©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

MECHANICAL PROPERTIES OF FLUIDS

Example

1. What do you mean by "fluid"?
(Watch Video Solution
2. What is the value of shear modulus of a fluid?

D Watch Video Solution
3. Name the comman examples of fluids.

D Watch Video Solution

4. In case of the streamline flow of non-
visocous and incompressible fluid, which of
the following statemetn is CORRECT ?

D Watch Video Solution

5. Name the physical quantity under which a fluid can flow.

- Watch Video Solution

6. State the properties of ideal fluid.

D Watch Video Solution

7. Explain how normal forces act on a fluid at

 rest.- Watch Video Solution

8. State the properties of real fluid.

D Watch Video Solution

9. Which branch of physics is called "hydrostatics"?

- Watch Video Solution

10. Define pressure of the fluid, state its SI unit and dimension.

D Watch Video Solution

11. Derive an expression for pressure exerted by a fluid at rest and at a depth of h below the free surface.
12. Two different liquids of density ρ_{1} and ρ_{2} exert the same pressure at a certain point.

What will be the ratio of the heights of the respective liquid columns?

- Watch Video Solution

13. A swimmer is swimming in a swimming pool at 6 m below the surface of the water.

Calculate the pressure on the swimmer due to water above. $\rho_{1}=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
14. What is atmospheric pressure of air?

- Watch Video Solution

15. What is the atmospheric pressure called ?

- Watch Video Solution

16. What is vacuum?
17. Explain the variation of atmospheric pressure due to height of the air column.

- Watch Video Solution

18. What is gauge pressure?

- Watch Video Solution

19. Write the formula the atmospheric pressure at a distance ' d ' above the liquid surface.

- Watch Video Solution

20. What is absolute pressure at a depth h below the surface of the liquid?

D Watch Video Solution
21. Derive an expression for pressure inside a
liquid as a function of depth below the water surface.

D Watch Video Solution

22. Find the pressure 200 m below the surface
of the ocean if pressure on the free surface of
liquid is one atmosphere. (Density of sea water

$$
\left.=1060 \mathrm{~kg} / \mathrm{m}^{3}\right) g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

23. Find the pressure 200 above the surface of earth (sea level) is pressure on the sea level is
$1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \rho_{a} i r=1275 \mathrm{~kg} / \mathrm{m}^{3}$

D Watch Video Solution

24. Explain the term hydrostatic paradox with
the help of suitable diagram.
25. State Pascal's law in fluid mechanics

- Watch Video Solution

26. Which of the following is NOT an application of Pascal's law ?

- Watch Video Solution

27. Explain the working hydraulic lift.

28. Explain the working of hydraulic brakes.

D Watch Video Solution

29. Explain experimental proof of Pascal's principle.

D Watch Video Solution

30. A hydraulic brake system of a car of mass

1000 kg having speed of $50 \mathrm{~km} / \mathrm{hr}$. has a
cylindrical piston of radius of 0.5 cm . The slave
cylinder has a radius of 2.5 cm . if a constant
force of 100 N is applied on the brake what distance the car will travel before coming to stop?

D Watch Video Solution

31. In a hydraulic lift, the input piston had surface area $30 \mathrm{~cm}^{2}$ and the output piston has surface area of $1500 \mathrm{~cm}^{2}$. if a force of 25 N is
applied to the input piston, calculate weight on output piston.

D Watch Video Solution

32. In a hydraulic lift, the input piston has surface area $20 \mathrm{~cm}^{2}$. The output piston has surface area of $1000 \mathrm{~cm}^{2}$. if a force of 50 N is applied to the input piston, it raises the output piston by 2 m . Calculate weight of support on output piston and its work done.
33. A hydraulic system consists of one cylinder
that has a cross sectional area of $4 m^{2}$, connected to another cylinder that has a cross-sectional area of $12 m^{2}$. A force of 9 N is applied to the smaller cylinder. What force acts at the larger cylinder?

- Watch Video Solution

34. Name the instrument which can measure pressure in fluid.
35. Write a short note on mercury barometer.

- Watch Video Solution

36. Explain the construction and working of an open tube manometer.
37. Why is a low density liquid used as a manometric liquid in a physics laboratory!

D Watch Video Solution
38. Explain in brief the surface tension property observed in liquid at rest.

- Watch Video Solution

39. Define surface film.

- Watch Video Solution

40. Define Cohesive force and Adhesive force.

- Watch Video Solution

41. Define range of molecular force and sphere of influence.

- Watch Video Solution

42. Explain surface tension on the basis of the molecular theory.

- Watch Video Solution

43. Define surface tension. State its units and dimensions.

- Watch Video Solution

44. Define surface tension. State its units and dimensions.

- Watch Video Solution

45. Define surface energy. Give its S.I. unit and dimensions.

D Watch Video Solution
46. Define surface energy per unit area. Give its
S.I. unit and dimensions.

D Watch Video Solution
47. Who do molecules of a liquid lying in surface film possess extra energy?
48. Give any two applications of surface tensions.

- Watch Video Solution

49. Why is the surface tension of paints and lubricating oils kept low?

D Watch Video Solution
50. How much amount of work is done in forming a soap bubble of radius r ?

D Watch Video Solution

51. Derive the relation between surface tension and surface energy per unit area. (Feb.13)

- Watch Video Solution

52. Show that surface tension of a liquid is numerically equal to surface energy per unit area.

- Watch Video Solution

53. What is surface energy? Establish the relation between surface tension and surface energy.
54. A beaker of radius 10 cm is filled with water.

Calculate the force of surface tension on any diametrical line on its surface. Surface tension of water is $0.075 \mathrm{~N} / \mathrm{m}$.

- Watch Video Solution

55. Calculate the work done in blowing a soap
bubble to a radius of 1 cm . The surface tension
of soap solution is $2.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.

- Watch Video Solution

56. Twenty seven droplets of water, each of radius 0.1 mm coalesce into a single drop. Find the change in surface energy. Surface tension of water is $0.072 \mathrm{~N} / \mathrm{m}$.

D Watch Video Solution

57. A drop of mercury of radius 0.2 cm is broken into 8 droplets of the same size. Find
the work done if the surface tension of mercury is 435.5 dyne/cm.
58. How much work is required to form a bubble of 2 cm radius from the soap solution having surface tension $0.07 \mathrm{~N} / \mathrm{m}$

- Watch Video Solution

59. A rectangle wire frame of size $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ is dipped in a soap solution and taken out. A soap film is changed to $3 \mathrm{~cm} \times 3 \mathrm{~cm}$. Calculate
the work done in the process. The surface tension of soap film is $3 \times 10^{-2} N / m$.

D Watch Video Solution

60. Define angle of condact.Give characteristics of angle of condact.

- Watch Video Solution

61. Define angle of contact. Draw the labelled diagram sharing angle of contact for - a liquid
which completely wet the solid.

D Watch Video Solution

62. Define angle of contact. Draw the labelled diagram sharing angle of contact for - liquids which partially wet a solid surface

D Watch Video Solution

63. Define angle of contact. Draw the labelled diagram sharing angle of contact for - a liquid
which does not wet the solid

D Watch Video Solution

64. Explain formation of concave and convex
surface of liquid on the basis of molecular force.

- Watch Video Solution

65. Explain the completely wets situation when
liquid completely wets the solid with zero
angle of contact.

D Watch Video Solution

66. Explain the condition for convexity and concavity.

D Watch Video Solution

67. Explain the shape of liquid drops on a solid
surface with the help of diagram.

D Watch Video Solution
68. Why two or more mercury drops form a single drop when brought in contact with each other?

D Watch Video Solution

69. Explain the factors affecting the angle of contact.
70. Explain the effect of presence of impurities
on the surface tension of liquid.
(Watch Video Solution
71. Explain the effect of temperature and contamination on surface tension.
(D) Watch Video Solution
72. Explain the pressure difference across a curved-free surface of liquid.

D Watch Video Solution
73. Derive Laplace's law for spherical membrane.
(Watch Video Solution
74. Explain excess of pressure inside a liquid drop.

D Watch Video Solution

75. An air bubble of radius 0.2 mm is situated just below the water surface. Calculate the gauge pressure. Surface tension of water $=$ $7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.
76. What should be the diameter of a water drop so that the excess pressure inside it is $80 \mathrm{~N} / \mathrm{m}^{2}$? (surface tension of water = $\left.7.2 \times 10^{-2} N / m\right)$

D Watch Video Solution

77. What is capillarity? Give some applications of capillarity.
78. Explain the cause of capillary action in a capillary tube.

- Watch Video Solution

79. Explain the rise of liquid in the capillary on the basis of pressure difference.

- Watch Video Solution

80. Derive an expression for capillary rise or
fall using pressure difference. (Method I)
81. Explain the fall of liquid in the capillary an the basis of pressure difference.

D Watch Video Solution

82. Derive an expression for capillary rise or
fall using forces. (method II)

D Watch Video Solution
83. A capillary tube of radius $5 \times 10^{-4} \mathrm{~m}$ is immersed in a beaker filled with mercury. The mercury level inside the tube is found to be $8 \times 10^{-3} \mathrm{~m}$ below the level of reservoir.

Determine the angle of contact between mercury and glass. Surface tension of mercury is $0.465 \mathrm{~N} / \mathrm{m}$ and its density is
$13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} .\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

84. Calculate the rise of water inside a clean glass capillary tube of radius 0.1 mm when immersed in water of surface tension
$7 \times 10^{-2} N / m$. The angle of contact between
water and glass is zero, density of water $=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

85. A liquid rises to a height of 8 cm in a glass
capillary of radius 0.01 cm . What will be the
height of liquid column in a glass capillary of radius 0.02 cm ?

D Watch Video Solution

86. A capillary tube of uniform bore is dipped vertically in water which rises by 6 cm in the tube. Find the radius of the capillary tube if the surface tension of water is 72 dyne/cm ($\mathrm{g}=$ $980 \mathrm{~cm} / \mathrm{s}^{2}$).
87. A capillary tube 0.14 mm in diameter has its
lower end immersed in a liquid of surface tension $0.054 N / m$. If the density of a liquid is $860 \mathrm{~kg} / \mathrm{m}^{3}$, find the height to which the liquid rises in the tube.(Angle of contract of liquid with glass is 28° and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$).

- Watch Video Solution

88. The tube of a mercury barometer is 1 cm in
diameter. What correction due to capillarity
with effect of meniscus is to be applied to
barometer reading if surface tension of mercury is 435.5 dyne/cm and angle of contact of mercury with glass is 140° ? (density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$)

D Watch Video Solution

89. Calculate the density of paraffin oil, if glass
capillary of diameter 0.25 mm dipped in paraffin oil of the surface tension $0.0245 \mathrm{~N} / \mathrm{m}$
rises a height of 4 cm . (angle of contact of
paraffin oil with glass is 28° and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
)

D Watch Video Solution
90. Which branch of physics called as "hydrodynamics".

D Watch Video Solution
91. Explain the term steady flow for ideal fluid.

D Watch Video Solution

92. Explain the term flow line for ideal fluid.

- Watch Video Solution

93. Explain the term streamline / flow lines for ideal fluid.

- Watch Video Solution

94. Explain the term "flow tube".

- Watch Video Solution

96. Explain the term "Turbulent flow".

- Watch Video Solution

97. Explain critical velocity for ideal fluid.

- Watch Video Solution

98. What is Reynold's number.

- Watch Video Solution

99. What is viscosity in an ideal fluid.

- Watch Video Solution

100. Explain viscous flow and non viscous flow with diagram.

D Watch Video Solution
101. Explain dragging force with diagram?

D Watch Video Solution

102. What is velocity gradient and state its SI
unit and dimension.

- Watch Video Solution

103. Derive an expression for coefficient of viscosity. State its SI unit and dimension.

D Watch Video Solution

104. A horizontal force of 1 N is required to move a meal plate of area $10^{-2} m^{2}$ with a velocity of $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}$, when it rests on a
layer of oil $1.5 \times 10^{-3} \mathrm{~m}$ thick. Find the coefficient of viscosity of oil.

D Watch Video Solution

105. The relative velocity between two layers of
fluid, separated by 0.1 mm is $2 \mathrm{~cm} / \mathrm{s}$. Calculate
the velocity gradient.

D Watch Video Solution
106. Calculate the force required to move a flat metal plate of area $25 \mathrm{~cm}^{2}$ with a uniform velocity of $20 \mathrm{~m} / \mathrm{s}$ over the surface of a liquid 1 mm thick if the coefficient of viscosity (n) is $2 N s / m^{2}$

- Watch Video Solution

107. State Stoke's law with the formula.

- Watch Video Solution

108. A steel ball with radius 0.3 mm is falling with velocity of $2 m / s$ at a time t , through a tube filled with glycerin, having coefficient of viscosity $0.833 N s / m^{2}$. Determine viscous force acting on the steel ball at that time.

- Watch Video Solution

109. Calculate the viscous force acting on a rain drop of diameter 1 mm , falling with a uniform velocity $2 m / s$ through air. The
coefficient of viscosity of air is
$1.8 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$.

- Watch Video Solution

110. Derive an expression for terminal velocity of solid falling through viscous fluid.

- Watch Video Solution

111. With what terminal velocity will an air bubble 0.4 mm in diameter rise in a liquid of
viscosity $0.1 N s / m^{2}$ and specific gravity 0.9 ? density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$?

D Watch Video Solution

112. A spherical drop of oil falls at a constant speed of $4 \mathrm{~cm} / \mathrm{s}$ in steady air. Calculate the radius of the drop. The density of the oil is $0.9 \mathrm{~g} / \mathrm{cm}^{3}$, density of air is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$ and the coefficient of viscosity of air is
1.8×10^{-4} poise, $\left(g=980 \mathrm{~cm} / \mathrm{s}^{2}\right)$
113. Explain the equation of continuity in fluid dynamics.

D Watch Video Solution

114. What is volume flux and mass flux in equation of continuity in fluid mechanics.
115. Obtain an expression for conservation of mass starting from the equation of continuity.

D Watch Video Solution

116. A piston of cross sectional area $2 \mathrm{~cm}^{2}$
pushes the liquid out of a tube whose area at
the outlet is $40 \mathrm{~mm}^{2}$. The piston is pushed at a
rate of $2 \mathrm{~cm} / \mathrm{s}$. Determine the speed at which the fluid leaves the tube.
117. The speed of water is $2 m / s$ through a pipe of internal diameter 10 cm . What should be the internal diameter of nozzle of the pipe if the speed of water at nozzle is $4 m / s$?

D Watch Video Solution

118. State the Bernoulli equation for the steamline flow.
119. State the application of Bernoulli's equation.

D Watch Video Solution
120. Why does velocity increase when water flowing in broader pipe enters a narrow pipe?

- Watch Video Solution

121. Why does the speed of a liquid increase and its pressure decrease when a liquid passes through constriction in a horizontal pipe ?

D Watch Video Solution

122. Explain with the help of Bernoullis equation how the roof of house Blows off by stormy wind.
123. Explain the working of an atomizer.

D Watch Video Solution

124. Explain how with the help of Bernoulli's
principle, aeroplane can be lifted.

- Watch Video Solution

125. Explain the working ventury tube.
126. With the help of Torricelli's law and Bernoulli's equation, derive the formula for speed of efflux.

- Watch Video Solution

127. Derive an expression for Bernoulli equation.
128. The given figure shows a streamline flow of a non-viscous liquid having density $1000 \mathrm{~kg} / \mathrm{m}^{3}$.The cross sectional area at point

A is $2 \mathrm{~cm}^{2}$ and at point B is $1 \mathrm{~mm}^{2}$. The speed of liquid at the point A is $5 \mathrm{~cm} / \mathrm{s}$. Both points A and B are at the same horizontal level.

Calculate the difference in pressure at A and B.

D Watch Video Solution

129. Doors of a dam are 20 m below the surface of water in the dam. If one door is
opened, what will be the speed of the water that flows out of the door? $\left(g=9.8 m / s^{2}\right)$

D Watch Video Solution

130. Water flows through a tube as shown in
the given figure. Find the difference in mercury
level, if the speed of flow of water at point A is
$2 m / s$ and at point B is $5 m / s .\left(g=9.8 m / s^{2}\right)$

D Watch Video Solution

131. With what velocity does water flow out of an orifice in a tank with gauge pressure $4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ before the flow starts? Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

D Watch Video Solution

132. The pressure of water inside the closed pipe is $3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. This pressure reduces to $2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ on opening the valve of the
pipe. Calculate the speed of water flowing through the pipe $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

D Watch Video Solution

133. A water tank has a hole at a distance $x \mathrm{~m}$
from free water surface. If the radius of the
hole is 2 mm and velocity of efflux of water is
$11 m / s$. Find V. $\left(g=9.8 m / s^{2}\right)$

D Watch Video Solution

134. Water is flowing through a horizontal
pipe of varying cross-section. At a certain point where the velocity is $0.12 m / s$, the pressure of water is 0.010 m of mercury. What is the pressure at a point where the velocity is $0.24 m / s ?$

D Watch Video Solution

135. Distinguish between stream line flow and turbulent flow.

Exercise

1. A needle of length 6 cm can stay afloat on water. Find weight of the needle. (Surface tension of water $0.075 \mathrm{~N} / \mathrm{m}$)

- Watch Video Solution

2. Calculate the work done in blowing a soap bubble of radius 4 cm . The surface tension of
soap solution is $25 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

- Watch Video Solution

3. A square glass plate 4.5 cm long and 0.5 cm
thick is suspended in a through containing water so that its length just touches the water surface, calculate the downward force due to surface tension acting on the plate. (Surface tension of water $=70$ dyne $/ \mathrm{cm}$)

D Watch Video Solution

4. Calculate the work done in increasing the radius of a soap bubble in air from 2 cm to 3 cm . The surface tension of soap solution is 25 dyne/cm.

D Watch Video Solution

5. A liquid of density $700 \mathrm{~kg} / \mathrm{m}^{3}$ rises to a height of 12 mm in capillary tube of 2.7 mm diameter. If angle of contact is 30°, find the surface tension of liquid, ($g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
6. A liquid rises to height of 9 cm in a glass capillary of radius 0.02 cm . What will be the height of liquid column in a glass capillary of radius 0.03 cm ?

- Watch Video Solution

7. A capillary tube of diameter 0.6 mm dipped
vertically into water. It rises to height of 6 cm
in capillary tube, find the surface tension of
water.
(Given:

$$
\left.=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

D Watch Video Solution

8. Eight droplets of mercury each of radius 1 mm coalesces into a single drop. Find the change in the surface energy. Surface tension of mercury is $0.465 \mathrm{~J} / \mathrm{m}^{2}$
9. Calculate the work done in breaking a mercury drop of radius 1 mm into one thousand droplets of the same size. Surface tension of mercury is $525 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

- Watch Video Solution

10. Compare the amount of work done in blowing two soap bubbles of radii in the ratio

4: 5 .
11. When glass capillary tube of radius 0.4 mm is dipped into mercury, the level inside the capillary stands 1.24 cm lower than that outside. Calculate the surface tension of mercury. (Angle of contact of mercury with glass $=135^{\circ}, g=9.8 m / s^{2}$, density of mercury $=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
12. Surface tension of water at $0^{\circ} C$ is 75
dyne/cm, find the surface tension of water at $25^{\circ} C .\left(\right.$ alpha for water $=0.0027 /{ }^{\circ} C$)

D Watch Video Solution

13. Find the work done in blowing a soap
bubble of radius 5 cm .Surface tension of soap solution is 25 dyne/cm.
14. A capillary tube of uniform bore is dipped vertically in water which rises by 7 cm in the tube. Find the radius of the capillary if the surface tension of water is $70 \mathrm{dy} / \mathrm{cm}$.

- Watch Video Solution

15. Compare the amount of work done in blowing two soap bubbles of radii in the ratio 4:5.
16. A drop of mercury 2 mm in diameter breaks
into a million small spherical droplets, all of same size. Calculate the work done. (S.T. of mercury $=0.46 \mathrm{~N} / \mathrm{m}$)

D Watch Video Solution

17. A liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$ flowing
steadily in a tube of varying cross-section. If area of cross-section at A is $4 \mathrm{~cm}^{2}$ and at B is
$2 \mathrm{~cm}^{2}$, if speed of liquid at A is $10 \mathrm{~cm} / \mathrm{s}$, calculate:- the rate of flow at B

D Watch Video Solution

18. A liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$ flowing steadily in a tube of varying cross-section. If area of cross-section at A is $4 \mathrm{~cm}^{2}$ and at B is $2 \mathrm{~cm}^{2}$, if speed of liquid at A is $10 \mathrm{~cm} / \mathrm{s}$, calculate:- the difference in pressure at A and B.
19. Water is flowing continously from a tap having a base of internal diameter $8 \times 10^{-3} m$
. Calculate the diameter of the water stream at a distance of 2×10^{-1} below the tap. Assume that the water velocity as it leaves the tap is $4 \times 10^{-1} \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

20. Find the terminal velocity of a steel ball bearing of radius 0.1 cm when it falls through a
tube filled with glycerine. $\left(\rho_{\text {steel }}=8 \mathrm{~g} / \mathrm{cm}^{3}\right.$, $a=1.34 g / \mathrm{cm}^{3}, \mathrm{r} \mid=9$ poise)

D Watch Video Solution

21. Select and write the most appropriate answer from the alternatives given for sub question. The molecules on the surface of the liquid have
A. minimum potential energy
B. maximum potential energy

C. minimum kinetic energy

D. maximum kinetic energy

Answer:

- Watch Video Solution

22. The spherical shape of rain-drop is due to.
A. gravity
B. atmospheric pressure

C. surface tension

D. density of liquid

Answer:

D Watch Video Solution

23. Absorption of ink by filter paper is due to.......
A. cohesion
B. capillarity

C. adhesion

D. elasticity

Answer:

D Watch Video Solution

24. The surface tension of liquid is $5 N / m$. If a
thin film of area $0.04 m^{2}$ is formed on a loop,
then its surface energy will be
A. $10 \times 10^{-2} J$
B. $4 \times 10^{-1} J$
C. $7 \times 10^{-1} J$
D. $12 \times 10^{-4} J$

Answer:

D Watch Video Solution

25. The surface tension of liquid is $4 N / m$. If a
thin film of area $0.02 m^{2}$ is formed on a loop,
then its surface energy will be
A. $2.5 \times 10^{-2} J$
B. $1.5 \times 10^{-2} J$
C. $1.6 \times 10^{-1} J$
D. $2 \times 10^{-1} J$

Answer:

D Watch Video Solution

26. At critical temperature, the surface tension

A. infinity
B. zero
C. remains same
D. first increases then decreases

Answer:

D Watch Video Solution
27. The surface-tension of a liquid is T. The increase in its surface energy on increasing
the surface area by A is
A. $A^{2} T^{2}$
B. $A^{2} T$
C. AT
D. $A T^{1}$

Answer:

D Watch Video Solution
28. Water rises to a height of 2 cm in capillary
tube held vertically. When the tube is tilted
60° from vertical, the length of the water column in the tube will be........
A. 2 cm
B. 1 cm
C. 3 cm
D. 4 cm

Answer:
(Watch Video Solution
29. The surface tension of soap solution is
$25 \times 10^{-3} \mathrm{~N} / \mathrm{m}$. The excess of pressure inside the soap bubble of radius 0.5 cm is.
A. $20 N / m^{2}$
B. $10 N / m^{2}$
C. $5 N / m^{2}$
D. $30 \mathrm{~N} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution
30. A liquid does not wet the sides of solid if angle of contact is.
A. 0°
B. 45°
C. 60°
D. 130°

Answer:

D Watch Video Solution
31. n droplets of equal size of radius r coalesce to form a bigger drop of radius R. The energy liberated is equal to

$$
\begin{aligned}
& \text { A. } 4 \pi R^{2} T\left[n^{\frac{1}{3}}-1\right] \\
& \text { B. } 4 \pi r^{2} T\left[n^{\frac{1}{3}}+1\right] \\
& \text { C. } 4 \pi R^{2} T\left[n^{\frac{2}{3}}-1\right] \\
& \text { D. } 4 \pi r^{2} T\left[n^{\frac{2}{3}}-1\right]
\end{aligned}
$$

Answer:

32. Two bubbles A and $B(A>B)$ are joined through a narrow tube, then
A. size of B will increase.
B. size of A will increase.
C. size of A will decrease.
D. size of B will increase until the pressure becomes equal.

Answer:

33. Radius of soap bubble is r. The surface tension of soap solution is T. Keeping temperature constant, the radius of soap bubble is doubled. The energy necessary for this will be....
A. $24 \pi r^{2} T$
B. $8 \pi r^{2} T$
C. $12 \pi r^{2} T$
D. $16 \pi r^{2} T$

- Watch Video Solution

34. A capillary tube of radius r can support a liquid of weight $6.28 \times 10^{-4} N$. If the surface tension of liquid is $5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$, the radius of the capillary tube will be.
A. $2.5 \times 10^{-4} m$
B. $2.0 \times 10^{-3} \mathrm{~m}$
C. $1.5 \times 10^{-2} m$
D. $2 \times 10^{-4} m$

Answer:

D Watch Video Solution

35. The pressure just below the meniscus of water
A. is greater than just above it
B. less than just above it
C. is same as just above it
D. always equal to atmospheric pressure

Answer:

D Watch Video Solution

36. A square frame of length L is immersed in a soap solution and taken out. The force experienced by the square plate is.
A. TL
B. 2 TL
C. 4 TL
D. 8 TL

Answer:

D Watch Video Solution

37. When NaCl is dissolved into water, then its
surface tension
A. decreases
B. no change
C. increases
D. first increases then decreases

Answer:

D Watch Video Solution

38. Water rises to capillary tube to a height of

4 cm . If radius of the tube is one-fourth, the water will rise to a height of
A. 2 cm
B. 4 cm
C. 8 cm
D. 16 cm

Answer:

D Watch Video Solution

39. A soap bubble has radius 2 cm . The work done to double the radius is (surface tension of soap solution is $30 \times 10^{-3} \mathrm{~N} / \mathrm{m}$)
A. $1.1355 \times 10^{-4} J$
B. zero
C. $4.532 \times 10^{-4} J$
D. $2.261 \times 10^{-4} J$

Answer:

- Watch Video Solution

40. The surface tension of water at $0^{\circ} C$ is 72
dyne/cm, surface tension of water at $30^{\circ} \mathrm{C}$ is
$\left(\alpha\right.$ for water $\left.=0.0025 /{ }^{\circ} C\right)$
A. 69.37 dyne/cm
B. 65.27 dyne/cm
C. 68.37 dyne/cm
D. 66.67 dyne/cm

Answer:

D Watch Video Solution

41. The angle of contact between glass and mercury is
A. 0°
B. 30°
C. 90°
D. 135°

Answer:

D Watch Video Solution

42. As the length of the capillary tube is
insufficient the rise of liquid in it will be up to
the top in the absence of.
A. insoluble impurity
B. soluble impurity
C. gravity
D. critical temperature
A. insoluble impurity
B. soluble impurity
C. gravity
D. critical temperature

Answer:

D Watch Video Solution
43. The correct relation is

$$
\text { A. } r=\frac{2 T \cos \theta}{h \rho g}
$$

> B. $r=\frac{h \rho g}{2 T \cos \theta}$
> C. $r=\frac{2 T h \rho g}{\cos \theta}$
> D. $r=\frac{T \cos \theta}{2 h \rho g}$

Answer:

D Watch Video Solution

44. Surface tension of soap solution is
$2 \times 10^{-2} N / m$. The work done in producing a soap bubble of radius 2 cm is,
A. $64 \pi \times 10^{-6} J$
B. $32 \pi \times 10^{-6} J$
C. $16 \pi \times 10^{-6} J$
D. $8 \pi \times 10^{-6} J$

Answer:

- Watch Video Solution

45. The angle of contact between glass and mercury is
A. 0
B. acute
C. obtuse
D. 90°

Answer:

D Watch Video Solution

46. Angle of contact varies between

$$
\text { A. } 0 \rightarrow \pi
$$

B. $0 \rightarrow-\pi$
C. $0 \rightarrow 2 \pi$
D. $2 \pi \rightarrow-2 \pi$

Answer:

- Watch Video Solution

47. Meniscus of Hg in capillary is
A. Concave
B. Convex

C. Plane

D. Plano Convex

Answer:

D Watch Video Solution

48. If the surface tension of liquid is T, the
work required to increase, its surface area by A is
A. $A \times T$
B. $A \times 2$
C. $3 A \times 4$
D. $2 A \times 4$

Answer:

- Watch Video Solution

49. The surface tension of water in C.G.S. units is 30 dyne/cm. Its S.I. unit is.
A. $30 N / m$
B. $3 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $0.3 \mathrm{~N} / \mathrm{m}$
D. $3 \times 10^{3} \mathrm{~N} / \mathrm{m}$

Answer:

D Watch Video Solution

50. The height of water in a capillary tube of radius 2 cm is 4 cm . What should be the radius of capillary, if the water rises to 8 cm in tube?
A. 1 cm
B. 0.1 cm
C. 2 cm
D. 4 cm

Answer:

D Watch Video Solution

51. For tap water and clean glass, the angle of contact is
A. 0°
B. 90°
C. 140°
D. 8°

Answer:

D Watch Video Solution

52. When there are no external forces, the shape of a liquid drop is determined by
A. Surface tension of the liquid
B. Density of a liquid
C. Viscosity of liquid
D. Temperature of air only

Answer:

D Watch Video Solution

53. A capillary tube when immersed vertically in a liquid records a rise of 3 cm , if the tube is immersed in the liquid at an angle of 60° with
the vertical, then length of the liquid column along the tube will be
A. 2 cm
B. 3 cm
C. 6 cm
D. 8 cm

Answer:
(Watch Video Solution
54. The spherical shape of rain-drop is due to.........
A. Surface tension of the liquid
B. capillary
C. Downward motion
D. acceleration due to gravity

Answer:
(D) Watch Video Solution
55. Water rises in a capillary tube to a certain
height such that the upward force due to
surface tension is balanced by $75 \times 10^{-4} N$,
forces due to the weight of the liquid. If the
surface tension of water is $6 \times 10^{-2} N / m$,
the inner-circumference of the capillary must be

$$
\begin{aligned}
& \text { A. } 12.5 \times 10^{-2} m \\
& \text { B. } 11.5 \times 10^{-2} m \\
& \text { C. } 13.5 \times 10^{-2} m \\
& \text { D. } 14.5 \times 10^{-2} m
\end{aligned}
$$

Answer:

D Watch Video Solution

56. What is the change in surface energy, when
a mercury drop of radius R splits up into 1000 droplets of equal radius?
A. $8 \pi R^{2} T$
B. $16 \pi R^{2} T$
C. $24 \pi R^{2} T$
D. $36 \pi R^{2} T$

Answer:

D Watch Video Solution

57. The dimensions of surface tension are

A. $\left[M^{1} L^{0} T^{-2}\right]$
B. $\left[M^{1} L^{1} T^{-2}\right]$
C. $\left[M^{1} L^{-2} T^{0}\right]$
D. $\left[M^{1} L^{1} T^{-1}\right]$
58. If W is the work done to blow a bubble of volume V , that to blow a bubble of double the volume is
A. $2^{\frac{1}{3}} W$
B. $2^{\frac{2}{3}} W$
C. $2^{\frac{4}{3}} \mathrm{~W}$
D. 2 W
59. The work done in breaking a spherical drop of a liquid of radius R into 8 equal drops is
A. $\pi R^{2} T$
B. $2 \pi R^{2} T$
C. $3 \pi R^{2} T$
D. $4 \pi R^{2} T$

Answer:
60. A hydraulic lift is designed to lift heavy objects of maximum mass 2000 kg . The area of cross section of piston carrying the load is
$2.25 \times 10^{-2} m^{2} \quad$ What is the maximum pressure the smaller piston would have to bear?
A. $0.8711 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
B. $0.5862 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
C. $0.4869 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

D. $0.3271 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution

61. Two capillary tubes of radii 0.3 cm and 0.6
cm are dipped in the same liquid. The ratio of
heights through which the liquid will rise in
the tubes is
A. $1: 2$
B. 2:1
C. 1:4
D. $4: 1$

Answer:

- Watch Video Solution

62. The energy stored in a soap bubble of diameter 6 cm and $T=0.04 \mathrm{~N} / \mathrm{m}$ is nearly.
A. $0.9 \times 10^{-3} J$
B. $0.4 \times 10^{-3} \mathrm{~J}$
C. $0.7 \times l 0^{-3} J$
D. $0.5 \times l 0^{-3} J$

Answer:

D Watch Video Solution

63. Two hail stones with radii in the ratio of

1:4 fall from a great height through the atmosphere. Then the ratio of their terminal velocity is
A. $1: 2$
B. 1: 12
C. $1: 16$
D. $1: 8$

Answer:

D Watch Video Solution

64. In Bernoulli's theorem, which of the following is conserved?
A. linear momentum
B. angular momentum
C. mass
D. energy

Answer:

D Watch Video Solution
65. If Reynold's number for given ideal fluid
flowing in the tube is 750 , is the flow
A. streamline
B. turbulent
C. both streamline and turbulent
D. neither stream line nor turbulent

Answer:

D Watch Video Solution

66. If pressure at half the depth of a lake is equal to $\frac{2}{3}$ pressure at the bottom of the lake then what is the depth of the lake.
A. 10 m
B. 20 m
C. 60 m
D. 30 m

Answer:

D Watch Video Solution

67. A barometer kept in an elevator accelerating upward reads 76 cm . The air pressure in the elevator is
A. 76 cm
B. $<76 \mathrm{~cm}$
C. $>76 \mathrm{~cm}$
D. zero

Answer:

- Watch Video Solution

68. There is a hole in the bottom of a tank having water. If total pressure at bottom is 3
atm, then the velocity of water flowing from hole is
A. $20 m / s$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m} / \mathrm{s}$
D. $50 \mathrm{~m} / \mathrm{s}$

Answer:
(Watch Video Solution
69. Water falls from a tap, down the streamline
A. Area decreases
B. Area increases
C. velocity remains same

D. Area remains same

Answer:

70. The working of an atomizer depends upon

A. Boyle's law
B. Bernoulli's theorem
C. Archimedes principle

D. Newton's law of viscous drag

Answer:

71. By sucking through a straw, a student can

 reduce the pressure in his lungs to 750 mm of Hg. (density $\left.=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$. Using the straw, he can drink water from a glass upto a maximum depth ofA. 10 cm
B. 75 cm
C. 13.6 cm
D. 1.36 cm
72. The relative velocity between two layers of
fluid, separated by 0.4 mm is $8 \mathrm{~cm} / \mathrm{s}$. What will be the velocity gradient?
A. $20 s^{-1}$
B. $200 s^{-1}$
C. $10 s^{-1}$
D. $100 s^{-1}$
73. Pascal's law is applied in which of the following cases?
A. Hydraulic brakes
B. Airpurfier
C. Ventury tube
D. Blood pressure gauge

Answer:
74. Select and write the correct answer:- The energy stored in a soap bubble of diameter 4 cm and $\mathrm{T}=0.02 \mathrm{~N} / \mathrm{m}$, is nearly
A. $2 \times 10^{-4} J$
B. $1 \times 10^{-4} J$
C. $4 \times 10^{-4} J$
D. $8 \times 10^{-4} J$
75. Select and write the correct answer:- Two capillary tubes of radii 0.1 cm and 0.2 cm are dipped in the same liquid. The ratio of heights through which the liquid will rise in the tubes is
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

Answer:

- Watch Video Solution

76. The dimensions of surface tension are

A. $\left[M^{1} L^{0} T^{-2}\right]$
B. $\left[M^{1} L^{1} T^{-2}\right]$
C. $\left[M^{1} L^{-2} T^{0}\right]$
D. $\left[M^{1} L^{1} T^{-1}\right]$
77. Water falls from a tap, down the streamline
A. Area decreases
B. Area increases
C. velocity remains the same
D. Area remains the same

Answer:

78. State and explain Pascal 's law.

- Watch Video Solution

79. What is an incompressible fluid ?

D Watch Video Solution
80. How much amount of work is done in
forming a soap bubble of radius r ?
81. Why is the surface tension of paints and lubricating oils kept low?

- Watch Video Solution

82. Why does velocity increase when water flowing in broader pipe enters a narrow pipe?

- Watch Video Solution

83. Define surface tension. Write down its units and dimension.

D Watch Video Solution

84. Find the pressure 200 m below the surface of the ocean if pressure on the free surface of
liquid is one atmosphere. $\rho_{w}=1060 \mathrm{~kg} / \mathrm{m}^{3}$

D Watch Video Solution

85. With what velocity does water flow out of an orifice in a tank with gauge pressure $4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ before the flow starts? Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

- Watch Video Solution

86. What is Reynold's number.

- Watch Video Solution

87. Explain the working of an atomizer.

- Watch Video Solution

88. Derive an expression for coefficient of viscosity. State its SI unit and dimension.

- Watch Video Solution

89. A drop of mercury of radius 0.2 cm is
broken into 8 droplets of the same size. Find
the work done if the surface tensions of mercury is 435.5 dyne/cm

D Watch Video Solution

90. Derive an expression for terminal velocity of solid falling through viscous fluid.

D Watch Video Solution

91. Distinguish between stream line flow and
turbulent flow.

Watch Video Solution

