©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Kinetic Theory of Gases and Radiation

Example

1. State Boyle's Law?

(Watch Video Solution

2. State Charle's Law.

D Watch Video Solution

3. State Gay Lussac's Law.

D Watch Video Solution
4. What is equation of state for a gas.

5. What is Avogadro's number?

D Watch Video Solution

6. What is a mole.

D Watch Video Solution
7. How do you get ideal gas equation from the

> gas laws?
8. 16 gm of oxygen occupy $0.025 \mathrm{~m}^{3}$ at $27^{\circ} \mathrm{C}$. If the universal gas constant is $8.4 \mathrm{~J} / \mathrm{molK}$, find the pressure exerted by it. (molecular weight of oxygen = 32).

D Watch Video Solution

9. Using ideal gas equation, determine the value of R (Given that one gram of molecule of gas at N.T.P. occupies 22.4 litre).
10. Determine the pressure of 4 gm of hydrogen occupying 16 litres of volume at $10^{\circ} C(R=8.315 \mathrm{~J} / \mathrm{mol} \mathrm{K}$, molecular weight of hydrogen = 2)

- Watch Video Solution

11. Write ideal gas equation for a mass of 7 g of nitrogen gas. ($M=28$ for nitrogen $)$
12. What is an ideal gas?

- Watch Video Solution

13. Does an ideal gas exist in reality?

- Watch Video Solution

14. What is a real gas.
(Watch Video Solution
15. How is a real gas different from an ideal gas.

D Watch Video Solution

16. State the conditions under which the real gas behaves like an ideal gas

- Watch Video Solution

17. What is the effect of size of the molecule of
a real gas, as against the ideal gas comprising point particles or the properties of the gas.

D Watch Video Solution

18. What are the three main assumptions which explain the behaviour of gases?

D Watch Video Solution

19. What are the properties of gases?

D Watch Video Solution

20. State Avogadros hypothesis.

- Watch Video Solution

21. State basic assumptions of kinetic theory of gases.

22. Define:- Free path.

- Watch Video Solution

23. Define:- Mean free path.

- Watch Video Solution

24. How is mean free path related to density of
the gas.

- Watch Video Solution

25. How is mean free path related to the size of the molecule.

- Watch Video Solution

26. State the expression of mean free path and state the terms involved.
27. How does the pressure of the gas affect the mean free path.

- Watch Video Solution

28. How are articles coated with metal films.

- Watch Video Solution

29. Obtain the mean free path of nitrogen molecule at $0^{\circ} C$ and 1.0 atm pressure. The
molecular diameter of nitrogen is 324 pm
(assume that the gas is ideal).

D Watch Video Solution

30. Derive an expression for pressure exerted by the gas on the basis of kinetic theory of gases.

D Watch Video Solution
31. On the basis of kinetic theory of gases, derive an expression for the pressure exerted by the gas in an enclosed vessel.

- Watch Video Solution

32. Define the following terms.- Mean velocity.

- Watch Video Solution

33. Define the following terms:-Mean square velocity.

D Watch Video Solution
34. Define the following terms.- Root mean square velocity.

- Watch Video Solution

35. Explain on the basis of kinetic theory of gases, how the pressure of the gas changes if its volume is reduced at constant temperature.

D Watch Video Solution

36. State and deduce Boyle's law on the basis of M kinetic theory of gases.
37. Show that R.M.S. velocity of gas molecule is directly proportional to the square root of its absolute temperature.

D Watch Video Solution

38. Derive an expression for KE and KE per unit
volume of gas using the expression for pressure exerted by the gas.

D Watch Video Solution

39. Show that average kinetic energy per unit volume of the gas is $\frac{3}{2} P$.

- Watch Video Solution

40. Derive an expression for:- Kinetic energy per mole or kilomole

D Watch Video Solution

41. Derive an expression for:- Kinetic energy per molecule
42. Derive an expression for:- Kinetic energy per unit mass

- Watch Video Solution

43. Show that kinetic energy per unit mass of a gas is $3 \frac{P}{2_{\rho}}$.

- Watch Video Solution

44. The velocities of five molecules are $2 m / s$, $3 m / s, 4 m / s, 5 m / s$ and $6 m / s$, respectively,

Find the mean velocity, mean square velocity and root mean square velocity of the molecule.

D Watch Video Solution

45. Find r.m.s velocity of three molecules having velocities $10 \mathrm{~km} / \mathrm{s}, 20 \mathrm{~km} / \mathrm{s}, 30 \mathrm{~km} / \mathrm{s}$.
46. Find R.M.S. velocity of H_{2} molecules at
N.T.P.
(density
$\left.H_{2}=0.09 \mathrm{~kg} / \mathrm{m}^{3}, P=10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$
of

D Watch Video Solution

47. Find number of molecules in $1 \mathrm{~cm}^{3}$ of oxygen at N.T.P., if mass of oxygen molecules is
$5.28 \times 10^{-28} \mathrm{~kg}$ and R.M.S. velocity of oxygen molecules at N.T.P. is $426 \mathrm{~m} / \mathrm{s}$. (Take pressure at N.T.P. $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$)
48. At what temperature will nitrogen molecules have same R.M.S. speed as oxygen molecules at 400 K (molecular weight of oxygen $=32$, molecular weight of nitrogen $=$ 28)

D Watch Video Solution

49. If R.M.S. velocity of hydrogen molecule at
N.T.P. is $1840 m / s$, determine the R.M.S.
velocity of oxygen molecule at N.T.P. (molecular weight of hydrogen and oxygen are 2 and 32 , respectively).

D Watch Video Solution

50. Calculate R.M.S. speed of oxygen molecules at $227^{\circ} C$ (density of oxygen at N.T.P. $=$ $1.429 \mathrm{~kg} / \mathrm{m}^{3}$ and one atmospheric pressure $=$ $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$).

51. Find the KE:- per cm3

D Watch Video Solution

52. Find the KE :- per mole.

- Watch Video Solution

53. Find the KE:- per gm,
54. Find the KE:- per molecule of nitrogen at
N.T.P.(molecular weight of $N_{2}=28$, Normal pressure $=76 \mathrm{~cm}$ of mercury, density of mercury $1.36 \mathrm{gm} / \mathrm{cm}^{2}, \quad \mathrm{~g}=980 \mathrm{~cm} / \mathrm{s}^{2}$, Avogadro's number $6.023 \times 10^{23}, \quad \mathrm{R}=$ $8.314 \times 10^{7} \mathrm{erg} / \mathrm{mol}^{k}$, molecular weight of nitrogen $=31$).

D Watch Video Solution

55. The kinetic energy of 1 kg of oxygen at 300

K is $1.356 \times 10^{6} \mathrm{~J}$. Find kinetic energy of 4 kg
of oxygen at 400 K .

- Watch Video Solution

56. Calculate average molecular kinetic energy:- per kilomole.

- Watch Video Solution

57. Calculate average molecular kinetic energy:- per kilogram of oxygen at $27^{\circ} C(\mathrm{R}=$
$8320 \mathrm{~J} / \mathrm{k}$ mole K, Avogadro s number 6.02×10^{27} molecule $/ \mathrm{K}$ mole.

D Watch Video Solution

58. Calculate kinetic energy of 10 gm of Argon molecule at $127^{\circ} C .(\mathrm{R}=8320 J / K$ mole K ,

Atomic weight of $\operatorname{Argon}=40$)

- Watch Video Solution

59. Determine the pressure of oxygen at $0^{\circ} \mathrm{C}$
if the density of oxygen at N.T.P. $=1.44 \mathrm{~kg} / \mathrm{m}^{3}$
and R.M.S. speed of the molecules at N.T.P. $=$
$456.4 m / s$.

- Watch Video Solution

60. If the R.M.S. velocity of oxygen molecules at
N.T.P. is $460 \mathrm{~m} / \mathrm{s}$, determine the R.M.S. velocity of hydrogen molecule at N.T.P. (molecular
weight of $O_{2}=32$, molecular weight of hydrogen = 2).

D Watch Video Solution

61. At what temperature can R.M.S. velocity of gas be doubled its value at N.T.P.?

D Watch Video Solution

62. If the density of oxygen is $1.44 \mathrm{~kg} / \mathrm{m}^{3}$ at a pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$, find the R.M.S. velocity
of oxygen molecules.

D Watch Video Solution

63. Calculate the ratio of mean square speeds of molecules of a gas at 30 k and 120 k .

D Watch Video Solution

64. A gas in a cylinder is at pressure P. If the masses of all the molecules are made one
third of their original value and their speeds are doubled, then find the resultant pressure.

D Watch Video Solution

65. Show that rms velocity of an oxygen molecule is $\sqrt{2}$ times that of a sulphur dioxide molecule at S.T.P.

D Watch Video Solution
66. At what temperature will oxygen molecules
have some rms speed as helium molecules at

STP (molecular masses of oxygen and helium are 32 and 4 respectively)

- Watch Video Solution

67. Compare the rms speed of hydrogen molecule at $127^{\circ} C$ with rms speed of oxygen molecules at $27^{\circ} C$ given that molecular
masses of hydrogen and oxygen are 2 and 32 respectively.

D Watch Video Solution

68. Find the KE of 5 litres of a gas at STP given standard pressure is $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

D Watch Video Solution

69. Calculate average molecular kinetic energy:- per kilomole.

- Watch Video Solution

70. Calculate the average molecular kinetic energy : per kg molecule of oxygen at $127 \circ \mathrm{C}$, given that the molecular weight of oxygen is $32, R=8.31 \mathrm{Jmol}{ }^{\wedge}-1 \mathrm{~K}-1$, and Avogadros number $N A$ is 6.02×1023 molecules mol -1 .

- Watch Video Solution

71. Calculate the average molecular K.E:- per molecule of oxygen at $127^{\circ} \mathrm{C}$ given that molecular weight $=32, R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, $N_{A}=6.02 \times 10^{23}, T=127^{\circ} \mathrm{C}$

- Watch Video Solution

72. At 300 K , what is the rms speed of Helium atom? [mass of He atom is $4 \mathrm{u}, 1 \mathrm{u}=$ $1.66 \times 10^{-27} \mathrm{~kg}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
73. Two vessels A and B are filled with same gas where volume, temperature and pressure in vessel A is twice the volume, temperature and pressure in vessel B. Calculate the ratio of number of molecules of gas in vessel A to that in vessel B.

- Watch Video Solution

74. Explain Maxwell distribution of molecular speeds with necessary graph.

- Watch Video Solution

75. State and explain law of equipartition of energy.

D Watch Video Solution
76. Define degree of freedom of a system.

77. What do you mean by number of degrees

 of freedom?- Watch Video Solution

78. Name two monoatomic gases.

- Watch Video Solution

79. Name two diatomic gases.
80. Name a polyatomic gas.

- Watch Video Solution

81. Discuss the number of degrees of freedom of:- Monoatomic gases

D Watch Video Solution
82. Discuss the number of degrees of freedom of:- Diatomic gases

- Watch Video Solution

83. Discuss the number of degrees of freedom of:- Polyatomic gases.

- Watch Video Solution

84. Define Specific Heat Capacity.

- Watch Video Solution

85. Define and explain specific heat.

- Watch Video Solution

86. Why do we consider two specific heats heat
for a gas?

D Watch Video Solution
87. Why is $C_{p}>C_{v}$?

D Watch Video Solution

88. State Mayer's Relation in terms of molar specific heats.

D Watch Video Solution

89. Write Mayer's relation in terms of principal
specific heats.
90. Derive Mayer's relation.

- Watch Video Solution

91. Given the values of the two principal specific heats, $S_{P}=3400 \mathrm{cal} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ and $S_{v}=2400 \mathrm{cal} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ for the hydrogen gas, find the value of J if the universal gas constant $R=8300 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
92. The difference between the two molar
specific heats of a gas is $8000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. If the ratio of the two specific heats is 1.65 .

Calculate the two molar specific heats.

D Watch Video Solution

93. Explain the method to determine specific
heat capacity of a monoatomic gas by using
law of equipartition of energy.
94. Determine specific heat capacity of diatomic gas by law of equipartition of energy.

- Watch Video Solution

95. Determine specific heat capacity of polyatomic gas by the law of equipartition of energy.
96. Determine specific heat capacity of solid by the law of equipartition of energy.

- Watch Video Solution

97. Using law of equipartition of energy, determine specific heat capacity of water.

98. Calculate the number of degree of freedom

 associate with 4 gm of helium at N.T.P.- Watch Video Solution

99. The ratio of specific heats of a gas is 1.4 . If
the specific heat at constant volume is 4.82
$\mathrm{kcal} / \mathrm{kmol}$ K. Find universal gas constant.

- Watch Video Solution

100. What is heat? Which are the three modes of transfer of heat? Explain.

D Watch Video Solution

101. Define radiant energy and thermal radiation.

D Watch Video Solution
102. Define coefficient of absorption. Give its
S.I. unit and Dimension.

- Watch Video Solution

103. Define coefficient of reflection. Give its S.I. unit and dimension.

- Watch Video Solution

104. Define coefficient of transmission. Give its
S.I. unit and dimension.

- Watch Video Solution

105. Show that $a+r+1=1$ where symbols have their usual meaning.

D Watch Video Solution
106. Define athermanous and substance diathermanous.

- Watch Video Solution

107. A substances may be athermanous or diathermanous for certain wavelength, while good absorber for other wavelength. Explain.

D Watch Video Solution

108. What is perfectly black body ?

- Watch Video Solution

109. Can a perfect blackbody be realized in practice?

D Watch Video Solution

110. What acts as a perfect black body in Fery's perfect, black body?

- Watch Video Solution

111. Why is the double walled sphere in Fery's perfect black body evacuated?

D Watch Video Solution

112. Which acts as a good absorber: Black polished surface or Black rough surface.
113. Are good absorber of heat, good emitters?

- Watch Video Solution

114. Why are the inner walls of vacuum bottles or thermoes flasks silvered?

- Watch Video Solution

115. Name a substance that resembles a perfect black body.
116. With a neat diagram, explain the construction Q and working of Fery's black body.

- Watch Video Solution

117. The coefficient of absorption and coefficient of reflection of a thin uniform plate are 0.75 and 0.20 , respectively. If 200 K cal of
heat is incident on the surface of the plate, find the quantity of heat transmitted.

D Watch Video Solution

118. The coefficient of absorption and reflection on the surface of the thin plate are
0.74 and 0.22 , respectively. If 184 calories of
radiant heat is incident on the surface of the plate, find the quantities of heat absorbed, reflected, and transmitted.

D Watch Video Solution

119. The coefficient of absorption of heat surface of a body is 0.68 . When 100 calories of heat is incident on the body, 27 calories are reflected from the surface. Find the coefficient of transmission of the body.

D Watch Video Solution

120. If $a=0.72, r=0.24$ then what is the value of t.
121. Which body radiates heat energy at higher rate? Hotter or cooler.

D Watch Video Solution

122. Which coloured bodies reflect most of visible radiation? Lighter or darker.
123. Which coloured bodies absorb most of visible radiation? Lighter or Darker coloured.

D Watch Video Solution

124. What happens to temperature of the body if it radiates more heat than it absorbs.

D Watch Video Solution

125. When is a body said to be in thermal equilibrium?

D Watch Video Solution
126. Is there any heat transfer when the body
is in thermal equilibrium with the surrounding
?

D Watch Video Solution
127. Why does a body appear red hot where the temperature is around $800^{\circ} \mathrm{C}$.

D Watch Video Solution

128. What happens to tungsten filament when heated to about $3000^{\circ} \mathrm{C}$?
129. State the factor on which the heat radiated by a body depends upon.

D Watch Video Solution
130. State and explain Prevost theory of heat exchanges.
131. Define emissive power of a body. State its unit and dimension.

D Watch Video Solution

132. State the factors on which emissive power of a body depends. What can you say about
the emissive power of perfect black body?

D Watch Video Solution

133. What is coefficient of emission

(emissivity)?

D Watch Video Solution
134. Define absorptive power, state its unit and dimension.
(Watch Video Solution
135. State Kirchhoff's law of radiation and give
its theoretical proof.

- Watch Video Solution

136. Explain spectral distribution of black body
radiation.

- Watch Video Solution

137. The emissive power of a sphere of area $0.02 m^{2}$ is $0.5 \mathrm{kcal} s^{-1} m^{-2}$. What is the amount of heat radiated by the spherical surface in 20 seconds.

- Watch Video Solution

138. The energy of 6000 J is radiated in 5 minutes by a body of surface area $100 \mathrm{~cm}^{2}$.

Find emissive power of a body.
139. A metal cube of length 10 cm radiates
heat at the rate of 60 watt. Find its emissive
power of a perfectly black body at that temperature.

- Watch Video Solution

140. Briefly explain Planck's Quantum Theory.
141. What are red giants?

D Watch Video Solution

142. State Wien's displacement law, State its significance.

D Watch Video Solution

143. Calculate the value of $\lambda_{\max }$ for solar radiation assuming that surface temperature of Sun is $5800 \mathrm{~K}\left(\mathrm{~b}=2.897 \times 10^{-3} \mathrm{mK}\right)$. In
which part of the electromagnetic spectrum, does this value lie?

D Watch Video Solution

144. What is the peak wavelength of radiation emitted by a black body at temperature $40^{\circ} C$
($\mathrm{b}=2.898 \times 10^{-3} \mathrm{mK}$)

D Watch Video Solution
145. Find the temperature of a black body if its spectrum has a peak at :- $\lambda_{\max }=700 \mathrm{~nm}$ (visible)

- Watch Video Solution

146. Find the temperature of a black body if its
spectrum has a peak at :- $\lambda_{\text {max }}=3 \mathrm{~cm}$
(microwaves region)

- Watch Video Solution

147. Find the temperature of a black body if its spectrum has a peak at :- $\lambda_{\text {max }}=3 \mathrm{~cm}$ (microwaves region)

- Watch Video Solution

148. Earth's mean temperature can be assumed to be 280K. How will the curve of blackbody radiation look like for this temperature? Find out $\lambda_{\max }$, in which part of the electromagnetic spectrum, does this value lie?
149. State and expain Stefan-Boltzmann law of radiation.

- Watch Video Solution

150. Using Stefan's law,obtain expression for the rate of loss of heat by a black body in cooler surroundings. How is this expression modified, if the body is not black?

Watch Video Solution

151. A body of surface area $10 \mathrm{~cm}^{2}$ and temperature $727^{\circ} C$ emits 300 J of energy per minutes.Find the emissivity.

- Watch Video Solution

152. Compare rates of loss of heat by the body
at temperature $527^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$.
Temperatue of surrounding is $27^{\circ} \mathrm{C}$.
153. Find the surface area of black body maintained at $127^{\circ} \mathrm{C}$ radiating energy at the rate of $1459.2 \mathrm{~J} / \mathrm{sec}$.

D Watch Video Solution

154. A metal cube has each side of length 1 m
losses all its energy at a rate of 3000 watt. If the emissity is 0.4 , Find its temperature (Given:a=5.767 $\times 10^{-8} J / m^{2} s k^{-1}$)

- Watch Video Solution

155. Compare the ratio of radiation of metal sphere at $627^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$.

- Watch Video Solution

156. Calculate the energy radiated is one minutes by a black body of surface area $400 \mathrm{~cm}^{2}$, when it is maintained at $127^{\circ} \mathrm{C}$.
157. A body having surface area $5 \mathrm{~cm}^{2}$ and temperature of $727^{\circ} \mathrm{C}$ radiates 300 J of energy per minutes. What is its emissivity?
(Stefan's constanta $\sigma=5.7 \times 10^{-8} J / m k^{4}$)

D Watch Video Solution

158. A filament of an evacuated light blue has
length 10 cm , diameter 0.2 mm and emissivity
0.2. Calculate the power it radiates at 2000 K (
$\left.\sigma=5.67 \times 10^{-8} \frac{J}{m^{2}} k^{4}\right)$
159. A 100 watt filament loses all its power by radiation, when it is heated to a temperature 2500 K . If the diameter of the filament is
0.2 mm and emissivity of the filament is 0.5 , find the length of the filament to (

$$
\left.\sigma=5.67 \times 10^{-8} J / m^{2} s K^{4}\right)
$$

160. Calculate the energy radiated in one minute by a black body of surface area $100 \mathrm{~cm}^{2}$ when it is maintained at $227^{\circ} \mathrm{C}$ (
$\left.\sigma=5.67 \times 10^{-8} \frac{J}{m^{2}} s K^{4}\right)$

D Watch Video Solution

161. Calculate the energy radiated is one minute by a blackbody of surface area $200 \mathrm{~cm}^{2}$ at $127^{\circ} C\left(\sigma=5.7 \times 10^{-8} \mathrm{Jm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}\right)$
162. A 60 watt filament lamp loses all its energy by radiation from its surface. The emissivity of the surface is 0.5 . The area of the surface is $5 \times 10^{-5} \mathrm{~m}^{3}$. Find the temperature of the filament ($\sigma=5.67 \times 10^{-8} m^{2} s^{-4} K^{-4}$)

D Watch Video Solution

163. Compare the rate of loss of heat from a metal sphere at $827^{\circ} \mathrm{C}$ with the rate of loss of
heat from the same sphere at $427^{\circ} C$, if the temperature of the surrounding is $27^{\circ} C$.

D Watch Video Solution

164. Assuming that the temperature at the surface of the Sun is 6000 K , find out the size of a virtual star (in terms of the size of Sun) whose surface temperature is 3000 K and the power radiated by the virtual star is 25 times
the power radiated by the Sun. Treat both, the

Sun and virtual star as a blackbody.

Watch Video Solution

165. Energy is emitted from a hole in an electric furnace at the rate of 20 W when that temperature of the furnace is $727^{\circ} \mathrm{C}$. What is the area of the hole $\left.\sigma=5.7 \times 10^{-8} J^{-1} m^{-2} K^{-4}\right)$

- Watch Video Solution

166. Compare the rates of emission of heat by
a black body maintained at $727^{\circ} \mathrm{C}$ and at
$227^{\circ} \mathrm{C}$, if the black bodies are surrounded by an enclosure (black) at $27^{\circ} \mathrm{C}$. What would be the ratio of their rates of loss of heat.

- Watch Video Solution

167. A small blackened solid copper sphere of radius 2.5 cm is placed in an evaculated chamber. The temperature of the chamber is maintained at $100^{\circ} C$. At what rate energy must be supplied to the copper sphere to maintain its temperature at $110^{\circ} \mathrm{C}$. (
$\left.\sigma=5.76 \times 10^{-8} J s^{-1} m^{-2} K^{-4}\right)$ sphere as black body.

D Watch Video Solution

Exercise

1. 16 gm of oxygen occupied $0.025 \mathrm{~m}^{3}$ at $27^{\circ} \mathrm{C}$.

It the universal gas constant is $8.311 \mathrm{~J} / \mathrm{molK}$.

Find the pressure exerted by it. (molecular weight of oxygen $=32$)
2. A cylinder filled with hydrogen gas at 500 K exerts a pressure of 4 atoms. If hydrogen is replaced by equal mass of helium, at same temperature, what will be pressure exerted by helium and relative number of molecules of hydrogen and helium.

- Watch Video Solution

3. The velocities of three molecules of a gas are $2 m / s, 3 m / s$ and $4 m / s$, respectively. Find
the mean velocity and R.M.S. velocity of the molecule.

D Watch Video Solution

4. Calculate the R.M.S. velocity of helium at temperature $0^{\circ} \mathrm{C}$ (density of helium $\left.0.1785 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{p}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$

D Watch Video Solution

5. At what temperature can the R.M.S. velocity of gas be three times its value at N.T.P.?

- Watch Video Solution

6. Calculate the number of molecules in one litre of gas at N.T.P., if mass of each molecule is $4.55 \times 10^{-25} \mathrm{~kg}$ and its R.M.S. velocity at N.T.P. is $350 \mathrm{~m} / \mathrm{s}\left(\mathrm{P}=10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$.
7. Find the mass of 10 c.c of gas at N.T.P. if RMS.velocity of gas molecules is $400 m / s(\mathrm{p}=$ $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$)

D Watch Video Solution

8. Find the KE per kg of nitrogen molecule at $127^{\circ} C$ (molecular weight of nitrogen $=28, \mathrm{R}=$ $8320 J / K m o \leq K)$.
9. Calculate the R.M.S. velocity of oxygen molecule at N.T.P., if the density of oxygen at
N.T.P. is $1.44 \mathrm{~kg} / \mathrm{m}^{3}$ (Given: atmospheric pressure at N.T.P. $\left.=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$.

D Watch Video Solution

10. If the R.M.S. velocity of oxygen molecules at
N.T.P. is $460 \mathrm{~m} / \mathrm{s}$, determine the R.M.S. velocity of hydrogen molecules at N.T.P. (molecular weight of oxygen $=32$, molecular weight of hydrogen = 2).

Watch Video Solution

11. The ratio of molar specific heats of certain gas is 1.4 , if molar specific heat of gas at constant volume is $4.965 \mathrm{Kcal} / \mathrm{Kmo} \leq K$, find universal gas constant.

D Watch Video Solution

12. Compare the R.M.S. velocity of hydrogen molecules at 400 K with R.M.S. velocity of oxygen molecules at 900 K . (Molecular weight
of hydrogen $=2$, molecular weight of oxygen $=$ 32)

D Watch Video Solution

13. Radiant energy is incident on the body at a rate of $1500 \mathrm{~J} / \mathrm{min}$. If coefficient of emission of a body is 0.9 and coefficient of reflection is
0.06. Find the radiant energy:- absorbed.

- Watch Video Solution

14. Radiant energy is incident on the body at a rate of $1500 \mathrm{~J} / \mathrm{min}$. If coefficient of emission of a body is 0.9 and coefficient of reflection is 0.06 . Find the radiant energy:- reflected.

- Watch Video Solution

15. Radiant energy is incident on the body at a rate of $1500 \mathrm{~J} / \mathrm{min}$. If coefficient of emission of a body is 0.9 and coefficient of reflection is
0.06. Find the radiant energy:- the radiant energy transmitted by the body in 7 minutes.

D Watch Video Solution

16. A metal cube of each side 0.05 m long emits 0.6 k cal in 80 seconds, Calculate the emissive power of its surface.

D Watch Video Solution
17. The emissive power of sphere of area $0.02 m^{2}$ is $0.5 k c a l / s-m^{2}$. What is the amount of heat radiated by the spherical surface in 20 seconds?

D Watch Video Solution

18. The coefficient of absorption of a surface is
0.6. When radiant energy is incident on the surface at $1500 \mathrm{~J} / \mathrm{min}$, the energy reflected
in 5 minutes is 450 J . Find the coefficient of reflection and transmission of the surface.

D Watch Video Solution

19. Assuming that the sun radiates as a black body, calculate the energy radiated per minute by unit area of its surface. Surface temperature of the sun $=5727^{\circ} \mathrm{C}$ and Stefan's constant $=5.7 \times 10^{-8} \mathrm{Jm}^{-2} \mathrm{~K}^{-4} \mathrm{~s}^{-1}$.

D Watch Video Solution

20. The temperature of the filaments of a 100W electric lamp is $2727^{\circ} \mathrm{C}$. The emissivity of the surface of the filament is 0.086 and its radius is 0.5 mm . Find the length of the filament. $\sigma=5.7 \times 10^{-8} S . I$. units.

D Watch Video Solution

21. A black body of mass 32 g , specific heat $=$ $0.1 \mathrm{cal}{ }^{\circ} \mathrm{c}$ and area $8 \mathrm{~cm}^{2}$ at a temperature of 300^{C} is kept in an enclosure maintained at 0^{C}.

If the body cools at the rate of $0.35^{\circ} C / s$, calculate Stefan's constant. J = 4.18 joule/cal.

D Watch Video Solution

22. If the surface temperature of the sun is assumed to be 6150 K , find the wave length of maximum intensity in the sun's radiation taking Wien's constant $2.88 \times 10^{-3} m k$.

D Watch Video Solution

23. The coefficients of reflection and transmission of the surface of a thin plate are
0.22 and 0.04 respectively. If 250 calories of radiant heat is incident on the surface of the plate, how much heat is absorted by the surface?

D Watch Video Solution

24. A metal cube of each side 2 cm long emits
0.16 kcal of heat in 100 s . Calculate the emissive
power of the cube in joule at that temperature. $J=4200 J / k c a l$.

D Watch Video Solution

25. Energy is emitted from a hole in an electric
furnace at the rate of 20 watt when furnace is
at $227^{\circ} C$. Find the area of the hole,
$\sigma=5.7 \times 10^{-8} S . I$. units.

D Watch Video Solution
26. A copper sphere has a surface area of $3.142 \times 10^{-2} m^{2}$ and its emissivity is 0.018 .

Find the energy lost by the sphere per second when its temperature is $100^{\circ} \mathrm{C}$. (
$\left.\sigma=5.67 \times 10^{-8} \frac{W}{m^{2}} k^{4}.\right)$

D Watch Video Solution

27. A metal cube has each side 2.5 cm long and radiates $0.36 \mathrm{kcal} / \mathrm{min}$. What is the emissive power of its surface? If the emissivity of its
surface is 0.4 , what would be the emissive power of the cube if it were perfectly black?

D Watch Video Solution

28. If λm for solar radiation is $4753 A^{\circ}$, estimate the surface temperature of the sun.

Wien's constant, $b=0.2893 \mathrm{cmk}$.

- Watch Video Solution

29. Analysis of the sun's spectrum shows that
the wave length of maximum intensity is
$4750 A^{\circ}$. Taking Wien's constant as
$2.9 \times 10^{-3} \mathrm{mk}$, find the surface temperature of the sun.

- Watch Video Solution

30. The coefficient of absorption and coefficient of reflection of a thin uniform plate are 0.75 and 0.20 , respectively. If 200 K cal of
heat is incident on the surface of the plate, find the quantity of heat transmitted.

D Watch Video Solution

31. Heat is incident at the rate of 10 W on an opaque body having an emissivity of 0.8. Find the quantity of radiant heat reflected by it in 1 minute.
32. A 100 watt filament loses all its power by
radiation when it is heated to a temperature of 2500 K . If the diameter of the filament is 0.2 mm and the surface emissivity of the filament is 0.5 , find the length of the filament. (Stefan's
constant $\sigma=5.67 \times 10^{-8} \frac{W}{m^{2}} k^{4}$)

D Watch Video Solution

33. In an ideal gas, the molecules possess
A. only kinetic energy
B. both kinetic energy and potential energy
C. onlt potential energy
D. neither kinetic energy nor potential

energy

Answer:

D Watch Video Solution
34. The mean free path X of molecules is given by where n is the number of molecules per
unit volume and d is the diameter of the molecules.

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{2}}{\pi n d^{2}} \\
& \text { B. } \frac{1}{\pi} n d^{2} \\
& \text { C. } \frac{1}{\sqrt{2}} \pi n d^{2} \\
& \text { D. } \frac{1}{\sqrt{2}} \pi n d
\end{aligned}
$$

Answer:
(Watch Video Solution
35. If pressure of an ideal gas is decreased by
10% isothermally, then its volume will
A. decrease by 9%
B. increase by 9\%
C. decrease by 10%
D. increase by 11.11%

Answer:
(D) Watch Video Solution
36. If $a=0.72, r=0.24$, then the value of t is.......
A. 0.02
B. 0.04
C. 0.4
D. 0.2

Answer:

- Watch Video Solution

37. Theratioof emissive powerof perfectly blackbody at $1327^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ is
A. $4: 1$
B. $16: 1$
C. 2:1
D. $8: 1$

Answer:

D Watch Video Solution
38. The average distance covered by a moleculebetween two successive collision is
A. free path
B. constant path
C. mean free path
D. free path per unit time

Answer:

39. According to the Law of equipartition of energy, the average K.E. of one molecule of diatomic gas will be......
A. $\frac{3 K_{b} T}{2}$
B. $\frac{5 K_{b} T}{2}$
C. $3 R \frac{T}{2}$
D. $5 R \frac{T}{2}$

Answer:

D Watch Video Solution
40. K.E. per unit volume is given by........

$$
\begin{aligned}
& \text { A. } E=\frac{3}{2_{p}} \\
& \text { B. } E=\frac{1}{2} m v^{2} \\
& \text { C. } E=\frac{1}{2} m v 2 \\
& \text { D. } E=\frac{1}{2} m N C^{2}
\end{aligned}
$$

Answer:

41. How is a real gas different from an ideal gas.
A. high temperature, low pressure
B. low temperature, hight pressure
C. high temperature, high pressure
D. low temperature, low pressure

Answer:

D Watch Video Solution
42. Mean square velocity of five molecules of
velocities $2 m / s, 3 m / s, 4 m / s, 5 m / s$, and $6 m / s$ is.......
A. $10 m^{2} / s^{2}$
B. $18 m^{2} / s^{2}$
C. $20 m^{2} / s^{2}$
D. $15 m^{2} / s^{2}$

Answer:

43. Temperature of a gas is $0^{\circ} \mathrm{C}$. Its root mean

 square velocity will be double at..........A. $273^{\circ} \mathrm{C}$
B. $1092^{\circ} \mathrm{C}$
C. $819^{\circ} \mathrm{C}$
D. $103^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
44. If K.E. is doubled, then the change in temperature from $27^{\circ} C$ is.
A. $54^{\circ} C$
B. $327^{\circ} \mathrm{C}$
C. $273^{\circ} \mathrm{C}$
D. $-232^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
45. The ratio of pressure of two gases is $3: 2$ and ratio of densities of two gases is
A. $3: 2$
B. 2 : 3
C. 1:3
D. $3: 1$
A. $3: 2$
B. $2: 3$
C. $1: 3$
D. $3: 1$

Answer:

- Watch Video Solution

46. The average KE of a gas molecules at $27^{\circ} C$
is $6.21 \times 10^{-21} \mathrm{~J}$. The average K.E. at $227^{\circ} C$
will be.
A. $9.35 \times 10^{-21} J$
B. $10.35 \times 10^{-21} J$
C. $11.35 \times 10^{-21} J$
D. $12.35 \times 10^{-21} J$

Answer:

- Watch Video Solution

47. Which statement is true?
A. $R=(\gamma-1) C_{v}$
B. $R=(\gamma-1) C_{p}$
C. $C_{v}=R(\gamma-1)$
D. $C_{p}=\frac{R}{(\gamma-1)}$
48. The R.M.S. velocity of nitrogen molecules at
N.T.P is.....
A. $493 m / s$
B. $532 \mathrm{~m} / \mathrm{s}$
C. $546 \mathrm{~m} / \mathrm{s}$
D. $33 \mathrm{~m} / \mathrm{s}$

Answer:
49. The temperature of gas is increased from $0^{\circ} C$ to $273^{\circ} \mathrm{C}$. The average KE of molecule changes in the ratio of.....
A. $1: 4$
B. $4: 1$
C. $1: 2$
D. 2:1

Answer:

50. The specific heat of ice at $0^{\circ} C$ is

$$
\text { A. } C_{p}+C_{v}=\frac{R}{J}
$$

B. $C_{p}+C_{v}=0$
C. $C_{p}-C_{v}=R$
D. $C_{p}-C_{v}=\frac{R}{J}$

Answer:

51. Which of the following properties of gas molecule is same for all ideal gases at a particular temperature.
A. mass
B. velocity
C. momentum
D. kinetic energy

Answer:

D Watch Video Solution
52.

perfectgasisproportional to

A. T
B. T^{2}
C. $\frac{1}{T}$
D. $\frac{1}{T^{2}}$

Answer:

D Watch Video Solution
53. The kinetic energy per molecule of hydrogen gas at N.T.P. is.
A. $6.657 \times 10^{-21} \mathrm{~J} / \mathrm{mo} \leq \mathrm{ce} s$
B. $5.657 \times 10^{-21} \mathrm{~J} / \mathrm{mo} \leq \mathrm{ce} s$
C. $6.657 \times 10^{-21} \mathrm{~J} / \mathrm{mo} \leq \mathrm{ce} s$
D. $8.657 \times 10^{-21} \mathrm{~J} / \mathrm{mo} \leq \mathrm{ce} s$

Answer:

D Watch Video Solution
54. The ratio of specific heats (y) for monoatomic gas is
A. $\frac{3}{5}$
B. $\frac{9}{7}$
C. $\frac{7}{9}$
D. $\frac{5}{3}$

Answer:
(D) Watch Video Solution
55. The specific heat capacity of water is.
A. $6 R$
B. 3 R
C. 9 R
D. 12R

Answer:

- Watch Video Solution

56. What is the sum of coefficients of absorption, reflection, and transmission of the body is.......
A. 0.1
B. 7
C. 1.1
D. 1

Answer:

- Watch Video Solution

57. When coefficient of transmission (t$)=0$, what type of the body is
A. perfect absorber
B. perfect reflector
C. opaque body
D. perfect transparent

Answer:

D Watch Video Solution
58. According to Kirchhoff's law of radiation at a temperature.........
A. $a=e$
B. $\frac{E}{E_{b}}=e$
C. $\frac{E}{a}=E_{b}$
D. Both (a) and (c)
A. $a=e$

$$
\begin{aligned}
& \text { B. } \frac{E}{E_{b}}=e \\
& \text { C. } \frac{E}{a}=E_{b}
\end{aligned}
$$

D. both (a) and (c)

Answer:

D Watch Video Solution

59. If $a=0.72, r=0.24$, then the value of t is.......
A. 0.02
B. 0.04
C. 0.4
D. 0.2
60. The S.I. unit of Wien's constant is........
A. cal/m $m^{2} \mathrm{sec}$
B. $J / m^{2} \mathrm{sec}$
C. $\frac{m}{K}$
D. m / K
A. cal/m $m^{2} \mathrm{sec}$
B. $J / m^{2} \mathrm{sec}$
C. mK

D. m / K

Answer:

D Watch Video Solution

61. If the gas pressure is 6×10^{5} dyne $/ \mathrm{cm}^{2}$,
then its K.E. per cubic cm will be.
A. $6 \times 10^{5} \mathrm{erg}$
B. $4 \times 10^{5} \mathrm{erg}$
C. $9 \times 10^{5} \mathrm{erg}$
D. $12 \times 10^{5} \mathrm{erg}$
A. $6 \times 10^{5} \mathrm{erg}$
B. $4 \times 10^{5} \mathrm{erg}$
C. $9 \times 10^{5} \mathrm{erg}$
D. $12 \times 10^{5} \mathrm{erg}$

Answer:

D Watch Video Solution
62. The temperature of a certain gas increased
from $27^{\circ} C$ to $127^{\circ} C$, the increase in energy
is
A. $\frac{3}{4}$ times initial value
B. $\frac{4}{3}$ times initial value
C. 100 times initial value
D. 27 times initial value

Answer:

D Watch Video Solution
63. The light from the sun is found to have a maximum intensity near the wavelength of

470 nm . Assuming the surface of the sun as a black body, the temperature of the sun is
A. 5800 K
B. 6050 K
C. 6166 K
D. 6500 K

Answer:
(Watch Video Solution
64. The temperature of an ideal gas is increased from $27^{\circ} C$ to $927^{\circ} C$. The root mean square velocity of its molecules becomes
A. twice
B. half
C. four times
D. one third

Answer:

D Watch Video Solution
65. The velocities of 4 molecules are $2 \mathrm{~m} / \mathrm{s}$,
$4 m / s, 5 m / s$ and $6 m / s$ respectively. What is
their mean square velocity?

$$
\begin{aligned}
& \text { A. } \frac{51}{4} \frac{m^{2}}{s^{2}} \\
& \text { B. } \frac{61}{4} \frac{m^{2}}{s^{2}} \\
& \text { C. } \frac{71}{4} \frac{m^{2}}{s^{2}} \\
& \text { D. } 81 / 4 m^{\wedge} 2 / s^{\wedge} 2^{\wedge}
\end{aligned}
$$

Answer:

66. The root mean square speed of hydrogen
molecules at 300 K is $1930 \mathrm{~m} / \mathrm{s}$. Then the root
mean square speed of oxygen molecules
having the same mass at 900 K will be

> A. $643 \frac{m}{s}$
> B. $836 \frac{m}{s}$
> C. $\frac{1930}{\sqrt{3}}$
> D. $1930 \sqrt{3}$

Answer:

67. A vessel contains one mole of oxygen and one mole of hydrogen at N.T.P. What is the ratio of the values of rms velocities of hydrogen and oxygen molecules?
A. $1: 16$
B. $16: 1$
C. $4: 1$
D. 1: 4

Answer:

- Watch Video Solution

68. The number of molecules in a gram molecule of a gas is called
A. Universal gas constant
B. Planck's constant
C. Avogadro's number
D. Boltzmann constant

Answer:

D Watch Video Solution

69. The temperature of an ideal gas is
increased from $27^{\circ} C$ to $327^{\circ} C$. It the r.m.s
speed of its molecules at $27^{\circ} \mathrm{C}$ is $200 \mathrm{~m} / \mathrm{s}$,
then the new r.m.s speed at 600 K will be
A. $200 \frac{m}{s}$
B. $200 \sqrt{5} \frac{m}{s}$
C. $200 \sqrt{2} \frac{m}{s}$
D. $400 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer:

D Watch Video Solution

70. The speed of four gas molecules are $1 \mathrm{~km} / \mathrm{s}, \quad 3 \mathrm{~km} / \mathrm{s}, \quad 5 \mathrm{~km} / \mathrm{s} \quad$ and $\quad 7 \mathrm{~km} / \mathrm{s}$ respectively. The difference between their r.m.s. speed and average speed is
A. $0.583 \mathrm{~km} / \mathrm{s}$
B. $0.438 \mathrm{~km} / \mathrm{s}$
C. $0.358 k \frac{m}{s}$
D. $0.638 k \frac{m}{s}$

Answer:

D Watch Video Solution

71. What is the density of a gas at N.T.P. if the rms velocity of the gas molecules is $400 \mathrm{~m} / \mathrm{s}$?
(Take atmospheric pressure $\mathrm{P}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$)
A. $\frac{5}{8} k g / \mathrm{m}^{3}$
B. $\frac{11}{8} \mathrm{~kg} / \mathrm{m}^{3}$
C. $\frac{15}{8} \mathrm{~kg} / \mathrm{m}^{3}$
D. $\frac{25}{8} k g / m^{2}$

Answer:

D Watch Video Solution

72. The r.m.s. speed of the molecules of an enclosed gas is x . What will be the r.m.s. speed,
if the pressure of the gasis doubled but the tmeperature is kept constant?
A. x
B. $\frac{x}{2}$
C. 2 x
D. \sqrt{x}

Answer:
(Watch Video Solution

73. If the masses of all the molecules of a gas

are doubled and their speed are havled, then
the ratio of the final and initial pressures will be
A. $2: 1$
B. 1:2
C. 1:4
D. $4: 1$

Answer:

74. At what temperature the K.E. of gas molecules is half of that of its value at $27^{\circ} C$?
A. $135^{\circ} C$
B. $150^{\circ} \mathrm{C}$
C. 150 K
D. 300 K

Answer:
(Watch Video Solution
75. At what temperature will the average K.E. of the hydrogen molecules be half of its value at N.T.P.?
A. 136.5 K
B. 273 k
C. 1052 k
D. 546 k

Answer:

76. What is the value of $\gamma=\frac{C_{p}}{C_{v}}$, if the gas has f degrees of freedom?
A. $1+\frac{2}{f}$
B. $\frac{1}{2}+f$
C. $1+\frac{f}{2}$
D. $1+\frac{f}{2}$

Answer:

77. Which one of the following molecules does

 not possess vibrational energy?A. Oxygen
B. Nitrogen
C. Argon
D. CO_{2}

Answer:
(Watch Video Solution
78. What is the mean energy per molecule for a polyatomic gas with n degrees of freedom?

> A. $n K \frac{T}{N}$
> B. $3 K \frac{T}{2}$
> C. $n K \frac{T}{2} N$
> D. $n K \frac{T}{2}$

Answer:

- Watch Video Solution

79. For an ideal gas

A. >1
B. <1
C. $=1$
D. ≥ 1

Answer:

D Watch Video Solution
80. When a black body is heated, it emits heat radiations of
A. Infrared wavelengths
B. Ultraviolet wavelengths
C. All wavelengths
D. A particular wavelength

Answer:
(D) Watch Video Solution
81. A black body at a temperature of $227^{\circ} \mathrm{C}$ radiates heat at a rate of $5 \mathrm{cal} / \mathrm{cm}^{2} s$. At a temperature of $727^{\circ} C$, the rate of heat radiated per unit area will be
A. $80 \mathrm{cal} / \mathrm{cm}^{2} s$
B. $500 \mathrm{cal} / \mathrm{cm}^{2} s$
C. $100 \mathrm{cal} / \mathrm{cm}^{2} \mathrm{~s}$
D. $250 \mathrm{cal} / \mathrm{cm}^{2} \mathrm{~s}$

Answer:

82. If the temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor
A. 2
B. 4
C. 16
D. 8

Answer:

83. The dimensional formula for Stefan's

constant is

$$
\text { A. } M^{0} L^{0} T^{-2} K^{-4}
$$

B. $M^{1} L^{1} T^{-2} K^{-2}$
C. $M^{1} L^{0} T^{-3} K^{-4}$
D. $M^{0} L^{2} T^{-3} K^{-3}$

Answer:

84. A sphere, a cube and a thin circular plate
all made of the same material and having the
same mass are initially heated to a
temperature of $300^{\circ} C$. Which one of these
cools faster?
A. Circular plate
B. Sphere
C. Cube
D. All will cool at the same rate

Answer:
85. If a black body is heated from $27^{\circ} \mathrm{C}$ to
$927^{\circ} \mathrm{C}$, then the ratio of the radiation emitted by the body at the two temperatures will be
A. $1: 4$
B. 1: 16
C. 1:256
D. 1: 64
86. The ratio of the wavelength of emission corresponding to the maximum emission in the spectrum of a black body heated to temperatures 1000 K and 2000 K respectively is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 4:1

D. $2: 1$

Answer:

D Watch Video Solution

87. If the temperature of a black body is
doubled, the frequency at which the spectral
intensity becomes maximum will be
A. doubled
B. halved

C. unchanged

D. quadrupled

Answer:

D Watch Video Solution

88. The phenomenon of black body radiation
was explained satisfactorily by
A. kinetic theory
B. classical theory

C. quantum theory

D. theory of relativity

Answer:

D Watch Video Solution

89. The maximum wavelength of radiation emitted at 1500 K is $5 \mu \mathrm{~m}$. The maximum wavelength of radiation emitted at 2500 K will be
A. $2 \mu m$
B. $3 \mu m$
C. $4 \mu m$
D. $10 \mu m$

Answer:

D Watch Video Solution

90. The maximum wavelength of radiation emitted by a black body at $1227^{\circ} \mathrm{C}$ is Am.

What is its maximum wavelength at $2227^{\circ} \mathrm{C}$?
A. $\lambda \frac{m}{2}$
B. $\lambda \frac{m}{3}$
C. $\frac{3}{5} \lambda m$
D. $\frac{9}{25} \lambda m$

Answer:

D Watch Video Solution
91. The temperature of a black body is gradually increased. The colour of the body will change from
A. White-green-red
B. Red-yellow-blue
C. Red-violet-yellow
D. Yellow-green-red

Answer:

D Watch Video Solution
92. The surface temperature of a black body is

1200 K. What is the wavelength corresponding
to maximum intensity of emission of radiation
if Wien's constant $\mathrm{b}=2.892 \times 10^{-3} m k$?
A. $2.41 \times 10^{-4} m$
B. 2.41 A
C. $2.41 \mu m$
D. 2.41 cm

Answer:

D Watch Video Solution

93. The earth radiates in the infrared region of

the spectrum. The wavelength of the maximum intensity of the spectrum is correctly given by
A. Stefan's law of radiation
B. Wien's lavy
C. Rayleigh Jeans law
D. Planck's law of radiation

Answer:

94. Select and write the most appropriate answer from the given alternatives for each sub-questions:- The kinetic energy of one gram molecule of a gas at normal temperature and pressure is ($\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} . k$)
A. $0.56 \times 10^{4} J$
B. $1.3 \times 10^{2} J$
C. $2.7 \times 10^{2} J$
D. $3.4 \times 10^{3} \mathrm{~J}$

Answer:

D Watch Video Solution

95. Select and write the most appropriate
answer from the given alternatives for each
sub-questions:- Diathermanous surface has
A. $r=1$
B. $a=1$
C. $\mathrm{t}=1$
D. $t=0$

Answer:

D Watch Video Solution

96. Select and write the most appropriate answer from the given alternatives for each sub-questions:- If the absolute temperature of
a gas is increased 3 times, the root mean square velocity of the molecules of the gas will be
A. 3 times

B. 9 times

C. $\sqrt{3} \times$
D. $1 \sqrt{3} \times$

Answer:

D Watch Video Solution

97. How many degrees of freedom are there for a monoatomic gas?
98. State Mayer's Relation in terms of molar specific heats.

D Watch Video Solution
99. What is the value of coefficient of absorption for a perfect black body?
(Watch Video Solution
100. State Wien's displacement law. Give S.I. unit and dimension of Wien's constant.

D Watch Video Solution

101. Calculate R.M.S. velocity of helium at temperature $0^{\circ} C$. (density of helium is $0.1785 \mathrm{~kg} / \mathrm{m}^{3}$, atmospheric pressure = $\left.1.013 \times K^{5} N / m^{2}\right)$.
102. The coefficient of absorption and reflection of thin uniform plate are 0.75 and
0.20 , respectively. If 200 kcal of heat is incident
on the surface of plate, find the quantity of heat transmitted.

- Watch Video Solution

103. Calculate the energy radiated in 30 seconds by perfectly black sphere of radius 5 cm maintained at $127^{\circ} \mathrm{C}$. (Stefan's constant $\left.s=5.7 \times 10^{-8} J / m^{2} s k^{4}\right)$
104. Define co-efficient of emission state kirchoff's law of radiation.

D Watch Video Solution

105. The energy of 6000 J is radiated in 5 minutes by a body of surface area $100 \mathrm{~cm}^{2}$.

Find emissive power of a body.
106. What is perfectly black body? Explain construction and working of Fery's black body.

- Watch Video Solution

107. Derive an expression for KE and KE per unit volume of gas using the expression for pressure exerted by the gas.
108. At what temperature can R.M.S. velocity of gas be doubled its value at N.T.P.?

D Watch Video Solution

109. Determine the specific heat capacity ratio
for a diatomic gas for:- rigid molecule

D Watch Video Solution

110. Show that R.M.S. velocity of a gas molecule
is directly proportional to the square roof of
its absolute temperature. Show that average
kinetic energy per unit volume of the gas is $\frac{3}{2} P$

D Watch Video Solution

