Watch Video Solution

27. Which are conjugate arms in the Wheatstone's bridge? Why?

- Watch Video Solution

28. State the applications of Wheatstone Bridge? Why?

D Watch Video Solution
29. Obtain balancing condition in case of Wheatstone Network. (By using Kirchhoffs law

Obtain balancing condition in case of Wheatstone Network)

- Watch Video Solution

30. Obtain balancing condition in case of Wheatstone's network. (By using Ohm's law.)
31. At what value should the variable resistor be set such that the bridge is balanced? If the source voltage is 30 V find the value of the output voltage across XY , when the bridge is balanced.

D Watch Video Solution

32. Why meter bridge is also called Wheatstone's metre bridge.
33. Does the value of resistance of a conductor depend upon the potential difference applied across it or current passed through it?

- Watch Video Solution

34. Describe the construction of meter bridge to determine an unknown resistance.

- Watch Video Solution

35. Explain with neat circuit diagram, how you wil determine the unknown resistance using a meter bridge.

- Watch Video Solution

36. Four resistance $10 \Omega, 10 \Omega, 10 \Omega$ and 20Ω are connected so as to form Wheatstone's bridge.

The resistance connected across 20Ω resistance to balance the bridge is
37. Describe the construction Kelvin's method
to determine the resistance of Galvanometer by using meter bridge.

D Watch Video Solution

38. Define potentiometer.

D Watch Video Solution
39. What is a potentiometer?

D Watch Video Solution

40. Do you know an instrument which can measure terminal P.D. as well as e.m.f.?

D Watch Video Solution

41. Name the device used for the measurement of internal resistance of a cell.

- Watch Video Solution

42. Why there is no way to separate the internal resistance from the e.m.f. of a cell?

- Watch Video Solution

43. On what factors does the internal resistance of a cell depend?
44. Is internal resistance a defect of a cell?

Explain.

- Watch Video Solution

45. State the advantages of potentiometer over voltmeter.

D Watch Video Solution

46. State the disadvantages of potentiometer over voltmeter.

D Watch Video Solution
47. Why is potentiometer preferred over a voltmeter for measuring emf? or explain. Potentiometer acts as an ideal voltmeter .

D Watch Video Solution

48. State and explain principle of potentiometer.

D Watch Video Solution
49. Describe the construction of
potentiometer.
(Watch Video Solution
50. Define potential gradient. State its unit and dimension.

D Watch Video Solution
51. Obtain the dimension of potential gradient.

- Watch Video Solution

52. On what factors does a potential gradient of a wire depend.

- Watch Video Solution

53. What is potential gradient? How it is measured? Explain.

- Watch Video Solution

54. Why jockey should not be slided along the potentiometer wire?

55. State the uses of a potentiometer.

- Watch Video Solution

56. State what precautions must be taken while performing experiment with potentiometer.
57. Describe the use of potentiometer to compare the e.m.f. of two cells by the direct method (individual method).

D Watch Video Solution

58. Describe how a potentiometer is used to
compare the e.m.f.s of two cells by connecting
them separately.

- Watch Video Solution

59. Describe how potentiometer is used to compare the e.m.f.s of two cells by combination method.

D Watch Video Solution

60. Describe with the help of neat diagram how will you determine the internal resistance of a cell by using potentiometer. Derive the necessary formula.

D Watch Video Solution
61. Explain the use of potentiometer for determining he internal resistance of cell.

- Watch Video Solution

62. What will be the effect on the position of
zero deflection if only the current flowing
through the potentiometer wire is Explain:increased

D Watch Video Solution

63. What will be the effect on the position of zero deflection if only the current flowing through the potentiometer wire is:- decreased.

- Watch Video Solution

64. A potentiometer wire has a length of 1.5 m
and resistance of 10Ω. It is connected in series
with the cell of emf 4 Volt and internal resistance 5Ω. Calculate thepotential drop per centimeter of the wire.

D Watch Video Solution

65. When two cells of emfs. E_{1} and E_{2} are connected in series so as to assist each other, their balancing length on a potentiometer is
found to be 2.7 m . When the cells are connected in series so as to oppose each other, the balancing length is found to be 0.3 m . Compare the emfs of the two cells.

D Watch Video Solution

66. In an experiment to determine the internal resistance of a cell of emf 1.5 V , the balance point in the open cell condition is 76.3 cm .

When a resistor of 9.5 ohm is used in the external circuit of the cell the balance point
shifts to 64.8 cm of the potentiometer wire.

Determine the internal resistance of the cell.

D Watch Video Solution

67. The emf of a cell is balanced by a length of

120 cm of potentiometer wire. When the cell is
shunted by a resistance of 10Ω, the balancing
length is reduced by 20 cm . Find the internal resistance of the cell.

D Watch Video Solution

68. A potential drop per unit length along a wire is $5 \times 10^{-3} \mathrm{~V} / \mathrm{m}$. If the emf of a cell balances against length 216 cm of this potentiometer wire, find the emf of the cell.

D Watch Video Solution

69. The resistance of a potentiometer wire is 8Ω and its length is 8 m . A resistance box and a 2 V battery are connected in series with it. What should be the resistance in the box, if it
is desired to have a potential drop of $1 \mu V / m m ?$.

D Watch Video Solution
70. What is a Galvanometer?

D Watch Video Solution

71. What are the types of moving coil

Galvanometer?

- Watch Video Solution

72. State the principle of moving coil

Galvanometer?

D Watch Video Solution

73. With the help of neat diagram, describe the theory of moving coil Galvanometer?

- Watch Video Solution

74. State the modification necessary to convert a moving col Galvanometer into ammenter?

- Watch Video Solution

75. State the uses of shunt connected across,

Galvanometer.

76. Explain how a moving coil Galvanometer is

 converted into an ammeter. Derive the necessary formula.
D Watch Video Solution

77. If $\mathrm{I}=\mathrm{n} \operatorname{Ig}$ then in moving coil Galvanometer.

Show that:- $S=\frac{G}{n-1}$

D Watch Video Solution
78. If $\mathrm{I}=\mathrm{n}$ Ig then in moving coil Galvanometer.

Show that:- $\frac{I s}{I}=\frac{G}{S+G}$

D Watch Video Solution

79. A galvanometer has a resistance of 100Ω and its full scale deflection current is $100 \mu A$.

What shunt resistance should be added so that the ammeter can have a range of 0 to 10 mA ?

D Watch Video Solution

80. What is the value of the shunt resistance
that allows 20% of the main current through a galvanometer of 99Ω ?.

D Watch Video Solution

81. State the modification necessary to convert a moving coil galvanometer into voltmeter.

D Watch Video Solution

82. State the uses of resistance connected in series with the galvanometer.

D Watch Video Solution
83. Explain how a moving coil galvanometer is
converted into voltmeter. Derive the necessary
formula.

- Watch Video Solution

84. If $\mathrm{V}=n_{v} V_{g}$ then show that $\mathrm{X}=\mathrm{G}\left(n_{v}-1\right)$.

- Watch Video Solution

85. A Galvanometer has a resistance of 25Ω
and its full scale deflection current is $25 \mu A$.
What resistance should be added to it to have
a range of 0-10 V.

- Watch Video Solution

86. A Galvanometer has a resistance of 40 D
and a current of 4 mA is needed for a full scale deflection. What is the resistance and how is it to be connected to convert the galvanometer:into an ammeter of 0.4 A range and

- Watch Video Solution

87. A Galvanometer has a resistance of 40 D
and a current of 5 mA is needed for a full scale
deflection. What is the resistance and how is it
to be connected to convert the galvanometer:into a voltmeter of 0.5 V range?

D Watch Video Solution
88. What is called thermoelectric effect?

D Watch Video Solution

89. Who discovered thermoelectric effect?
90. Explain thermoemf, seeback effect and thermocouple?

- Watch Video Solution

91. Give two examples of thermocouple using diagram?
(D) Watch Video Solution
92. Write the equation for thermo emf when cold junction is at $0^{\circ} C$ and the hot junction is at $T^{\circ} \mathrm{C}$ what will be the shape of graph showing variation of thermo emf with a temperature?

- Watch Video Solution

93. Distinguish between potentiometer and voltmeter..

94. Distinguish between Meterbridge

 experiment and Kelvin's method.- Watch Video Solution

95. Distinguish between ammeter and voltmeter.
(Watch Video Solution
96. (1)In the following circuit, calculate the value of the current (I).

- Watch Video Solution

2. In an electric circuit, the currents 2A, 1.5A and 3A flow towards the junction. While a current of 2.5 A and an unknown current leave
the junction. Find the magnitude of unknown
current.

D Watch Video Solution

3. A resistance of 2Ω is connected in parallel to
a galvanometer of resistance 48Ω. Find the percentage of fraction of total current passing through the resistance of 2Ω.

- Watch Video Solution

4. A galvanometer has a resistance of 16Ω. It shows full scale deflection when a current of

20 mA is passed through it. The only shunt resistance available is 0.06 W which is not appropriate to convert galvanometer into ammeters. How much resistance should be connected in series with the coil of galvanometer so that the range of ammeter is 8A?
5. A moving coil galvanometer has a resistance of 25Ω and goes a full scale deflection for a current of 10 mA . How will you convert it into voltmeter having a range of 0.100 V ?

- Watch Video Solution

6. The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω.

Calculate the value of shunt.

- Watch Video Solution

7. A potentiometer wire has a resistance per unit length of $0.1 \Omega / m$. A cell of emf 1.5 V balance against 300 cm length of the wire.

Find the current through potentiometer wire.

- Watch Video Solution

8. Resistance of potentiometer wire is
$0.1 \Omega / \mathrm{cm}$. A cell of emf 1.5 V is balanced at
300 cm on this potentiometer wire. Calculate
the current and balancing length for another
cell of emf 1.4 V on the same potentiometer wire.

D Watch Video Solution

9. In a balanced meterbridge, the segment of wire opposite to 20Ω is 40 cm . Calculate the unknown resistance.

D Watch Video Solution
10. A uniform wire is cut into two pieces such
that on piece is twice as long as the other. The
two piece are connected in parallel in the left
gap of a meterbridge. When a resistance of
20Ω is connected in the right gap, the null point is obtained at a distance of 60 cm from the right end of the wire. Find the resistance of the wire before it was cut into two pieces.

D Watch Video Solution

11. Two coils are connected in series in one gap
of the meterbridge and null point is obtained of the middle of the wire by putting 75Ω in the other gap. Two coils are then connected in parallel and the null point is obtained again at the middle of the wire when the resistance in the other gap is changed by 57Ω. Find the resistance of each coil.

D Watch Video Solution

12. A skeleton tube is made of 12 wires each of resistance $R \Omega$ is connected to a cell of emf E and of negotiable internal resistance. Use Kirchhoff's laws to find the resistance between:- diagonally opposite corners of the cube.

D Watch Video Solution

13. A skeleton tube is made of 12 wires each of resistance $R \Omega$ is connected to a cell of emf E
and of negotiable internal resistance. Use Kirchhoff's laws to find the resistance between:- diagonally opposite corners of the cube.

D Watch Video Solution

14. A skeleton tube is made of 12 wires each of resistance $R \Omega$ is connected to a cell of emf E and of negotiable internal resistance. Use Kirchhoff's laws to find the resistance
between:- diagonally opposite corners of the same face of the cube is across face diagonal.

D Watch Video Solution

15. A galvanometer has resistance of 25Ω capacity to carry a maximum current of 25 mA .

How can it be used as ammeter to read the current upto 0.1 A?
16. At what point the null point be obtained in
meterbridge experiment when the ratio of resistance in two gaps is $3: 7$?

- Watch Video Solution

17. The potentiometer wire has length 10 m and resistance 10Ω, if the current flowing through
it is 0.4 A , what are the balancing lengths when two cells of emfs 1.3 V and 1.1 V are connected so as to:- assist and
18. The potentiometer wire has length 10 m and resistance 10Ω, if the current flowing through it is 0.4 A , what are the balancing lengths when two cells of emfs 1.3 V and 1.1 V are connected so as to:- oppose each other?

D Watch Video Solution

19. When a resister of 10Ω is connected across
a cell, its terminal potential difference is
balanced by 150 cm of potentiometer wire and
when 20Ω resistance is connected across the cell, terminal potential difference is balanced by 175 cm of the same potentiometer wire. Find the balancing length when the cell is in open circuit and also find the internal resistance of the cell.

- Watch Video Solution

20. Two cells having unknown emfs E_{1} and E_{2}
$\left(E_{1}>E_{2}\right)$ are connected in potentiometer
circuit so as to assist each other. The null point is obtained at 8.125 m from higher potential end. When cell E_{2} is connected so as to oppose cell E_{1}, the null point is obtained at 1.25 m from the same end compare the emfs of two cells.

D Watch Video Solution

21. A potentiometer wire has a length of $2 m$ and resistance 10Ω. It is connected in series with resistance 990Ω and a cell of emf 2 V .

Calculate the potential gradient along the wire.

D Watch Video Solution

22. Four resistance $4,4,4$ and 12Ω form a

Wheatstone's network. Find the resistance
when connected across 12Ω resistance will balance the network?
23. Two resistance x and y in the two gaps of a meter bridge give a null point dividing the wire in the ratio $2: 3$. If each resistance is increased by 30Ω,the null point divides the wire in the ratio $5: 6$. calculate each resistance.

D Watch Video Solution

24. Three cells are connected in parallel with
their like poles connected together with wires of negligible resistance. The e.m.f. of the cells
are $2 \mathrm{~V}, 3 \mathrm{~V}$ and 4 V respectively and their internal resistances are $1 \Omega, 2 \Omega$ and 3Ω, respectively. Find the current through each branch.

- Watch Video Solution

25. The unknown resistance is placed in a left gap and a resistance of 50Ω in right gap of meter bridge. The null point is obtained at 60 cm from the right gap. Determine the unknown resistance.
26. In a meter bridge experiment, the unknown resistance X in the left gap and a known resistance of 60Ω in right gap, null point is obtained at I cm from left. If the unknown resistance X is shunted by an equal resistance, what should be the value of known resistance in the right gap in order to get the null point at the same place?

27. Select and wrote only the correct answer in

 words alongwith the alphabet of the following questions:- Kirchhoff's first law, i.e., $\sum l=0$ at a junction, deals with the conservation of?A. charge
B. energy
C. momentum
D. mass

Answer:

28. When the balance point is obtained in the potentiometer, a current is drawn from?
A. both the cells and auxiliary battery
B. cell only
C. auxiliary battery only
D. neither cell nor auxiliary battery

Answer:

D Watch Video Solution
29. In the following circuit diagram, an infinite series of resistance is shown . Equivalent resistance between points A and B is

A. infinite
B. zero
C. 2Ω
D. 1.5Ω

Answer:

- Watch Video Solution

30. Four resistances $10 \Omega, 10 \Omega, 10 \Omega$ and 15Ω form a Wheatstone's network. What shunt is required across 15Ω resistor to balance the bridge
A. 10Ω
B. 15Ω
C. 20Ω

D. 30Ω

Answer:

D Watch Video Solution

31. A circular loop has a resistance of 40Ω. Two points P and Q of the loop, which are one quarter of the circumference apart are connected to a 24 V battery, having an internal resistance of 0.5Ω. What is the current flowing through the battery.
A. 0.5 A
B. 1A
C. 2A
D. 3A

Answer:

D Watch Video Solution

32. To find the resistance of a gold bangle, two diametrically opposite points of the bangle are connected to the two terminals of the left
gap of a metre bridge. A resistance of 4Ω is introduced in the right gap. What is the resistance of the bangle if the null point is at 20 cm from the left end?.
A. 2Ω
B. 4Ω
C. 8Ω
D. 16Ω

Answer:

33. Kirchhoff's second law is the consequence

 of law of conservation ofA. mass
B. energy
C. charge

D. momentum

Answer:
(Watch Video Solution
34. For given Wheatstone's network for being balanced, the value of resistance should be

A. 4Ω
B. 8Ω
C. 12Ω
D. 16Ω

Answer:

- Watch Video Solution

35. In the measurement of resistance by meter bridge, the end error can be eliminated by
A. the null point should be near the centre of the wire.
B. by not interchanging the gaps for resistors.

C. the null point should be obtained at the

ends of the wire.
D. both (b) and (c)

Answer:

D Watch Video Solution
36. E.m.f. can be measured by
A. Voltmeter
B. Potentiometer

C. Galvanometer

D. Ammeter

Answer:

D Watch Video Solution

37. The formula for internal resistance of a cell
A. $R\left(\frac{l_{2}-l_{1}}{l_{2}}\right)$
B. $R\left(\frac{l_{1}-l_{2}}{l_{2}}\right)$
C. $R\left(\frac{l_{1}}{l_{1}-l_{2}}\right)$
D. $R\left(\frac{l_{2}}{l_{2}-l_{1}}\right)$

Answer:

D Watch Video Solution

38. In a potentiometer experiment balancing
for the first cell and second cell are 2.5 m and

2 m , respectively, when cells are used separately. Hence, $\frac{E_{1}}{E_{2}}$ is
A. 0.8
B. 1
C. 1.1
D. 1.25

Answer:

D Watch Video Solution

39. Which of the following is S.I. unit of potential gradient?
A. V cm
B. V / cm
C. V / m
D. $V m$

Answer:

D Watch Video Solution

40. Length of potentiometer wire is 600 cm
and a driving cell develop 6 V potential
difference across it. The potential gradient along the wire is?
A. $(0.1 V) / m$
B. $(1 V) / m$
C. $(6 V) / m$
D. $(0.9 V) / m$

Answer:

D Watch Video Solution

41. The potential difference $V_{C}-V_{D}$ between
the points D and C in the following diagram is

A. OV
B. 1.4 V
C. 14V
D. 16V

Answer:

- Watch Video Solution

42. Two unknown resistrance X and Y are connected to left and right gaps of a meter bridge and the balancing point is obtained at 80 cm from left. When a 10Ω resistance is connected in parallel to x, the balance point is

50 cm from left. The values of X and Y respectively are
A. $40 \Omega, 9 \Omega$
B. $30 \Omega, 7.5 \Omega$
C. $20 \Omega, 6 \Omega$

D. $10 \Omega, 3 \Omega$

Answer:

D Watch Video Solution

43. In a balanced Wheatstone's bridge, if the
position of the galvanometer and cell is interchanged then the balanced condition will
A. change
B. depends

galvanometer

C. remain same
D. depends upon internal resistance of a
cell

Answer:

- Watch Video Solution

44. A battery having e.m.f. 5 V and internal resistance 0.5 is connected with a resistance of 4.5Ω, then the voltage at the terminals of the battery is
A. 0 V
B. 4 V
C. 4.5 V
D. ∞

Answer:

45. A cell supplies a current 1.2 A through a resistor 2Ω. The same cell supplies a current 0.4A through a 7Ω resistor. The internal resistance of the cell is
A. 0.1Ω
B. 0.3Ω
C. 0.5Ω
D. 0.7Ω

Answer:

- Watch Video Solution

46. A voltmeter having a resistance of 50Ω is
connected across a cell of e.m.f. 2 V and internal resistance 10Ω. The reading of the voltmeter,
A. 0.167 V
B. 1.667 V
C. 16.7V

D. 967 V

Answer:

D Watch Video Solution

47. The length and cross-section of the wire of meter bridge are
A. 0.5 m and non-uniform
B. 0.5 m and uniform
C. 1 m and non-uniform

D. 1 m and uniform

Answer:

D Watch Video Solution

48. The balance point is obtained at 40 cm
from left end in meter bridge. Then the ratio of resistance in the gap is
A. $2: 5$
B. 2: 4
C. $2: 3$
D. 2:1

Answer:

- Watch Video Solution

49. Kelvin's method of determination of resistance of galvanometer
A. equals deflection method
B. equals null method

C. equals distance method

D. equals length method

Answer:

D Watch Video Solution

50. Accuracy of potentiometer can be easily increased by
A. increasing resistance of wire
B. decreasing resistance of wire
C. increasing length of wire

D. decreasing the length of wire

Answer:

D Watch Video Solution

51. A potential difference 3 V is applied across a potentiometer wire of length 10 m . If the length of wire is reduced by 1 m the value of potential gradient in V / m will be
A. $0.0333 \mathrm{~V} / \mathrm{m}$
B. $0.333 \mathrm{~V} / \mathrm{m}$
C. $3.33 \mathrm{~V} / \mathrm{m}$
D. $33.3 \mathrm{~V} / \mathrm{m}$

Answer:

D Watch Video Solution

52. A cell of internal resistance " r " is connected
to an external resistance "R". p.d. will be maximum across " R " if
A. $R=r / 2$
B. $R=r$
C. Rltr
D. Rgtr

Answer:

D Watch Video Solution

53. A Wheatstone's bridge $A B C D$ is balanced with a galvanometer between the points B and

D. At balance, the potential at B and D.

A. $V_{B}=V_{D}$
B. $V_{B}<V_{D}$
C. $V_{B}>V_{D}$
D. $V_{B}=2 V_{D}$

Answer:

D Watch Video Solution
54. Kirchhoffs voltage law and current law are respectively in accordance with the conservation of
A. charge and momentum
B. charge and energy
C. energy and charge
D. energy and momentum

Answer:

D Watch Video Solution
55. A skeleton cube is made of 12 wires, each of resistance R. The resistance between any two adjacent comers of the cube is

> A. $\frac{5}{12} R$ B. $\frac{6}{12} R$ C. $\frac{7}{12} R$ D. $\frac{8}{12} R$

Answer:

- Watch Video Solution

56. When unknown resistance is determined by meterbridge the error due to contact resistance is minimized
A. by connecting both the resistance only in one gap
B. By interchanging the position of known
and unknown resistance
C. by using uniform wire
D. by obtaining the null point near the end
of the wire.

Answer:

57. In potentiometer experiment, if l_{1} is the balancing length for emf of cell of internal resistance r and l_{2} is the balancing length for its terminal potential difference when shunted with resistance R then

$$
\begin{aligned}
& \text { A. } l_{1}=l_{2}\left(\frac{R+r}{R}\right) \\
& \text { B. } l_{1}=l_{2}\left(\frac{R}{R+r}\right) \\
& \text { C. } l_{1}=l_{2}\left(\frac{R}{R-r}\right) \\
& \text { D. } l_{1}=l_{2}\left(\frac{R-r}{R}\right)
\end{aligned}
$$

58. An ideal ammeter has
A. zero resistance
B. low resistance
C. high resistance
D. infinite resistance

Answer:

59. Which of the following statement is true?

A. A galvanometer with low resistance in parallel is an ammeter.
B. A galvanometer with high resistance in
series is an ammeter.
C. A galvanometer with high resistance in
parallel is a voltmeter.
D. A galvanometer with low resistance in
parallel is a voltmeter.

Answer:

- Watch Video Solution

60. In the following circuit the value of

resistance R

A. 5Ω
B. 20Ω
C. 30Ω

D. 125Ω

Answer:

D Watch Video Solution

61. The deflection in moving coil galvanometer
is reduced to half when it is shunted with 50Ω
resistance. The resistance of galvanometer is
A. 1.25Ω
B. 25Ω

C. 50Ω

D. 100Ω

Answer:

D Watch Video Solution

62. If galvanometer is shunted by $\left(\frac{1}{n}\right)^{t} h$ resistance, then the the fraction of current passing through the galvanometer will be

$$
\text { A. } \frac{n}{n+1}
$$

> B. $\frac{n}{n+1}$ C. $\frac{1}{n+1}$ D. $\frac{n+1}{n}$

Answer:

D Watch Video Solution

63. An ideal voltmeter has
A. zero resistance
B. zero resistance
C. high resistance
D. infinite resistance

Answer:

- Watch Video Solution

64. The resistance of a galvanometer is G. If S
is the resistance used to convert
galvanometer into ammeter then the effective resistance of ammeter is
A. G-S
B. $G+S$
C. $\frac{G+S}{G} S$
D. $G \frac{S}{G+S}$

Answer:

D Watch Video Solution
65. A moving coil galvanometer of resistance G gives full scale deflection for a certain current.

The shunt resistance required to convert it to measure a current n times the initial current is

$$
\begin{aligned}
& \text { A. } \frac{n-1}{G} \\
& \text { B. } \frac{G}{n-1} \\
& \text { C. }(n-1) G \\
& \text { D. } \mathrm{nG}
\end{aligned}
$$

Answer:

- Watch Video Solution

66. The range of an ammeter can be increased by
A. connecting a small resistance in series
B. connecting a large resistance in series
C. decreasing the shunt resistance
D. increasing the shunt resistance

Answer:

- Watch Video Solution

67. The range of a voltmeter can be increased by
A. connecting a law shunt resistance
B. connecting a high shunt resistance
C. decreasing the series resistance
D. increasing the series resistance

Answer:

- Watch Video Solution

68. In the circuit given below, the equivalent resistance between point A and C is
A. 4Ω
B. greater than that between points A and

D
C. less than that between points A and D
D. equal to that between points A and D

Answer:

69. In a Wheatstone's network, the resistance in cycle order are $\mathrm{P}=10 \Omega, Q=5 \Omega, \mathrm{~S}=4 \Omega$ and $\mathrm{R}=4 \Omega$ then for the bridge to balance.
A. 5Ω should be connected in parallel with

$$
\mathrm{Q}=5 \Omega
$$

B. 10Ω should be connected in series with

$$
\mathrm{Q}=5 \Omega
$$

C. 5Ω should be connected in series with P

$$
=10 \Omega
$$

D. $10 \Omega=$ should be connected in parallel

$$
\text { with } p=10 \Omega
$$

Answer:

D Watch Video Solution

70. A lead resistance R is connected across a
cell of emf E and internal resistance r. If the closed circuit p.d. across the terminals of the cell is V the internal resistance of the cell is.
A. $(E-V) R$
B. $(V-E) R$
C. $\left(\frac{E-V}{V}\right) R$
D. $\frac{E-V}{R}$

Answer:

D Watch Video Solution
71. In the following circuit the equivalent resistance between A and B is
20Ω
30Ω
40Ω

A. 10Ω
B. 20Ω

C. 30Ω

D. 40Ω

Answer:

D Watch Video Solution

72. The material of wire of potentiometer is
A. copper
B. steel
C. manganese

D. aluminium

Answer:

D Watch Video Solution

73. Length of potentiometer wire is 600 cm
and a driving cell develop 6 V potential difference across it. The potential gradient along the wire is?
A. VI
B. $K l$
C. IRI
D. $\frac{I}{R I}$

Answer:

D Watch Video Solution

74. The algebraic sum of current at junction in any electric circuit is equal to
A. zero

B. a positive integer

C. infinity
D. arbitrary

Answer:

D Watch Video Solution

75. Which of the following instruments in generally used with a galvanometer to show null reading?
A. Ammeter
B. voltmeter
C. multimeter
D. meterbridge

Answer:

D Watch Video Solution

76. A Wheatstone's bridge $A B C D$ is balanced with a galvanometer between the points B and
D. At balance, the between the points B and D is zero.
A. Resistance
B. current
C. voltage
D. B and C

Answer:
(Watch Video Solution
77. The emf of a cell is E volt and internal resistance is r ohm. It resistance in the external circuit is r ohm, the p.d. across the cell will be
A. $\frac{E}{4}$
B. $\frac{E}{2}$
C. 2 E
D. 4 E

Answer:

78. State the principle of potentiometer.

- Watch Video Solution

79. Write down the equation for thermo emf
when cold junction is at $0^{\circ} C$ and the hot junction is at $T^{\circ} C$.

- Watch Video Solution

80. A cell of emf 1.1 V and internal resistance r
is connected across as external resister of resistance 10r. Find the potential difference across the external resistor.

D Watch Video Solution

81. State any two advantages of potentiometer over voltmeter.
82. Distinguish between ammeter and voltmeter, (any two points).

- Watch Video Solution

83. If $\mathrm{V}=n_{v} V_{g}$ then show that $\mathrm{X}=\mathrm{G}\left(n_{v}-1\right)$.

D Watch Video Solution

84. Define potential gradient. State its unit and dimension.
85. Four resistances $4 \Omega, 8 \Omega, x \Omega$ and 6Ω are connected in the cyclic so as to form a Wheatstone network. Determine the value of x if network is balanced.

D Watch Video Solution

86. If a galvanometer is shunted by one third of its resistance, find the fraction of total current passing through the galvanometer.

- Watch Video Solution

87. Explain:- Thermo emf

- Watch Video Solution

88. Explain:- see back effect

- Watch Video Solution

89. Explain:- Thermocouple.
90. State any three sources of error in meterbridge experiment and steps to be taken to minimise them.

- Watch Video Solution

91. With a resistance R_{1} in the left gap and a resistance R_{2} in the right gap of a meterbridge, the null point is obtained at a
distance of 70 cm from the left end, when R_{1} is
reduced by 2Ω and R_{2} is increased by 2Ω, the null point is obtained at 30 cm from left end. Find the values of resistance R_{1} and R_{2}.

- Watch Video Solution

92. State Kirchoff's laws in electricity:-

Calculate the value of I_{1} and I_{2} in the

following circuit.

- Watch Video Solution

