©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Electrostatics

Example

1. What are conservative forces,

o
 Watch Video Solution

2. Define:- Linear charge density

D Watch Video Solution

3. Define:- Surface charge density

D Watch Video Solution
4. Define:- Volume charge density

- Watch Video Solution

5. What is Gauss' law and what is a Gaussian

 surface?
D Watch Video Solution

6. Two charge of magnitudes $-4 Q$ and $+2 Q$ are located at points $(2 a, 0)$ and $(5 a, 0)$ respectively. What is the electric flux due to these charges through a sphere of radius $4 a$ with its centre at the origin?
7. A spherical Gaussian surface encloses a charge of $17.7 \times 10^{-8} C$:- Calculate the electric flux passing though the surface.

- Watch Video Solution

8. A spherical Gaussian surface encloses a charge of $17.7 \times 10^{-8} C$:- If the radius of Gaussian surface is doubled, how would the flux change?
9. Obtain an expression for electric field intensity due to uniformly charged spherical shell or hollow sphere.

D Watch Video Solution

10. Two hollow concentric spheres S_{1} and S_{2} enclosing charges $2 Q$ and $5 Q$ respectively, as shown in figure:- What would be the electric
flux through S_{1}
'(\#\#CHT_MK_AJI_PHY_XII_P1_C03_S01_017_Q01\#\#)'

D Watch Video Solution

11. Two hollow concentric spheres S_{1} and S_{2} enclosing charges $2 Q$ and $6 Q$ respectively, as shown in figure:- What is the ratio of electric flux through S_{1}, and S_{2} ?
'(\#\#CHT_MK_AJI_PHY_XII_P1_C03_S01_018_Q01\#\#)'

- Watch Video Solution

12. Derive an expression for electric potential due to a point charge

- Watch Video Solution

13. What is gravitational potential?

- Watch Video Solution

14. What is a test charge ?

D Watch Video Solution
15. Explain electrostatic potential energy.
'(\#\#CHT_MK_AII_PHY_XII_P1_C08_S01_030_Q01\#\#)'

D Watch Video Solution

16. Derive an expression for potential energy due to a point charge.

- Watch Video Solution

17. Derive an expression for potential energy due to a point charge.

D Watch Video Solution
18. Define one joule in terms of electrostatic potential energy.

D Watch Video Solution

19. Define electron volt.

- Watch Video Solution

20. Explain the concept of potential.

- Watch Video Solution

21. Obtain the relation between electric field and electric potential.

- Watch Video Solution

22. Show that electric field intensity at any point in the electric field is equal to negative rate of change of potential with respect to distance, measured in the direction of electric intensity

D Watch Video Solution
23. Define potential gradient.

24. State the S.I. unit of potential gradient.

D Watch Video Solution

25. Where is zero potential point due to point charge?

D Watch Video Solution

26. Obtain dimensional formula for potential difference.
27. Potential at a point A in space is given as
$4 \times 10^{5} V$:- Find the work done in bringing a charge of $3 \mu C$ from infinity to the point A.

- Watch Video Solution

28. Potential at a point A in space is given as
$4 \times 10^{5} V$:- Does the answer depend on the path along which the charge is brought?
29. If 120 J of work is done in carrying a charge of 6 C from a place where the potential is 10 volt to another place where the potential is V , find V.

D Watch Video Solution

30. Calculate the amount of energy dissipated
when a charge of $200 C$ is transferred from
cloud to the ground during lighting, if
potential of the cloud is $10^{6} \mathrm{~V}$ with respect to earth.

- Watch Video Solution

31. An electric potential is 10 V throughout the space in a sphere of radius $0.2 m^{3}$. What is the electric field in this region?

- Watch Video Solution

32. 40 J of work is done to move an electric charge of 5 C from a point where potential is 20 V to another point, where potential is V volt. Find the value of V .

- Watch Video Solution

33. Two metal spheres, one of radius R and the other of radius 2 R respectively have the same surface charge density σ. They are brought in
contact and separated. What will be the new surface charge densities on them?

D Watch Video Solution

34. A charge Q is kept at point A. The electric
field intensity and electric potential at point B
is $36 N C^{-1}$ and $18 J C^{-1}$. Calculate the distance $A B$ and magnitude of charge.

D Watch Video Solution

35. Derive an expression for electric potential due to a point charge

D Watch Video Solution

36. Obtain an expression for electric potential due to a point charge and show graphically
the variation in electric field and potential with distance.
37. Show the variation of electric field and electric potential due to negative point charge with distance, graphically.

D Watch Video Solution

38. Show the variation of electric field and electric potential due to negative point charge with distance, graphically.
39. A wire is bent in a circle of radius 10 cm . It is given a charge of $250 \mu C$ which spreads on it uniformly. What is the electric potential at the centre?

D Watch Video Solution

40. The electric potential at 18 cm from the
charge is 200 V . Find the magnitude of the charge.

- Watch Video Solution

41. What is electrostatic potential due to electric dipole at an equatorial point?

D Watch Video Solution

42. What is the work done in moving a test charge q_{0} throught a distance of 2 cm along the equatorial axis of an electric dipole?

D Watch Video Solution

43. Define electric dipole and electric dipole moment.

D Watch Video Solution
44. Derive an expression for electric potential due to a point charge
(D) Watch Video Solution
45. A short electric dipole h as dipole moment of $1 \times l 0^{-9} \mathrm{Cm}$. Determine the electric potential due to the dipole at a point distance 0.3 m from the centre of the dipole situated:on the axial line (b) on the equatorial line

- Watch Video Solution

46. A short electric dipole h as dipole moment of $1 \times l 0^{-9} \mathrm{Cm}$. Determine the electric potential due to the dipole at a point distance
0.3 m from the centre of the dipole situated:on a line making an angle of 60° with the dipole axis.

D Watch Video Solution

47. A change q is moved from a point A above
a dipole of dipole moment p to a point B below the dipole in equatorial plane without acceleration. Find the work done in this
process.

- Watch Video Solution

48. Derive an expression for electric potential due to a point charge
49. Two charges $5 \times 10^{-8} C$ and $-3 \times 10^{-8} C$ are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

- Watch Video Solution

50. Is electrostatic potential necessarily zero
at a point where electric field strength is zero?
Justify.

- Watch Video Solution

51. Charges $+200 \mu C,-150 \mu C,+20 \mu C$ and
$-60 \mu C$ are at the comers of a square of side
2 m . Calculate electric potential at the centre of the square.
52. A charge of $15 \mu C$ is given to hollow metallic sphere of radius 0.3 m . Find the potential:- at the surface of sphere

- Watch Video Solution

53. A charge of $15 \mu C$ is given to hollow metallic sphere of radius 0.4 m . Find the potential:- at a distance 0.15 m from the centre of sphere.
54. A metal wire is bent in a circle of radius 20 cm . It is given a charge of $400 \mu C$ which is spread on it uniformly. Calculate the electric potential at its centre.

D Watch Video Solution

55. Two point charges of magnitudes $+100 \mu C$ and $-400 \mu C$ are kept 30 cm apart. Find the
point of zero potential on the line joining the two charges.

D Watch Video Solution

56. Two point charges of $5 \mu C$ and $15 \mu C$ are placed in air 20 cm apart. Find the electric potential at the middle point of the line joining the two charges.

D Watch Video Solution

57. No work is done in moving a test charge over an equipotential surface. Why?

D Watch Video Solution
58. Can two equipotential surfaces intersect each other? Give reason.

D Watch Video Solution
59. Explain the concept of equipotential surfaces.

D Watch Video Solution
60. Show that electric field intensity is always normal to the equipotential surface.

- Watch Video Solution

61. Explain why the electric field intensity cannot be inclined to the equipotential surface?

- Watch Video Solution

62. Draw equipotential surfaces for the
following:- single point charge,

- Watch Video Solution

63. Draw equipotential surfaces for the following:- a uniform electricfield

D Watch Video Solution
64. Draw equipotential surfaces for the following:- a dipole

D Watch Video Solution
65. Draw equipotential surfaces for the following:- two identical positive charges

D Watch Video Solution
66. Draw equipotential surfaces for the

following:- two plane metallic plates

connected to a cell

D Watch Video Solution
67. Draw equipotential surfaces for the following:- charged metallic sphere and plate

D Watch Video Solution

68. How much work is done in moving a $200 \mu C$
charge through a distance of 0.5 cm on an equipotential surface?

- Watch Video Solution

69. A small particle carrying a negative charge of $1.6 \times 10^{-19} C$ is suspended in equilibrium between two horizontal metal plates 10 cm apart having a potential difference of 4000 V across them. FInd the mass of the particle.

D Watch Video Solution

70. An infinite plane sheet of charge density $10^{7} \mathrm{~cm}^{-2}$ is held in vacuum. In this situation
how far should the two equipotential surfaces
be kept, whose potential difference is 50 V ?

D Watch Video Solution

71. Is the electrostatic potential energy of N number of point charges is path dependent?

D Watch Video Solution

72. Under what condition, is the potential energy of two point charges zero?
73. Two interacting like charges possesses potential energy. Explain.

D Watch Video Solution

74. Define electrostatic potential energy of a system of point charges.
75. Derive an expression for potential energy of a system of two point charges.

- Watch Video Solution

76. Derive an expression for a potential energy
for a system of N point charges.
(Watch Video Solution
77. Two charges of magnitude 5 nC and -2 nC are placed at points $(2 \mathrm{~cm}, 0,0)$ and ($20 \mathrm{~cm}, 0$,

0) in a region of space, where there is no other external field. Find the electrostatic potential energy of the system.

- Watch Video Solution

78. Calculate the electrostatic potential energy of the system of charges shown in the figure.

D Watch Video Solution

79. Define the term potential energy of a charge q at a distance r in an external electric field.
80. A charge q is at a distance r in an external electric field. Write an expression for potential energy of the charge.

- Watch Video Solution

81. Derive an expression for potential energy
of a single charge in an external electric field.

D Watch Video Solution
82. Derive an expression for potential energy of a system of two charges in an external electric field.

- Watch Video Solution

83. Two charged particles having equal charge of $3 \times 10^{-5} C$ each are brought from infinity to a separation of 30 cm . Find the increase in electrostatic potential energy during the process.

- Watch Video Solution

84. Determine the electrostatic potential energy of a system consisting of two charges
$-2 \mu C$ and $+4 \mu C$ (with no external field) placed at ($-8 \mathrm{~cm}, 0,0$) and $(+8 \mathrm{~cm}, 0,0)$ respectively, (b) Suppose the same system of charges is now placed in an external electric field. $E=A\left(1 / r^{2}\right)$, where $A=8 \times 105 \mathrm{~cm}^{-2}$, what would be the electrostatic potential energy of the configuration.
85. Three charges $-q$, +Qand $-q$ are placed at equal distance on straight line If the potential energy of the system of the three charges is zero, then what is the ratio of $Q: q$?

D Watch Video Solution

86. An electron and a proton separated by a
distance of $4 \times 10^{-9} m$, forms an electric dipole. This dipole is aligned in a uniform
electric field of $1.5 \times 10^{4} N / C$. Calculate potential energy of dipole to hold it at 60° with the direction of electric field.

- Watch Video Solution

87. A dipole with its charges $-q$ and $=q$ located at the points $(0,-\mathrm{b}, 0)$ and $(0,+\mathrm{b}, 0)$ is present in
a uniform electric field E . The equipotential surfaces of this field are planes parallel to the YZ planes:- What is the direction of the electric field E ?
88. A dipole with its charges $-q$ and $=q$ located at the points $(0,-\mathrm{b}, 0)$ and $(0,+\mathrm{b}, 1)$ is present in a uniform electric field E . The equipotential surfaces of this field are planes parallel to the YZ planes:- How much torque would the dipole experience in this filed?

- Watch Video Solution

89. The dipole moment of water molecule is
$6.3 \times 10^{-30} \mathrm{Cm}$. A sample of water contains

1021 molecules, whose dipole moments are all oriented in an electric field of strength
$2.5 \times 10^{5} \mathrm{~N} / C$. Calculate the work to be done
to rotate the dipoles from their initial
orientation $\theta_{1}=0$ to one in which all the
dipoles are perpendicular to the field,
$\theta_{2}=90^{\circ}$.

- Watch Video Solution

90. A charge $6 \mu C$ is placed at the origin and another charge $-5 \mu C$ is placed on the Y -axis at position $A(0,6,0) m$. Calculate the total electric potential at the point P whose coordinates are $(8,0,0) \mathrm{m}$.

D Watch Video Solution

91. A charge $6 \mu C$ is placed at the origin and another charge $-5 \mu C$ is placed on the Y -axis at position $A(0,6,1)$ m:- Calculate the work done
to bring a proton from infinity to the point P.

D Watch Video Solution

92. An electric dipole consist of two opposite charges each of magnitude $1 \mu C$ separated by distance 2 cm . The dipole is placed in an external field of $10^{5} N / C$. The maximum torque acting on the dipole is
93. An electric dipole consists of two opposite charges each of magnitude $1 \mu C$ separated by

2 cm . The dipole is placed in an external electric field of $10^{6} \mathrm{~N} / \mathrm{C}$. Find:- The work that
the external agent will have to do in turning the dipole through 180° starting from position $\theta=0^{\circ}$.

- Watch Video Solution

94. Two point charges $20 \times l 0^{-6} \mathrm{C}$ and $-4 \times l 0^{-6} C$ are separated by a distance of

50 cm in air. Calculate the electrostatic potential energy of the system.

D Watch Video Solution

95. Set up an arrangement of three point charges $+\mathrm{q},+2 \mathrm{q}$, and +2 xq separated by equal
finite distances so that electric potential energy of the system is zero. Find the value of x.

D Watch Video Solution
96. Two point charges A and B of value $+3 \mu C$ and $+2 \mu C$ are kept 25 cm apart in air.

Calculate the work done when charge B is moved by 5 cm towards A

- Watch Video Solution

97. What are conductors?
98. State the properties of conductors under electrostatic conditions.

D Watch Video Solution
99. Explain electrostatic shielding (Screening).

- Watch Video Solution

100. The safest way protect yourself from
lightning is to be inside a car. Justify.

- Watch Video Solution

101. What are free charges and bound charges?

D Watch Video Solution

102. What are insulators?

- Watch Video Solution

103. What are dielectric materials? Give any two examples of it.

D Watch Video Solution
104. What is meant by polarization of dielectrics
(Watch Video Solution
105. State the types of dielectrics hence explain each.

D Watch Video Solution
106. What is the net charge on a polarized dielectric molecule.

- Watch Video Solution

107. Explain polarization of a non-polar dielectric in an external electric field.

D Watch Video Solution

108. Explain polarization of a polar dielectric in an external electric field.

- Watch Video Solution

109. Why does a charged glass rod attract a piece of paper?

D Watch Video Solution
110. What is meant by polarization of dielectrics

D Watch Video Solution
111. What is dielectric strength.

- Watch Video Solution

112. What is the basic purpose of using a capacitor?

D Watch Video Solution

113. In which form is the energy stored in a charged capacitor?
114. Write two applications of capacitors in electrical circuits.

(Watch Video Solution

115. What is net charge on a charged capacitor?

- Watch Video Solution

116. If the plates of a charged capacitor are suddenly connected to each other by a wire, what will happen?

D Watch Video Solution

117. Explain a capacitor formed by two conductors and define capacitance of a capacitor.
118. State the S.I unit and dimensional formula for capacitance.

- Watch Video Solution

119. Define1farad and give the submultiples of unit farad.

- Watch Video Solution

120. Explain the principle of capacitor.
121. Explain in brief, the parallel plate capacitor.

D Watch Video Solution

122. Derive anexpression for the effective capacitance of three capacitors in series.
123. When is a series combination used?

- Watch Video Solution

124. Derive an expression for the effective capacitance of three capacitors connected in parallel.

D Watch Video Solution

125. When is a parallel combination used?
126. When 10^{8} electrons are transferred from one conductor to another, a potential difference of 10 V appears between the conductors. Find the capacitance of the two conductors.

D Watch Video Solution

127. From the figure given below, find the value
of the capacitance C if the equivalent
capacitance between Aand Bis to be $1 \mu F$. All other capacitors are in microfarad.

D Watch Video Solution

128. Show that electric field at the surface of a charges conductor is, $\vec{E}=\frac{\sigma}{E_{0}} \widehat{n}$ where σ is
the surface charge density and \widehat{n} is a unit vector normal to the surface in the outward direction.

129. If the difference between the radii of the
two spheres of a spherical capacitor is increased, state whether capacitance will increase or decrease?

- Watch Video Solution

130. Three capacitors of $1 \mu F, 2 \mathrm{muF}$ and

4muF' are joined in series. How many times
will the capacity change when they are joined in parallel.

D Watch Video Solution

131. Obtain an expression for capacity of an isolated spherical conductor.

D Watch Video Solution

132. Find the ratio of the potential difference
that must be applied across the parallel and
series combination of two capacitors C_{1} and
C_{2} with capacitance in the ratio $1: 2$, so that the energy stored in these two cases becomes the same.

- Watch Video Solution

133. One hundred twenty five small liquid drops, each carrying a charge of $0.5 \mu C$ and each of diameter 0.1 m form a bigger drop.

Calculate the potential at the surface of the bigger drop.

Watch Video Solution

134. Derive an expression for capacitance of a parallel plate capacitor without a dielectric.

Fig 8.39 parallel plate capacitor (without dielectric)

D Watch Video Solution

135. Derive an expression for capacitance of a parallel plate capacitor without a dielectric slab between the plates.

D Watch Video Solution

136. Write the expression for a capacitance of
a capacitor when the entire space is filled with dielectrc.
137. Give the expression for capacitance of a capacitor when n dielectric slabs of thickness
$t_{1}, t_{2} \ldots t_{n}$ and dielectric constants $k_{1}, k_{2} \ldots k_{n}$ respectively, fills the entire space between the plates.

D Watch Video Solution

138. If the arrangement consists of n
capacitors in parallel with plate areas
$A_{1}, A_{2}, \ldots A_{n}$ and plate separation d , then
obtain the expression for capacitance of a capacitor.

D Watch Video Solution

139. Calculate the capacitance of a parallel plate condenser of two plates of area $10^{4} \mathrm{~cm}^{2}$ each separated by 4 mm thick glass sheet of k $=4$.
140. A metal plate is introduced between the plates of a charged parallel plate capacitor. What is its effect on the capacitance of the capacitor?

- Watch Video Solution

141. If the capacitor is filled with a conducting
slab, then give the expression of capacitance.

- Watch Video Solution

142. In a parallel plate capacitor with air between the plates, each plate has an area of
$6 \times 10^{-3} m^{2}$ and the separation between the
plate is 2 mm :- Calculate the capacitance of the capacitor.

- Watch Video Solution

143. In a parallel plate capacitor with air between the plates, each plate has an area of
$6 \times 10^{-3} m^{2}$ and the separation between the
plate is 3mm:- If this capacitor is connected to

100 V supply, what would be the charge on each plate?

D Watch Video Solution

144. In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3} m^{2}$ and the separation between the plate is 4 mm :- How would the charge on the plates be affected if a 2 mm thick mica sheet of $k=6$ is inserted between the plates while the voltage supply remains connected?
145. Two plates of a parallel plate capacitor are

4 mm apart. A slab of dielectric constant 3 and
thickness 3 mm is introduced between the plates with the faces parallel to them. The distance between the faces is so adjusted that the capacitance of the capacitor becomes $\frac{2}{3}$ of its original value. What is the new distance between the plates?
146. An electric field of $3 X 10^{4} V m^{-1}$ is produced between the plates 0.05 m apart, of a parallel plate capacitor when it is fully charged. Now an uncharged metal plate of thickness 0.01 m is inserted between capacitor plates:- Find the potential difference after introduction of plates.

- Watch Video Solution

147. An electric field of $3 X 10^{4} V m^{-1}$ is produced between the plates 0.05 m apart, of a
parallel plate capacitor when it is fully
charged. Now an uncharged metal plate of thickness 0.01m is inserted between capacitor plates:-What would be the potential difference if a dielectric slab ($k=3$) were introduced in place of metal plate

- Watch Video Solution

148. What is displacement current?

- Watch Video Solution

149. A capacitor is connected to the D-C source. How do the conduction and displacement currents set up, compared with each other:- during the charging up process?

D Watch Video Solution

150. A capacitor is connected to the $D-C$
source. How do the conduction and displacement currents set up, compared with each other:- after the capacitor gets fully charged?

- Watch Video Solution

151. Is the steady electric current the only source of magnetic field? justify your answer.

- Watch Video Solution

152. If $\frac{d \phi_{E}}{d t}$ is the rate of change of electric
flux, then why is the quantity $\varepsilon_{0} \frac{d \phi_{E}}{d t}$ is called the displacement current?
153. Explain the concept of displacement current.

- Watch Video Solution

154. Derive an expression for a common potential and loss of energy when two charged capacitor are connected by conducting wires
155. A parallel plate capacitor has an area of
$4 \mathrm{~cm}^{2}$ and a plate separation of 2 mm :-

Calculate its capacitance.

- Watch Video Solution

156. A parallel plate capacitor has an area of
$4 \mathrm{~cm}^{2}$ and a plate separation of 3 mm :- What is
its capacitance if the space between the plates
is filled completely with a dielectric having dielectric constant of 6.7.
157. In a capacitor of capacitance $20 \mu F$, the distance between the plates is 2 mm . If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, what is the new capacitance?

D Watch Video Solution

158. Derive an expression for the energy stored
in a charged capacitor. Express it in different
forms.

- Watch Video Solution

159. How much energy is used by the capacitor during charging which is supplied by the battery?

D Watch Video Solution

160. A parallel plate air capacitor has a capacitance of $3 \times 10^{-9} F$. A slab of dielectric
constant 3 and thickness 3 cm completely fills
the space between the plates. The potential difference between the plates is maintained constant at 400 volt. What is the change in the energy of capacitor if the slab is removed?

D Watch Video Solution

161. A spherical shell of radius b with charge Q
is expanded to a radius a. Find the work done by the electrical forces in the process.
162. Calculate the capacitance of a capacitor, required to share an energy of 10 kWh at a potential difference of $10^{5} \mathrm{~V}$.

- Watch Video Solution

163. A $6 \mu F$ capacitor is charged by a 300 V supply. It is then disconnected from the supply and is connected to another uncharged $3 \mu F$ capacitor. How much electrostatic energy of
the first capacitor is lost in the form of heat and electrostatic radiation?

D Watch Video Solution

164. A capacitor has some dielectric between
its plates and the capacitor is connected to a source. The battery is now disconnected and
then the dielectric is removed. State whether
the capacitance, the energy stored in it, the electric field, charges stored and voltage will increase, decrease or remain constant.

Watch Video Solution

165. A 500 pF capacitor is charged by a 100 V supply. It is then disconnected from the supply and is connected to another uncharged 500pF capacitor. How much electrostatic energy is lost in the process?

D Watch Video Solution

166. State the principle of working of Van de Graff generator. State its uses .

- Watch Video Solution

167. State the uses of Van De Graff generator.

D Watch Video Solution

168. Distinguish between:- Polar dielectric and non - polar dielectric
169. Distinguish between:- Conduction current and displacement current.

D Watch Video Solution

Exercise

1. Calculate the total flux coming out from a closed surface enclosing a particle $\left({ }_{2}^{4} H e\right)$.
(Given : $e=1.6 \times l 0^{-19} C$)

D Watch Video Solution
2. A charge of $6 q$ is placed at the centre of a cube of side 2 cm . What is the electric flux passing through two opposite faces of the cube?

D Watch Video Solution

3. Two charges - q and $+q$ are located at points $A(0,0,-a)$ and $A(0,0,+a)$ respectively. How much work is done in moving a test charge from point $P(7,0,0)$ to $Q(-3,0,0)$?

- Watch Video Solution

4. If 20 J of work is to be done in moving a charge of 100 C from A to B, which of the two point is at higher potential? What is the potential difference?

- Watch Video Solution

5. The electric potential at 45 cm from a point charge is +100 V . what is the magnitude and
sign of charge?

- Watch Video Solution

6. Two point charges $4 \mu C$ and $-2 \mu C$ are separated by a distance of Im in air. Calculate, on which point on the line joining the two charges, is the electric potential zero?

- Watch Video Solution

7. The electric field at a point due to a point charge is $60 \mathrm{~N} / \mathrm{C}$ and the electric potential at that point is $30 \mathrm{~J} / \mathrm{C}$. Calculate the distance of the point from the charge and the magnitude of the charge.

- Watch Video Solution

8. Twenty seven charged water droplets each with a diameter of 2 mm and a charge of
$10^{-12} C$ coalesce to form a single drop.

Calculate the potential of the bigger drop.

D Watch Video Solution

9. Two point charges $+0.2 \mu C$ and $0.01 \mu C$ are
placed 10 cm apart. Calculate the work done in reducing the distance 5 cm between them.

D Watch Video Solution

10. The kinetic energy of a charged particle decreases by 10J as it moves from a point at a potential 300 V to a point at a potential 400 V . Find the charge on the particle.

- Watch Video Solution

11. The capacity of a capacitor becomes $20 \mu F$
when gap between the capacitor is filled completely by a dielectric slab of $k=4$. What is
the capacity of a capacitor with air in between the plates?

D Watch Video Solution

12. Calculate the energy stored in a capacitor of $6 \mu F$ when it is charged to a potential of 240 volt.

D Watch Video Solution
13. A $800 \mu F$ capacitor is charged by a 100 V
battery. After some time, the battery is disconnected. The capacitor is then connected to another $800 \mu F$ capacitor. What is the electrostatic energy stored?

D Watch Video Solution

14. Net capacitance of three identical capacitors in series is $1 \mu F$. What will be their net capacitance in parallel? Find the ratio of
energy stored in two configuration if they are connected to the same source.

D Watch Video Solution

15. The capacity of a parallel plate air condenser is $8 \mu F$. When air is replaced by another material, its capacity becomes $16 \mu F$.

Calculate the dielectric constant of other material.

- Watch Video Solution

16. Calculate the capacity of a sphere of radius

1000m.

- Watch Video Solution

17. Two capacitors each of capacitance $5 \mu F$
and a battery of emf 240 volt. Which arrangement, series or parallel, would give minimum energy? Calculate its value.
18. Figure shows a network of five capacitors connected to a 100 V supply. Calculate the total charge and energy stored in the network.

- Watch Video Solution

19. Net capacitance of three identical capacitors in series is $1 \mu F$. What will be their
net capacitance if connected in parallel? Find the ratio of energy stored in the two configurations, if they are both connected to the same source.

D Watch Video Solution

20. Capacity of a capacitor is $3 \mu F$. A slab of dielectric constant 4 is inserted between the
plates and capacitor is charged to 200 V and
then isolated. What is the new potential difference if the dielectric slab is removed?
21. Select and write the most appropriate answer from the given alternatives each sub
question:- Angle between equipotential
surface and lines of force is
A. Zero
B. 90°
C. 180°
D. 45°

Answer:

- Watch Video Solution

22. Theelectricfield near a
conductingsurfacehaving a uniform surface
charge density a is given by-
A. $\operatorname{sigm} \frac{s}{2_{\varepsilon}}$ and is parallel to the surface
B. $\frac{\sigma}{\varepsilon_{0}}$ and is parallel to the surface
C. $\operatorname{sigm} \frac{s}{2_{\varepsilon}}$ and is normal to the surface
D. $\frac{\sigma}{\varepsilon_{0}}$ and is normal to the surface

Answer:

D Watch Video Solution

23. Two plates are 1.5 cm apart, and a potential
difference of 7.5 volt is applied between them, the electric field between the plates is
A. $20 N / C$
B. $50 \mathrm{~N} / \mathrm{C}$
C. $500 \mathrm{~N} / \mathrm{C}$
D. $200 \mathrm{~N} / \mathrm{C}$

Answer:

D Watch Video Solution

24. Two charges $+q$ and $-q$ are situated at a certain distance. At the point exactly midway between them,
A. Electric field and electric potential both are zero
B. Neither electric field nor electric
potential is zero.
C. Electric field is zero but electric potential is not zero.
D. Electric field is not zero but electric potential is zero.

Answer:

D Watch Video Solution

25. At a certain distance from a point charge
the electric potential is 200 V and electric field is $200 \mathrm{~V} / \mathrm{m}$. What is this distance?
A. 10 m
B. 8 m
C. 0.1 m
D. 0.8 m

Answer:

D Watch Video Solution

26. Two charged sphere of radii R_{1} and R_{2}
have equal surface charge density. The ratio of
their potential is
A. $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
B. $\left(\frac{R_{2}}{R_{1}}\right)^{2}$
C. $\frac{R_{2}}{R_{1}}$
D. $\frac{R_{1}}{R_{2}}$

Answer:

- Watch Video Solution

27. The electric potential V is a function of
distance x in metre by $\mathrm{V}=\left(10 x^{2}-5 \mathrm{x}+3\right)$ volt.
Value of electric field at $x=2$ is,
A. -35
B. -33
C. 45
D. 37

Answer:

D Watch Video Solution
28. A parallel plate capacitor is charged and
then isolated. The effect of increasing the
plate separation on charge, potential, capacitance respectively are-
A. Constant, decreases, decreases .
B. Increases, decreases, decreases.
C. Constant, decreases, increases.
D. Constant, increases, decreases.

Answer:

D Watch Video Solution

29. A slab of material of dielectric constant k
has the same area A as the plates of a parallel
plate capacitor and has thickness $(3 d / 4)$,
where d is separation of the plates.The charge
in capacitance when the slab is inserted between the plates is

$$
\begin{aligned}
& \text { A. } C=\frac{A_{\varepsilon 0}}{d}\left(\frac{k+3}{4 k}\right) \\
& \text { B. } C=\frac{A_{\varepsilon 0}}{d}\left(\frac{2 k}{k+3}\right) \\
& \text { C. } C=\frac{A_{\varepsilon 0}}{d}\left(\frac{k+3}{2 k}\right) \\
& \text { D. } C=\frac{A_{\varepsilon 0}}{d}\left(\frac{4 k}{k+3}\right)
\end{aligned}
$$

Answer:

- Watch Video Solution

30. Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.
A. $1: 1$
B. 1:2
C. $2: 1$
D. $1: 3$

Answer:

D Watch Video Solution

31. Charge $+q$ and $-q$ are placed at points A and B respectively which are distance 2 L apart.
C is the midpoint of A and B. The work done in moving a charge $+Q$ along the semicircle CRD
as shown in the figure below is

A. $\frac{-q Q}{6 \pi \varepsilon_{0} L}$
B. $\frac{q Q}{2 \pi \varepsilon_{0} L}$
C. $\frac{q Q}{6 \pi \varepsilon_{0} L}$
D. $\frac{-q Q}{4 \pi \varepsilon_{0} L}$

Answer:
32. A parallel plate capacitor has circular plates of radius 8 cm and plate separation 1 mm . What will be the charge on the plates if a potential difference of 100 V is applied?
A. ${ }^{1.78} \mathrm{xx} 10^{\wedge}-8 \mathrm{C}$
B. ${ }^{`} 1.78 \times x 10.5^{\wedge}-5 C$
C. $4.3 \times 10^{-4} C$
D. $2 \times 10^{-9} C$
33. Two unlike charges of magnitude q are separated by a distance 4d. The potential at a point midway between them is

> А. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{d}$
> B. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{d}$
C. Zero
D. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{d^{2}}$
34. What is the potential energy of the equal positive point charges of $1 \mu C$ each, held $2 m$ apart in air-
A. ${ }^{`}-9 \mathrm{xx} 10^{\wedge}-3 \mathrm{~J}$
B. ${ }^{`}+9 x x 10^{\wedge}-3 \mathrm{eV}$
C. zero
D. ${ }^{`} 4.5 \times x 10^{\wedge}-3 \mathrm{~J}$
35. 125 electrons are equally spaced and fixed around a circle of radius R . Relative to $\mathrm{V}=0$ at infinity, the electrostatic potential V and the electric field E at the centre C are
A. $V=0$ and $E \neq 0$
B. $V=0$ and $E=0$
C. $V \neq 0$ and $E=0$
D. $V \neq 0$ and $E \neq 0$

Answer:

- Watch Video Solution

36. Two point charges of $1 \mu C$ each are 10 cm
apart. the work done in bringing them 5 cm
closer is
A. 9×10^{2}
B. 9 J
C. 90 J
D. 0.9 J

Answer:

D Watch Video Solution

37. If an electron moves from rest, from a point
at which potential is 60 volt to another point
at which potential is 110 volt, then its kinetic energy in the final state will be
A. $9 \times 10^{-19} J$
B. $0.8 \times 10^{-19} J$
C. $8 \times 10^{-18} J$

D. $10 \times 10^{-18} J$

Answer:

D Watch Video Solution

38. If the charges $+Q$ and $-Q$ are placed at the two vertices of an equilateral triangle of side I, then potential at the third vertex is

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{l} \\
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{l}
\end{aligned}
$$

C. zero

$$
\text { D. } \frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{l}
$$

Answer:

D Watch Video Solution

39. A hollow conducting sphere of radius R has
a charge $+Q$ on its surface. What is the electric potential within the sphere at a distance $r=$ $R / 3$ from its centre.
A. Zero
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 Q}{R}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{2}}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}$

Answer:

D Watch Video Solution

40. Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities (sigma) is
A. $\frac{\sigma}{2 \varepsilon_{0}}$
B. $\frac{\sigma}{\varepsilon_{0}}$
C. $\frac{2 \sigma}{\varepsilon_{0}}$
D. zero

Answer:

D Watch Video Solution

41. The electric potential at a point along the axis of an electric dipole depends on distance r from the dipole as
A. $\propto \frac{1}{r^{2}}$
B. $\propto \frac{1}{r}$
C. $\propto r$
D. $\propto \frac{1}{r^{3}}$

Answer:

- Watch Video Solution

42. An electric dipole is kept in non-uniform electric field. It experiences
A. A torque but not a force
B. A force but not a torque
C. Neither force nor troque.
D. A force and a torque.

Answer:

D Watch Video Solution
43. An electric dipole has length 2 l. The ratio of electric field and potential (E / V) at midpoint of the dipole is
A. $\frac{1}{2} l$
B. $\frac{1}{2}$
C. zero
D. infinity

Answer:

D Watch Video Solution

44. The only non polar molecule given below is
A. $H^{2} O$
B. HCl
C. CO_{2}
D. NH_{3}

Answer:

- Watch Video Solution

45. The electric dipole moment of an electron and a proton 4.2 nm apart is
A. 6.72×10^{-28}
B. 3.2×10^{-28}
C. 2.50×10^{-29}
D. 6.72×10^{-29}

Answer:

D Watch Video Solution

46. According to Gauss' theorem, electric field of an infinitely long straight wire is proportional to
A. r^{2}

$$
\begin{aligned}
& \text { B. } \frac{1}{r^{2}} \\
& \text { C. } \frac{1}{r} \\
& \text { D. } \frac{1}{r^{3}}
\end{aligned}
$$

Answer:

D Watch Video Solution

47. A charged parallel plate capacitor has a potential energy U. if a slab of dielectric
constant k is inserted between the plates,
then the new potential energy will be_
A. UK
B. $\frac{U}{K}$
C. $U K^{2}$
D. $\frac{U}{K^{2}}$

Answer:
(Watch Video Solution
48. If q is a charge on the capacitor and C is a capacitance, then energy stored in capacitor is
A. $\frac{2 q^{2}}{C}$
B. $2 q C$
C. $\frac{q^{2}}{2} C$
D. $\frac{q}{2 C^{2}}$

Answer:

- Watch Video Solution

49. In a charged capacitor, the energy resides in
A. positive and negative charges
B. Positive charges only
C. Negative charges only
D. The field between the plate

Answer:

D Watch Video Solution
50. The electric field required for the breakdown of dielectric is called
A. Dielectric resistance
B. Dielectric strength
C. Dielectric number
D. Dielectric constant

Answer:

D Watch Video Solution
51. Two parallel plates of area A are separated
by two different dielectrics as shown in figure.
The net capacitance is

$$
\begin{aligned}
& \text { A. } \frac{4 \varepsilon_{0} A}{3 d} \\
& \text { B. } \frac{3 \varepsilon_{0} A}{4 d} \\
& \text { C. } \frac{2 \varepsilon_{0} A}{d} \\
& \text { D. } \frac{\varepsilon_{0} A}{d}
\end{aligned}
$$

Answer:

52. A capacitor of capacity C has a charge Q

and stored energy is W. If the charge is increased to 3Q, the stored energy will be
A. 3 W
B. $W / 3$
C. 9 W
D. 6 W

Answer:

D Watch Video Solution
53. An air filled capacitor has a capacitance $2 p^{f}$
. Now the plate separation is doubled and the space is filled with dielectric medium, then the capacitance increase to $4_{p} F$. The dielectric constant of dielectric medium is,
A. 6
B. 4
C. 2
D. 8

- Watch Video Solution

54. Capacity of an air capacitoris $20 \mu F$
.Theseparation between the parallel plates is 8 mm .Acopper plate of 4 mm thickness is introduced symmetrically between the plates.

The capacitance now becomes_
A. $40 \mu F$
B. $42 \mu F$
C. $30 \mu F$

D. $32 \mu F$

Answer:

D Watch Video Solution

55. For the combination of capacitors given in
the figure below, the equivalent capacitance is

A. C
B. 2 C
C. $\frac{C}{2}$
D. 3C

Answer:

D Watch Video Solution

56. In the series combination of three
capacitors of capacitances C_{1}, C_{2}, C_{3}, the equivalent capacitance will be
A. $C_{1}+C_{2}+C_{3}$
B. $\frac{1}{C_{1}+C_{2}+C_{3}}$
C. $\frac{C_{1}}{C_{1}+C_{2}}$
D. $\left(C_{1}^{-1}+C_{2}^{-1}+C_{3}^{-1}\right)^{-1}$

Answer:

D Watch Video Solution
57. Three equal capacitors are connected as
shown in figure. Then the equivalent
capacitance between A and B is

A. $\frac{2 C}{3}$
B. $\frac{C}{3}$
C. 3C
D. $\frac{3}{2} C$

Answer:
(Watch Video Solution

58. Displacement current is due to

A. Free electrons in motion.
B. Change in magnetic field
C. Time varying electric field
D. Alternating current

Answer:

59. Displacement current is given by

> A. $A k \varepsilon_{0} \frac{d E}{d t}$
> B. $\frac{\varepsilon_{0} k}{A} \frac{d E}{d t}$
> C. $\frac{1}{A \varepsilon_{0} k} \frac{d E}{d t}$
> D. $A^{2} \varepsilon_{0} k \frac{d E}{d t}$

Answer:

60. Select and write correct alternative from
the following alternatives: The displacement current is due to
A. Free electrons in motions
B. Change in magnetic field
C. Time varying electric field
D. Alternating current

Answer:

- Watch Video Solution

61. Select and write correct alternative from
the following alternatives::- The dimensional formula for the unit of capacitance is_
A. $\left[M^{-1} L^{-2} T^{4} A^{1}\right]$
B. $\left[M^{-1} L^{-1} T^{3} A^{1}\right]$
C. $\left[M^{-1} L^{-2} T^{4} A^{2}\right]$
D. $\left[M^{-1} L^{-1} T^{3} A^{2}\right]$

Answer:

D Watch Video Solution
62. Select and write correct alternative from
the following alternatives::- Capacitors are combined in parallel when we require a
A. Large capacitance and Small potential
B. Large capacitance and Large potential
C. Small capacitance and Large potential
D. Small capacitance and small potential

Answer:

- Watch Video Solution

63. Select and write correct alternative from
the following alternatives:- The work done to
move a charge of $5 \mu C$ through a distance of
2 cm on an equipotential surface is
A. $10 \times 10^{-8} J$
B. $2.5 \times 10^{-4} J$
C. $1 \times 10^{-8} J$
D. zero

Answer:

64. The safest way protect yourself from
lightning is to be inside a car. Justify.

- Watch Video Solution

65. Define electric potential

- Watch Video Solution

66. Define potential gradient.
67. State any four properties of a conductor under electrostatic condition.

- Watch Video Solution

68. Distinguish between polar molecules and non polar molecules (Any 2 points)
69. Draw a neat labelled diagram of equipotential surface for a uniform electric field and for a electric dipole.

- Watch Video Solution

70. Derive an expression for potential energy of a dipole in an external electric field.
71. A parallel plate air capacitor has a capacitance of $4 \mu F$. A slab of dielectric constant 4 and thickness 4 cm completely fills
the space between the plates. The potential difference between the plates is maintained constant at 200 volt. What is the change in the energy of a capacitor if the slab is removed?

Watch Video Solution

72. Van de Graff generator is used to

- Watch Video Solution

73. Derive an expression for electric potential due to an electric dipole. Hence, state the expressions for electric potential for a point on its axis and equator.

D Watch Video Solution

