©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Oscillations.

Examples

1. Explain the term 'periodic motion'.

-
 Watch Video Solution

2. State examples of periodic motion.

D Watch Video Solution

3. Explain the term 'oscillatory motion'.

D Watch Video Solution
4. State examples of S.H.M

5. Define linear simple harmonic motion.

- Watch Video Solution

6. State examples of S.H.M

D Watch Video Solution

7. Define force constant? State its units and dimension.
8. Define restoring force. Explain the concept of a restoring force in a spring mass oscillator.

D Watch Video Solution

9. From the differential equation of linear
S.H.M. obtain expressions for acceleration, velocity and displacement of particle performing S.H.M.
10. A particle performs S.H.M. of period 4 seconds and amplitude 4 cm . If initially the particle is at positive extremity, how much time will it take to cover a distance of 1 cm from the extreme position?

D Watch Video Solution

11. A particle performing linear S.H.M. with period 6 second ,is at the positive extreme position at $t=0$. The particle is found to be at
a distance of 3 cm from the extreme position at time $t=7 \mathrm{sec}$, before reaching the mean position. Find the amplitude of the S.H.M.

D Watch Video Solution

12. The speeds of a particle performing linear
S.H.M are $8 \mathrm{~cm} / \mathrm{s}$ and $6 \mathrm{~cm} / \mathrm{s}$ at a respective displacements of 6 cm and 8 cm . Find its period and amplitude.

D Watch Video Solution

13. The maximum velocity of a particle performing S.H.M is $6.28 \frac{\mathrm{~cm}}{\mathrm{~s}}$. If the length of the path is 8 cm . Calculate its period.

D Watch Video Solution

14. The maximum speed of a particle performing linear S.H.M is $0.08 \frac{c m}{s}$. If its maximum acceleration is $0.32 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Calculate the period and amplitude.
15. At what distance from the mean position is
the speed of the particle, performing S.H.M
half its maximum speed. Given path length of S.H.M is 10 cm .

D Watch Video Solution

16. A needle of a sewing machine moves along
a path of amplitude 4 cm with frequency 5 Hz .
Find itsacceleration $\frac{1}{30}$ second after it crossed its mean position.
17. At what distance from the mean position is
the KE of a particle performing S.H.M of amplitude 8 cm three times its PE.

- Watch Video Solution

18. A particle performing linear S.H.M. of period
2π seconds, about the mean position O , is observed to have a speed at $b \sqrt{3} m / s$, when at a distance of b (metre) from O. If the
particle is moving away from O at that instant
, find the time required by the particle to travel a a further disatnce b .

D Watch Video Solution

19. Explain the combination of springs in series. Derive expression for the same.

D Watch Video Solution
20. Explain the combination of springs in parallel Derive expression for the same.

- Watch Video Solution

21. The period of oscillation of a body of mass m_{1} suspended from a lightspring is T . When
the body of mass m_{2}, is tied to the first body and the system is made to oscillate, the period is 2 T . Compare the masses m_{1} and m_{2}.
22. Show that the average speed of a particle performing S.H.M. in one oscillation is 2 $\frac{2}{\pi} \max$ speed.

- Watch Video Solution

23. Show that the average speed of a particle performing S.H.M. in one oscillation is $\frac{2}{\pi} \max$ speed.

24. With the help of proper diagrams Explain

Projection of velocity :

D Watch Video Solution

25. With the help of proper diagrams

ExplainProjection of acceleration

D Watch Video Solution

26. Define the following terms periodic motion

- Watch Video Solution

27. Define the following term - oscillation

- Watch Video Solution

28. Define the following terms amplitude of S.H.M.

- Watch Video Solution

29. Define the following terms period of S.H.M.

D Watch Video Solution

30. Define the following terms frequency of S.H.M.

D Watch Video Solution

31. Define the following terms phase of S.H.M.

32. Define the following terms epoch of S.H.M.

- Watch Video Solution

33. Explain the special cases pf phase of S.H.M
when $\theta=0^{\circ}, 180^{\circ}, 90^{\circ}, 270^{\circ}$

- Watch Video Solution

34. Describe the state of oscillation, if the phase angle is 1110°

D Watch Video Solution

35. While completing its third oscillation, during linear S.H.M, a particle is at `-frac (sqrt3)
(2)A, heading to the mean position. Determine the phase angle.
36. Derive an expression for time period of a particle performing S.H.M.

D Watch Video Solution

37. Particle performing S.H.M. starts from mean position. Plot a graph of displacement, velocity and acceleration.

D Watch Video Solution

38. Obtain expressions for Kinetic Energy, Potential Energy and Total Energy of a particle performs linear S.H.M.

D Watch Video Solution

39. Show that total energy of the particle performing linear S.H.M. is constant.

D Watch Video Solution

40. Show that total energy of the particle performing linear S.H.M. is constant.

D Watch Video Solution

41. Show that Total Energy of a particle can be expressed as $T E \propto n^{2}$
(D) Watch Video Solution
42. The potential Energy of a particle performing linear S.H.M is $0.1 n x 2$ joule. If mass of the particle is 20 g , Find the frequency of S.H.M.

D Watch Video Solution

43. The total energy of a body of mass 2 kg . performing S.H.M is 40 J . Find the speed while crossing the centre of the path.
44. Discuss analytically, the composition of two S.H.M.S of same period and parallel to each other. Find the resultant amplitude when phase difference is $\frac{\pi}{2}$

D Watch Video Solution

45. Two parallel S.H.M's represented by
$x_{1}=5 \sin \left[4 \pi t+\frac{\pi}{3}\right] \mathrm{cm}$
$x_{2}=3 \sin [4 \mathrm{pi}$ t _frac (pi)(4)]cm are
superposed on a particle.Determine the amplitude and epoch of the resultant S.H.M.

D Watch Video Solution

46. Define a Practical Simple Pendulum and an Ideal Simple Pendulum.

- Watch Video Solution

47. Show that under certain conditions, a
simple pendulum performs linear S.H.M.
48. Deduce the expression for period of simple pendulum . Hence state the factors on which its period depends.

- Watch Video Solution

49. The period of oscillations of a simple pendulum increses by 10%, when its length is
increased by 21 cm . Find its initial length and initial period.

D Watch Video Solution

50. A simple pendulum performs S.H.M of period 4 seconds. How much time after crossing the mean position, will the displacement of the bob be one third of its amplitude.
51. A simple pendulum of length 100 cm perforns S.H.M. Find the restoring force acting on its bob of mass 50 g when the displacement from the mean position is 3 cm .

- Watch Video Solution

52. Find the change in length of a second 's pendulum, if the acceleration due to gravity at the place changes from $9.75 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ to $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
53. State the laws of a simple pendulum. What is seconds pendulum? Calculate its length.

- Watch Video Solution

54. In summer season, pendulum clock is regulated as a second's pendulum and it keeps
the correct time. During winter, the length of the pendulum decreases by 1%. How much will the clock gain or loose in one day. $\left[g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right]$
55. Show that motion of a damped harmonic oscillator is S.H.M. Hence derive the formula for time period of damped oscillations.

D Watch Video Solution

56. Derive an expression for the time period of
a magnet vibrating in a uniform magnetic field.
57. A bar magnet of mass 120 g , in the form of
a rectangular parallelopiped has dimensions I
$=40 \mathrm{~mm}, \mathrm{~b}=10 \mathrm{~mm}$ and $\mathrm{h}=80 \mathrm{~mm}$. With the
dimensions h vertical, the magnet performs
angular oscillations, in the plane of a magnetic
field with period πs. If its magnetic moment is
$3.4 \mathrm{Am}^{2}$, determine the influencing magnetic field.
58. Two magnets with the same dimensions and mass, but of magnetic moments
$\mu_{1}=100 A m^{2}$ and $\quad \mu_{2}=50 A m^{2}$ are jointly
suspended in the earth's magneticfield. So as
to perform angular oscillations in a horizontal
plane.When their like poles are joinedtogether
the period of their angular S.H.M is 5 s . Find the period of angular S.H.M, when theirunlike poles are joined together.

D Watch Video Solution

59. A 20 cm wide thin circular disc of mass 200
g is suspended to a rigid support, from a thin metallic string. By holding the rim of the disc,
the string is twisted through 60° and released.It now performs angular oscillations of period 1 second.Calculate the maximum restoring torque generated in the string under undamped condition. $\left(\pi^{3} \approx 31\right)$

- Watch Video Solution

60. Find the number of oscillations performed
per minute by a magnet vibrating in the plane of a uniform field of $1.6 \times 10^{-5} \frac{\mathrm{wb}}{\mathrm{m}^{2}}$. The magnet has a moment of inertia $3 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$ and magneticmoment $3 \mathrm{Am}^{2}$.

- Watch Video Solution

61. A wooden block of mass m is kept on a piston that can perform vertical vibrations of adjustable frequency and amplitude. During
vibrations, we don't want the block to leave
the contact with the piston How much maximum frequency is possible if the amplitude of vibrations is restricted to 25 cm ? In this case, how much is the energy per unit mass of the block ? $\left(g \approx 10 m s^{-2}\right)$

D Watch Video Solution

62. Distinguish between conical pendulum and simple pendulum .

Exercise

1. Two parallel S.H.M's are given by $x_{1}=20 \sin 8 \pi t \quad$ and $\quad x_{2}=10 \sin \left[8 \pi t+\frac{\pi}{6}\right]$.

Find the resultant amplitude and phase.

- Watch Video Solution

2. A bar magnet is vibrating in a uniform magnetic induction, the magnitude of which
can be changed, its frequency is found to
reduce to quarter of the original frequency, when the magnetic induction changes to $1.25 \times 10^{-5} \frac{w b}{m^{2}}$. Calculate the original magnetic induction.

- Watch Video Solution

3. A bar magnet is vibrating in a uniform magnetic induction, the magnitude of which
can be changed. If the frequency is found to
reduce to half of its original frequency when
the magnetic induction changes to
$1.25 \times 10^{-5} \frac{w b}{m 2} . \quad$ Calculate the original magnetic induction.

D Watch Video Solution

4. A bar magnet, freely suspended in a magnetic induction H makes 20 oscillates per minute. When another magnet X is brought near it, the number of oscillations are found to be 10 per minute. What is the influencing induction of magnet X, in terms of H (where H >X)

Watch Video Solution

5. A bar magnet of moment $2 \mathrm{Am}^{2}$ and having a moment of inertia $10^{-6} \mathrm{~kg}-\mathrm{m}^{2}$ about a transverse axis passing through its centre is performing S.H.M in a magnetic induction $0.8 \times 10^{-(5)} \frac{w b}{m^{2}}$. Calculate the period of the bar magnet.

- Watch Video Solution

6. The period of a simple pendulum is found to increase by 50%, when the length of the pendulum is increased by 0.6 m . Calculate the initial length and initial period of oscillation at a place where $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- Watch Video Solution

7. The maximum velocity of a particle performing S.H.M is $6.28 \frac{\mathrm{~cm}}{\mathrm{~s}}$. If the length of the path is 8 cm . Calculate its period.
8. Determine the length of a seconds pendulum at a place, where the acceleration due to gravity is $9.77 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- Watch Video Solution

9. A particle performs S.H.M of amplitude 10
cm . Its maximum velocity during oscillations is
$100(\mathrm{~cm})(\mathrm{s})$ What isits displacement, when the
velocity is $60(\mathrm{~cm})(\mathrm{s})$.

- Watch Video Solution

10. A particleis performinglinearS.H.Mof amplitude a. What fraction of the total energy
is kinetic, if the displacement is half of the amplitude?

- Watch Video Solution

11. A spring of a negligible mass is stretched by
a force of 20 g wt through a distance of 5 cms .

A total mass of 50 g . is attached to the spring and set into oscillations. Find the periodic time of oscillation. Given $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

D Watch Video Solution

12. A particle executing S.H.M. has velocities v_{1}
and v_{2} when at distances x_{1} and x_{2} from the centre of the path. Show that the time period given by

D Watch Video Solution

13. Any motion which repeats itself after a definiteinterval of time is called a motion.

A. Linear

B. Rotational
C. Periodic
D. Translational

Answer:

14. If the force constant is 10 towards negative

X-axis , a body of mass 0.4 kg is displaced by 80 m in 4 sec its acceleration is
A. $(-2) \frac{m}{s}$
B. $(4) \frac{m}{s}$
C. $(-6) \frac{m}{s}$
D. $(-10) \frac{m}{s}$
A. $(-2) \frac{m}{s}$
B. (4) $\frac{m}{s}$
C. $(-6) \frac{m}{s}$

$$
\text { D. }(-10) \frac{m}{s} 2
$$

Answer:

D Watch Video Solution

15. A particle of mass 200 gm , performs S.H.M ofamplitude 0.1 m and period 3.14 sec .. Its PE when it is at a distance of 0.03 m from the mean position is

$$
\text { A. } 1.64 \times 10^{-4} J
$$

B. $2.64 \times 10^{-4} J$
C. $3.64 \times 10^{-4} J$
D. $4.64 \times 10^{-4} J$

Answer:

D Watch Video Solution

16. A particle of mass 200 gm, performs S.H.M ofamplitude 0.1 m and period 3.14 sec .. Its PE when it is at a distance of 0.03 m from the mean position is
A. $1.64 \times 10^{4} J$
B. $2.64 \times 10^{-4} J$
C. $3.64 \times 10^{-4} J$
D. $4.64 \times 10^{-4} J$

Answer:

D Watch Video Solution

17. For ' n ' no of (massless) springs in series, the effective value of the spring constant is

> A. $k_{s}=\frac{k}{n}$
> B. $k_{s}=\frac{n}{k}$
> C. $k_{s}=k_{n}$
> D. $k_{s}=\frac{1}{k_{n}}$

Answer:

D Watch Video Solution

18. For ' n ' no of (massless) springs in series,
the effective value of the spring constant is

> A. $k_{p}=\frac{k}{m}$
> B. $k_{p}=\frac{m}{k}$
> C. $k_{p}=m k$
> D. $k_{p}=\frac{1}{k_{m}}$

Answer:

D Watch Video Solution

19. The state of oscillation of a particle, that gives displacement and direction at that
A. velocity
B. differential equation
C. acceleration
D. phase

Answer:

D Watch Video Solution

20. When we graphically represent velocity from the mean position at $\operatorname{frac}(T)(2)$ its value is
A. $\left(-A_{\omega}\right)$
B. $A \omega$
C. A
D. (-A)

Answer:

D Watch Video Solution
21. When we graphically represent acceleration
from the extreme position at $\operatorname{frac}(3 T)(4)$ its
value is
A. 0
B. $\left(A_{\omega}-2\right)$
C. $\left(-A_{\omega-}-2\right)$
D. $A \omega$

Answer:

- Watch Video Solution

22. The expression in S.H.M $\left[2 \mathrm{pi}^{\wedge} 2\right.$ frac $\left(\mathrm{mA}^{\wedge} 2\right)$
($\mathrm{T}^{\wedge} 2$)] represents its
A. Kinetic energy
B. Total energy
C. Potential energy
D. Translation energy

Answer:

D Watch Video Solution
23. The total energy of a particle of mass $200 g$,
performing S.h.m.is $10^{-2} J$. Find its maximum
velocity and period if the amplitude is 7 cm .
A. $0.2162 \frac{m(s)}{}$
B. $0.3162 \frac{m(s)}{}$
C. $0.4162 \frac{m(s)}{}$
D. $0.5162 \frac{m(s)}{}$

Answer:

- Watch Video Solution

24. A simple pendulum, whose time period is seconds, is called a seconds pendulum.
A. 1second
B. 2second
C. 3second
D. 4second

Answer:

D Watch Video Solution

25. The length of a seconds pendulum at a place where $\mathrm{g}=9.8 \mathrm{frac}(\mathrm{m})\left(\mathrm{s}^{\wedge} 2\right)^{\wedge}$ is 0.994 m If
the amplitude is 0.15 m , its maximum velocity is
A. $0.371 \frac{m}{s}$
B. $0.471 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $0.571 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $0.671 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer:

D Watch Video Solution

26. A bar magnet is vibrating in a uniform magnetic induction, the magnitude of which
can be changed. If the frequency is found to
reduce to half of its original frequency when
the magnetic induction changes to $1.25 \times 10^{-5} \frac{w b}{m 2}$. Calculate the original magnetic induction.
A. $5 \times 10^{-5} \mathfrak{a}(w b)\left(m^{2}\right)$.
B. $10 \times 10^{-5} \mathfrak{a}(w b)\left(m^{2}\right)$.
C. $15 \times 10^{-5} \mathfrak{a}(w b)\left(m^{2}\right)$.
D. $120 \times x 10^{\wedge}(-5)$ fra($\left.w b\right)\left(m^{\wedge} 2\right)^{\wedge}$.

Answer:

27. At what distance, is the KE of a particle, performing S.H.M of amplitude 10 cms is three times its PE
A. 5 cms
B. 10 cms
C. 15 cms
D. 20 cms

Answer:

D Watch Video Solution
28. The maximum velocity of a particle performing a linear S.H.M is $0.16 \frac{\mathrm{~m}}{\mathrm{~s}}$, if its maximum acceleration is $0.64(m)\left(s^{2}\right)$ it period is
A. 1.55 sec
B. 1.57 sec
C. 1.59 sec
D. 1.60 sec
29. The maximum velocity of a particle performing a linear S.H.M is $0.16(m)(s)$, if its maximum acceleration is ${ }^{`} 0.64(\mathrm{~m})\left(\mathrm{s}^{\wedge} 2\right)$ its amplitude is
A. 0.02 m
B. 0.04 m
C. 0.06 m
D. 0.08 m

Answer:

- Watch Video Solution

30. A particle performs linear S.H.M. starting
from the mean position. Its amplitude is A and
time period is T. At the instance when its
speed is half the maximum speed, its
displacement x is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{A}{2}$
D. $\frac{)}{1}(\sqrt{2})$

Answer:

- Watch Video Solution

31. A body of mass 1 kg is performing linear S.H.M. its displacement $\times(\mathrm{cm})$ at t (second) is given by $\quad x=6 \sin \left(100 t+\frac{\pi}{4}\right)$.Maximum kinetic energy of the body is
A. 36 J
B. 9 J
C. 27 J
D. 18 J

Answer:

D Watch Video Solution
32. The length of second 's pendulum on the surface of earth is nearly 1 m . Its length on
the surface of moon should be [Given :
acceleration due to gravity (g) on moon is $\frac{1}{6} t h$ of that on the earth 's surface]
A. 'frac(1)(6) m
B. 6 m
C. $\frac{1}{36} m$
D. $\frac{1}{\sqrt{6}} m$

Answer:
(Watch Video Solution
33. Two identical springs of constant k are connected, first in series and then in parallel.

A matal block of mass m is suspended from
their combination. The ratio of their frequencies of vertical oscillations will be in a ratio
A. $1: 4$
B. 1:2
C. 2:1
D. $4: 1$

Answer:

D Watch Video Solution

34. The period of angular S.H.M when their unlike poles are joined together is
A. $2 \pi \sqrt{\frac{I}{\left(\mu_{1}+\mu_{2}\right) B_{H}}}$
B. $2 \pi \sqrt{\frac{I}{\left(\mu_{1}-\mu_{2}\right) B_{H}}}$
C. '2pi sqrtfrac (I)(mu_B)
D. $2 \pi \sqrt{\frac{\mu_{B}}{I}}$

Answer:

D Watch Video Solution

35. The differential equation
$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k(x)=0$ represent
A. Linear S.H.M
B. Angular S.H.M
C. Free Oscillation
D. Damped Oscillations

Answer:

D Watch Video Solution

36. A bar magnet, freely suspended in a magnetic induction H makes 20 oscillates per minute. When another magnet X is brought near it, the number of oscillations are found to be 10 per minute. What is the influencing induction of magnet X, in terms of H (where H
>X)
A. $X=f r a c(2)(3) H$
B. $X=f r a c(3)(2) H$
C. $X=f r a c(3)(4) H$
D. $X=f r a c(4)(3) H$

Answer:

D Watch Video Solution

37. A bar magnet of moment $2 A m^{2}$ and having
a moment of inertia $10^{-6} k g-m^{2}$ about a transverse axis passing through its centre is
performing S.H.M in a magnetic induction $0.8 \times 10^{-(5)} \frac{w b}{m^{2}}$. Calculate the period of the bar magnet.
A. 1.37 sec
B. 1.47 sec
C. 1.57 sec
D. 1.67 sec

Answer:

D Watch Video Solution
38. A simple pendulum of length 1 m has a mass of 10 gm and oscillates freely with an amplitude of 2 cm . The potential energy at the extreme point $\left(g=980 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)$ is
A. 192 ergs
B. 194 ergs
C. 196 ergs
D. 198 ergs

Answer:
39. The maximum velocity of a particle performing S.H.M is $6.28 \frac{\mathrm{~cm}}{\mathrm{~s}}$. If the length of the path is 8 cm . Calculate its period.
A. 2 sec
B. 4 sec
C. 6 sec
D. 8 sec

Answer:

40. The total energy of a particle of mass 200 gm. performing S.H.M is $10^{-3} J$, if the amplitude is 5 cm . The maximum velocity is
A. $10^{-1} \frac{m}{s}$
B. $10^{-2} \frac{m}{s}$
C. $10^{-3} \frac{m}{s}$
D. $10^{-4} \frac{m}{s}$

Answer:
41. The total energy of a particle of mass 200 gm. performing S.H.M is $10^{-3} \mathrm{~J}$, if the amplitude is 5 cm . The period is
A. 3.14 sec
B. 6.28 sec
C. 3 sec
D. 6 sec

- Watch Video Solution

42. When the displacement in S.H.M is one
third of the amplitude, the fraction of the potential energy to total energy is

> A. $\frac{7}{9}$
> B. $\frac{8}{9}$
> C. $\frac{9}{7}$
> D. $\frac{9}{8}$
43. When the displacement in S.H.M is one
third of the amplitude, the fraction of the potential energy to total energy is

> A. $\frac{1}{3}$
> B. $\frac{1}{6}$
> C. $\frac{1}{9}$
> D. $\frac{1}{5}$
44. A particle performs SHM of amplitude 10 cm . Its maximum velocity during oscillation is $100 \mathrm{~cm} / \mathrm{s}$. What is its displacement, when the velocity is $60 \mathrm{~cm} / \mathrm{s}$.
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm

Answer:

D Watch Video Solution

45. A particle is performing linear S.H.M of amplitude a. What fraction of the total energy
is kinetic, given the displacement is half the amplitude

$$
\begin{aligned}
& \text { A. } \frac{K E}{T E}=\frac{1}{2} \\
& \text { B. } \frac{K E}{T E}=\frac{1}{4} \\
& \text { C. } \frac{K E}{T E}=\frac{3}{4}
\end{aligned}
$$

D. $\frac{K E}{T E}=\frac{3}{5}$

Answer:

D Watch Video Solution

46. The period of a simple pendulum of infinite
length is

> A. $T=\sqrt{2 \pi} \frac{R}{g}$
> В. $T=\sqrt{2 \pi} \frac{2 R}{g}$
> С. $T=\sqrt{2 \pi} \frac{R}{2 g}$
D. $T=\infty$

Answer:

D Watch Video Solution

47. A particle moves such that its acceleration
a is given by $a=(-b) x$, Then, the period of oscillation is
A. $2 \pi \sqrt{b}$
B. $\frac{2 \pi}{\sqrt{b}}$
C. $2 \pi b$
D. $\sqrt{\frac{2 \pi}{b}}$

Answer:

D Watch Video Solution

48. The average speed of a particle in S.H.M of amplitude A and angular velocity (ω) is
A. zero
B. $\frac{A \omega}{\pi}$

C. $\frac{2 A \omega}{\pi}$
 D. $\frac{A \omega}{2}$

Answer:

D Watch Video Solution

49. The velocity of the particle performing simple harmonic motion, when it passes through the mean position is
A. zero

B. maximum

C. Infinity
D. minimum

Answer:

D Watch Video Solution
50. The acceleration of a particle executing S.H.M, when it is at its mean position is
A. zero

B. maximum

C. varies
D. Infinity

Answer:

- Watch Video Solution

51. A particle is executing a simple harmonic motion. Its maximum acceleration is \propto and maximum velocity is β Then, its time period of
A. $\frac{2 \pi \beta}{\alpha}$
B. $\frac{\beta^{2}}{\alpha^{2}}$
C. $\frac{\beta^{2}}{\alpha}$
D. $\frac{\alpha}{\beta}$

Answer:

D Watch Video Solution

52. If the oscillations are highly damped the amplitude of the oscillations
A. increases with time
B. decreases in time
C. first increases, then decreases
D. remains constant with time

Answer:

D Watch Video Solution
53. The average speed of a particle in S.H.M of amplitude A and angular velocity (ω) is
A. zero
B. $\frac{A \omega}{\pi}$
C. $\frac{2 A \omega}{\pi}$
D. $\frac{A \omega}{2}$

Answer:

- Watch Video Solution

54. Which one of the following is a simple harmonic motion?
A. wave moving through a fixed string at both ends.
B. Earth spinning about the axis.
C. Ball bouncing between two rigid vertical
walls.
D. Particle moving in a circle with uniform
speed.

Answer:

55. The period of a simple pendulum of infinite length is

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{R}{g}} \\
& \text { B. } T=2 \pi \sqrt{\frac{2 R}{g}} \\
& \text { C. } T=2 \pi \sqrt{\frac{R}{2 g}} \\
& \text { D. } T=\infty
\end{aligned}
$$

Answer:

56. A particle moves such that its acceleration
a is given by $a=(-b) x$, Then, the period of oscillation is
A. $2 \pi \sqrt{b}$
B. $\frac{2 \pi}{\sqrt{b}}$
C. $2 \pi b$
D. $\sqrt{2 \pi}(b)$

Answer:

57. Define linear simple harmonic motion.

D Watch Video Solution

58. State any two laws of simple pendulum.

- Watch Video Solution

59. Define frequency of S.H.M and write the formula.
60. What is meant by damped oscillation?

- Watch Video Solution

61. A simple pendulum of length 100 cm performs S.H.M. Find the restoring force acting on its bob of mass 50 g when the displacement from the mean position is 3 cm .

-
 Watch Video Solution

62. A body of mass 0.2 kg performs linear S.H.M. It experiences a restoring force of 0.2 N , when its displacement from the mean position is 4 cm . Determine force constant.

D Watch Video Solution

63. A body of mass 0.2 kg performs linear
S.H.M. It experiences a restoring force of 0.2 N ,
when its displacement from the mean position
is 4 cm . Determine period of S.H.M when the displacement from the mean position is 1 cm .

- Watch Video Solution

64. Two parallel S.H.M's are given by $x_{1}=20 \sin 8 \pi t \quad$ and $x_{2}=10 \sin \left[8 \pi t+\frac{\pi}{6}\right]$.

Find the resultant amplitude and phase.

- Watch Video Solution

65. A needle of a sewing machine moves along a path of amplitude 4 cm with frequency 5 Hz .

Find itsacceleration $\frac{1}{30}$ second after it crossed its mean position.

D Watch Video Solution

66. A particle performs SHM of amplitude 10
cm . Its maximum velocity during oscillation is
$100 \mathrm{~cm} / \mathrm{s}$. What is its displacement, when the
velocity is $60 \mathrm{~cm} / \mathrm{s}$.

D Watch Video Solution
67. The period of a simple pendulum is found to increase by 50%, when the length of the pendulum is increased by 0.6 m . Calculate the initial length and initial period of oscillation at a place where $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- Watch Video Solution

68. The speeds of a particle performing linear S.H.M are $8 \mathrm{~cm} / \mathrm{s}$ and $6 \mathrm{~cm} / \mathrm{s}$ at a respective
displacements of 6 cm and 8 cm . Find its period and amplitude.

D Watch Video Solution
69. Derive an expression for the time period of
a magnet vibrating in a uniform magnetic field.

D Watch Video Solution

