©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Rational Dynamics

13

1. Define : Uniform circular motion

o
 Watch Video Solution

2. State the characteristics of circular motion?

D Watch Video Solution

3. Define: Centre of mass

- Watch Video Solution

4. Define angular displacement and state its

unit?

5. Define angular velocity. State its unit.

D Watch Video Solution

6. Define angular acceleration. State its unit.

D Watch Video Solution

7. State right hand rule which gives direction
of angular displacement.

- Watch Video Solution

14

1. Define : Uniform circular motion

- Watch Video Solution

2. Explain centripetal acceleration.

- Watch Video Solution

3. State mathematical relation between linear

velocity (\bar{v}) and angular velocity $(\bar{\omega})$ for a particle moving along the circumference of circle in counterclockwise direction.

D Watch Video Solution

4. What is Non U.C.M ? What are the acceleration associated in Non U.C.M?
5. U.C.M is an accelerated motion. Justify this statement

D Watch Video Solution

6. A fan is rotating at 90 rmp . It is then switched OFF . It stops after 21 revolutions.

Calculate the time taken by it to stop assuming that the frictional torque is constant.
7. Somehow, an ant is stuck to the rim of a bicycle wheel of diameter 1 m . While the bicycle is on a central stand. The wheel is set into rotation and attains the frequency of $2 \frac{r e v}{s}$ in 10 seconds, with uniform angular acceleration. Calculate number of revolutions completed by the ant in these 10 seconds.

D Watch Video Solution

8. Somehow, an ant is stuck to the rim of a
bicycle wheel of diameter 1 m . While the
bicycle is on a central stand. The wheel is set
into rotation and attains the frequency of $2 \frac{r e v}{s}$ in 10 seconds, with uniform angular acceleration. Calculate number of revolutions completed by the ant in these 10 seconds.

D Watch Video Solution

15

1. Coefficient of static friction between a coin
and gramophone disc is 0.5 . Radius of the disc
is 8 cm . Initially the centre of the coin is $\pi c m$
cm away from the centre of the disc. At what minimum frequency will it start slipping from there? By what factor will the answer change if the coin is almost at the rim? $\left(U s e g=\pi^{2} m s^{-2}\right)$.

D Watch Video Solution

2. Explain centripetal force with suitable example
3. Explain centripetal force with suitable example

- Watch Video Solution

16

1. Explain inertial frame of reference and noninertial frame of reference.
2. Define and explain centrifugal force.

D Watch Video Solution

3. Explain applications of centrifugal force in our daily life?

- Watch Video Solution

4. Define and explain centrifugal force.
5. Do centripetal and centrifugal force constitute action- reaction pair? Explain.

- Watch Video Solution

6. A racing car completes 5 rounds of a circular track in 2 minutes. Find the radius of the track
if the car has uniform centripetal acceleration of $\pi^{2} m s^{-2}$
7. What is banking of roads? Why it is necessary?

(Watch Video Solution

8. What is banking of roads? Why it is necessary?

- Watch Video Solution

1. Derive the expression for maximum safe speed with which vehicle should move along a curved horizontal road.

- Watch Video Solution

2. Do we need a banked road for a two wheeler ? Explain.
3. While driving along an unbanked circular road, a two- wheeler ride has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression . Why such a leaning is not necessary for a four wheeler?

- Watch Video Solution

1. Derive an expression for minimum speed required by a vehicle driven in horizontal circles of a vertical cylindrical wall.

D Watch Video Solution

2. Derive an expression for minimum speed
required by a vehicle driven in horizontal
circles of a well of Death without loosing contact.
3. Derive an expression for most safe speed of
a vehicle on a curved banked road ignoring friction.

D Watch Video Solution

19

1. Derive an expression for most safe speed of
a vehicle on a curved banked road ignoring
friction.
2. Derive an expression for most safe speed of
a vehicle on a curved banked road ignoring

friction.

- Watch Video Solution

3. Show that the maximum safety speed
$\left(V_{\max }\right)=\sqrt{\frac{r g\left(\mu_{s}+\tan \theta\right)}{\left(1-\mu_{s} \tan \theta\right)}}$
4. Derive an expression for most safe speed of a vehicle on a curved banked road ignoring friction.

- Watch Video Solution

2. State the factors that affect the angle of banking.

- Watch Video Solution

3. The curved horizontal road is banked at an angle θ. What will happen to a vehicle moving along this road if : $\theta^{\prime}>\theta$. Where θ is the angle of banking for given road.

- Watch Video Solution

4. The curved horizontal road is banked at an angle θ. What will happen to a vehicle moving
along this road if : $\theta^{\prime}<\theta$. Where θ is the angle of banking for given road.

D Watch Video Solution
5. Define conical pendulum.

D Watch Video Solution

6. Deduce an expression for linear speed of bob of the conical pendulum.

- Watch Video Solution

7. For a conical pendulum, prove that
$\tan \theta=\frac{V^{2}}{r g}$.

- Watch Video Solution

1. Define period of conical pendulum and obtain an expression for its period.
2. Draw a neat labelled diagram of conical pendulum . State the expression for its periodic time ' T ' in terms of its length.

- Watch Video Solution

3. State the mathematical relation for frequency of a conical pendulum.

- Watch Video Solution

4. On what factors does the frequency of aconical pendulum depends? Is it independent of some factors?

D Watch Video Solution

22

1. Is there any limitation on semi - vertical angle (θ) in conical pendulum?
2. A motor cyclist is to undertake horizontal circles inside the cylindrical wall of a well of inner radius 4 m . Coefficient of static friction between the tyres and the wall is 0.4 . Calculate
the minimum speed and frequency necessary to perform this stunt.

- Watch Video Solution

3. A racing track of curvature 9.9 m is banked at $\tan ^{-1} 0.5$. coefficient of static friction
between the track and the tyres of a vehicle is
0.2. Determine the speed limits with 10% margin.

- Watch Video Solution

4. A merry-go-round usually consists of a central vertical pillar. At the top of it there are horizontal rods which can rotate about vertical axis. At the end of this horizontal rod
there is a vertical rod fitted like an elbow joint
. At lower end of each vertical rod, There is a
horse on which the rider can sit. As the merry-go-round is set into rotation, these vertical rods move away from the axis by making some angle with the vertical. The figure above shows vertical section of a merry go round in which the 'initially vertical ' rods are inclined with the vertical at 37°,during rotation. Calculate the frequency of revolution of merry go round.
$\left(U s e g=\pi^{2} m s^{-2}\right.$ and $\left.\sin 37^{\circ}=0.6\right)$

- Watch Video Solution

1. Semi - vertical angle of the conical section of
a funnel is 37°. There is a small ball kept inside the funnel. On rotating the funnel, the maximum speed that the ball can have in order to remain in the funnel is $2 \mathrm{~m} / \mathrm{s}$.

Calculate inner radius of the brim of the
funnel. Is there any limit upon the frequency of rotation ? How much is it ? Is it lower or upper limit? Given a logical reasoning. (Use g $=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ and $\left.\sin 37^{\circ}=0.6\right)^{\wedge}$

- Watch Video Solution

2. A coin kept on a horizontal rotating disc has its Centre at a distance of 0.1 m from the axis of the rotation of the disc. If the coefficient of friction between the coin and disc is 0.25 , find the angular speed of the disc at which the coin would be about is slip off.

- Watch Video Solution

3. A circular race course track has a radius of

500 m and is banked at 10°. The coefficient of static friction between the tyres of a vehicle and the road surface is 0.25 Compute: The maximum speed to avoid slipping.

- Watch Video Solution

4. A circular race course track has a radius of 500 m and is banked at 10°. The coefficient of static friction between the tyres of a vehicle
and the road surface is 0.25 Compute: The optimum speed to avoid wear and tear of the tyres.

D Watch Video Solution

24

1. A meter gauge railway track is to be banked
at a circular curve of a radius 450 m . What
should be the elevation of the outer rail above
the inner rail for an optimum speed at
$54 \mathrm{~km} / \mathrm{h}$, So that there is no side thrust on the outer rail.

D Watch Video Solution

2. A motor van weighing 4400 kg rounds a level curve of radius 200 m on unbanked road at 60 kmph . What should be the minimum
value of coefficient of friction to prevent skidding? At what angle the road should be banked for this velocity.
3. Part of a racing track is to be designed for a curvature of 72 m . We are not recommending the vehicles to drive faster than 216 kmph . With what angle should the road be tilted? By what height will its outer edge be, with respect to the inner edge if the track is 10 m wide?

- Watch Video Solution

4. The road in the question 45 above is constructed as per the requirement. The coefficient of static friction between the tyres of a vehicle on this road is 0.8 , will there be any lower speed limit?By how much can the upper speed limit exceed in this case?

- Watch Video Solution

25

1. During a stunt a cyclist (considered to be a particle is undertaking horizontal circles inside a cylindrical well of radius 6.05 m . If the necessary friction coefficient is 0.5 , how much minimum speed should the stunt artist maintain? Mass of the artist is 50 kg . If she / he increases the speed by 20% how much will the force of friction be? $\left(U s e g=10 m s^{2}\right)$

- Watch Video Solution

2. A motorcyclist (as a particle) is undergoing
vertical circles inside a sphere of death. The speed of the motorcycle varies between $6 m s^{-1}$ and $10 m s^{-1}$ Calculate diameter of the sphere of death. How much minimum value are possible for these two speed?

D Watch Video Solution

3. What is vertical circular motion? State its type?
4. Obtain expression for tension in the
uppermost position, mid way position and lowermost position for an object revolving in a vertical circle under gravity.

- Watch Video Solution

2. Using the energy conservation, derive the expression for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Also prove that the difference between the extreme tensions
(or normal forces) depends only upon the weight of the object.

D Watch Video Solution

1. Derive an expression for upper limit on the speed of a vehicle at the top of a convex bridge?

- Watch Video Solution

28

1. What is a rigid body? What is meant by axis of rotation of a rigid body?

D Watch Video Solution
2. A tiny stone of mass $20 g$ is tied to a practically massless, inextensible, flexible string and whirled along vertical circles. Speed of the stone is $8 m / s$ when the centripetal
force is exactly equal to the force due to the tension. Calculate minimum and maximum
kinetic energies of the stone during the entire
circle. Let $\theta=0^{0}$ be the angular position of
the string, when the stone is at the lowermost
position. Determine the angular position of the string when the force due to tension is
numerically equal to weight of the stone. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and Length string $=1.8 \mathrm{~m}$

D Watch Video Solution

29

1. Define moment of inertia.State its unit.State
the factors on which moment of inertia depends.

D Watch Video Solution

2. Explain the dependence of moment of inertia on the distribution of mass of the body.

D Watch Video Solution

3. Derive an expression for M.I. of a uniform

Disc.
4. Prove that the M.I. of a uniform Disc about an axis perpendicular to in plane and passing
through centre of mass is $\frac{1}{2} M R^{2}$

- Watch Video Solution

30

1. Derive an expression for Kinetic Energy (K) of
a rotating body with uniform angular velocity.
2. Derive an expression for Kinetic Energy (K) of a rotating body with uniform angular velocity.

D Watch Video Solution

3. Why is it useful to define radius of gyration (K)?
4. Define radius of gyration (K). Explain its physical significance.

D Watch Video Solution

5. What do you mean by radius of gyration of a body? State its unit. Also discuss the factors on which radius of gyration depends.

D Watch Video Solution

1. What do you mean by radius of gyration of a body? State its unit. Also discuss the factors on which radius of gyration depends.

D Watch Video Solution

2. A uniform disc and a hollow right circular
cone have the same formula for their M.I, when rotating about their central axis. Why is it so?
3. Show that Radius of gyration for a uniform disc is small as compared to Radius of gyration for a uniform ring, both of same mass M and same radius R.

- Watch Video Solution

32

1. A body starts rotating from rest. Due to a couple of 20 Nm , it competes 60 revolution in
one minute. Find the moment of inertia of the body.

D Watch Video Solution

2. A metallic ring of mass 1 kg has moment of inertia $1 \mathrm{kgm}^{2}$ when rotating about one of its
diameters. It is molten and remolded into a thin uniform disc of the same Radius. How much will its moment of inertia be, when rotated about its own axis.
3. Calculate the M.I. of a solid iron disc of
radius 10 cm and thickness 5 cm . (Density of $\left.\operatorname{iron}(\rho)=7800 \mathrm{kgm}^{-3}\right)$.

- Watch Video Solution

4. Define Torque. State its unit.
5. Obtain an expression relating the torque with angular acceleration for a rigid body.

D Watch Video Solution

6. Obtain an expression relating the torque with angular acceleration for a rigid body.

D Watch Video Solution

1. State the conditions under which the theorem of parallel axes and perpendicular axes are applicable. State the mathematical expression.

D Watch Video Solution

2. State and prove the principle / Theorem of parallel axes.
3. State and prove principle / theorem of perpendicular axes.

- Watch Video Solution

2. Deduce an expression for M.I. about an axis passing through one end and perpendicular to length of a thin uniform rod .
3. Prove that the M.I. of a uniform Disc about an axis perpendicular to in plane and passing through centre of mass is $\frac{1}{2} M R^{2}$

- Watch Video Solution

4. State an expression for M.I. of a thin uniform disc about an axis passing through its centre and perpendicular to its plane. Determine M.I.about: its diameter.
5. State an expression for M.I. of a thin uniform
disc about an axis passing through its centre and perpendicular to its plane. Determine M.I.about: A tangent in its plane.

D Watch Video Solution

35

1. State an expression for M.I. of a uniform
solid sphere about an axis of rotation
coinciding with its diameter. Also find M.I of solid sphere about its tangent.

D Watch Video Solution

2. A fly wheel is a mechanical device specifically designed to efficiently store rotational energy.

For a particular machine it is in the form of a uniform 20 kg disc of diameters 50 cm , able to rotate about its own axis. Calculate its kinetic energy when rotating at 1200 rpm. Use n
$=10$. Calculate its moment of inertia, in case it is rotated about a tangent in its plane.

D Watch Video Solution

3. A solid sphere of diameter 25 cm and mass

25 kg rotates about an axis through its centre.

Calculate its moment of inertia, if its angular velocity changes from $2 r a d s^{-1}$ to $12 \mathrm{rads}^{-1}$ in 5 seconds. Also calculate the torque applied.

D Watch Video Solution

1. A solid sphere has a radius R. If the radius

 of gyration of this sphere about its diameter is$\sqrt{2 / 5} R$, show that the radius of gyration about the tangential axis of rotation is $\sqrt{7 / 5}$ R

D Watch Video Solution

2. The radius of gyration a body about an axis at a distance of 6 cm from its centre of mass is

10 cm . Find its radius of gyration about a parallel axis through the centre of mass?

D Watch Video Solution

3. A big dumb-bell is prepared by using a uniform rod of mass 60 g and length 20 cm .

Two identical solid spheres of mass 50 g and
radius 10 cm each are at the two ends of the rod. Calculate moment of inertia of the dumbbell when rotated about an axis passing
through its centre and perpendicular to the length.

- Watch Video Solution

37

1. Define angular momentum. State its unit.

- Watch Video Solution

2. Derive an expression that relates angular momentum with the angular velocity of a rigid body.

D Watch Video Solution

3. Derive an expression that relates angular momentum with the angular velocity of a rigid body.
4. State and explain the principle of conservation of angular momentum. Use a suitable illustration. Do we use it in our daily life ? When?

- Watch Video Solution

38

1. Prove principle of conservation of angular momentum. Explain it with example.
2. A body rotating at a steady rate, does torque acts on the body?

D Watch Video Solution

3. A spherical water balloon is revolving at 60 rpm. In the course of time, 48.8% of its water leaks out. With what frequency will the remaining balloon revolve now? Neglect all non-conservative forces.

- Watch Video Solution

4. A ceiling fan having moment of inertia
$2 \mathrm{kgm}^{2}$ attains its maximum frequency of 60 rpm in 2π seconds. Calculate its power rating.

- Watch Video Solution

1. The angular momentum of a body changes
by $80 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$ when its angular velocity changes from $20 \mathrm{rads}^{-1}$ to $40 \mathrm{rads}^{-1}$. Find the change in K.E of rotation.

D Watch Video Solution

2. The kinetic energy of rotation of a body about a given axis is 157 J . Its angular momentum about the same axis is
$12.5 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$.Find the frequency of rotation
of the body and moment of inertia about the

given axis?

D Watch Video Solution

3. A ballet dancer spins about a vertical axis at
$2.5 \pi r a d s^{-1}$ with his arms outstretched. With
the arms folded, the M.I. about the same axis
of rotation changes by 25%.Calculate the new speed of rotation in r.p.m.

D Watch Video Solution

1. Two wheels of moment of inertia $4 \mathrm{kgm}^{2}$ rotate side by side of the rate of 120 r.p.m. and

240 r.p.m. respectively in the opposite direction. If now both the wheels are coupled by means of weightless shaft so that both the wheels now rotate with a common angular speed, find the new speed of rotation.

D Watch Video Solution

2. A flywheel used to prepare earthenware pots is set into rotation at 100 rpm . It is in the form of a disc of mass 10 kg and radius 0.4 m .

A lump of clay (to be taken equivalent to a particle) of mass 1.6 kg falls on it and adheres to it at a certain distance X from the centre.

Calculate X if the wheel now rotates at 80 rpm.

D Watch Video Solution

3. A homogeneous rod $X Y$ of length ' L ' and mass ' M ' pivoted at the centre C such that it can rotate freely in vertical plane. Initially the rod is in the horizontal position .A blob of wax of same mass M as that of the rod falls
vertically with the speed 'V' and the sticks to
the rod midway between points ' C ' and ' Y '. If the rod rotates with angular speed ω what will be angular speed in terms of V and L ?
4. What will be the duration of the day, If the earth suddenly shrinks to $\frac{1}{64}$ of its original volume, mass remains uncharged.

D Watch Video Solution

5. Define Rolling motion of a rigid body.

- Watch Video Solution

6. State mathematical expression for K.E of rolling body and state factors affecting K.E of
rolling body.

D Watch Video Solution

7. Deduce an expression for kinetic energy when a body is rolling on a plane surface without slipping.

D Watch Video Solution

42

1. Derive an expression for the kinetic energy
when a rigid body is rolling on a horizontal
surface without slipping. Hence, find the kinetic energy of a solid sphere.

D Watch Video Solution

2. Obtain an expression for total K.E. of rolling
body in the from $\frac{1}{2} M V^{2}\left[1+\frac{K^{2}}{R^{2}}\right]$
3. Discuss the interlink between translational, rotational and total kinectic energies of a rigid object that rolls without slipping.

- Watch Video Solution

4. Derive an expression for linear speed (V) and linear acceleration (a) of a rigid uniform ring, uniform circular disc and uniform solid sphere rolling down the inclined plane without slipping.
5. Derive an expression for linear speed (V) and linear acceleration (a) of a rigid uniform ring, uniform circular disc and uniform solid sphere rolling down the inclined plane without slipping.

- Watch Video Solution

43

1. Is it possible to distinguish between a raw egg and hard boiled egg by spinning each one on a table with same torque? Justify your answer.

- Watch Video Solution

44

1. A solid cylinder rolls down on inclined plane.

Its mass is 2 kg and radius 0.1 m . If the height of
the inclined plane is 4 m , what is its rotational
K.E. when it reaches foot of the plane? Take
M.I. of solid cylinder about its axis $=\frac{M r^{2}}{2}$.

- Watch Video Solution

2. A solid sphere rolls up a plane inclined at an
angle of 45°. If the linear velocity of its centre of mass of the bottom of the plane is $5 m s^{-1}$, find how far the sphere travels up the plane.

D Watch Video Solution

3. Starting from rest, an object rolls down along an inclined that rises by 3 in every

5(along it) . The object gains a speed of
$\sqrt{10} \frac{m}{s}$ as it travel a distance of $\frac{5}{3} m$ along the incline. What can be the possible shape / s of the object?

- Watch Video Solution

4. Distinguish between: What is the difference between U.C.M. and Non-UCM? Give examples

45

1. Distinguish between:Centripetal Force and

Centrifugal Force.

- Watch Video Solution

2. Distinguish between :Inertial frame of reference \& Non - Inertial frame of reference.
3. A motor cyclist rides in a vertical circle in a hollow sphere of 3 m . Find the minimum speed required so that he does not lose contact while the sphere at the highest point.

D Watch Video Solution

46

1. A simple pendulum is suspended from the roof of a railway carriage. What angle does the string make with the vertical if the carriage travels at a constant speed of $72 \mathrm{~km} / \mathrm{h}$ around
a circular track of radius 100m? Take $g=9.8 m / s^{2}$.

D Watch Video Solution

2. Find the angle of banking of a railway track of radius of curvature 250 m,if the optimum
velocity of the train is $90 \frac{\mathrm{~km}}{\mathrm{~h}}$. Also find the elevation of the outer rail over the inner rail if the two tracks are 1.6m apart

D Watch Video Solution

3. Find the maximum speed of a car which can
be safely driven along a curve of radius 100 m
and coefficient of friction between tyres and road is 0.2

D Watch Video Solution

4. A conical pendulum has length 100 cm and
the angle made by the string with the vertical
is 10°.The mass of the bob is 200 g , find The centripetal force on the bob

- Watch Video Solution

5. A conical pendulum has length 100 cm and
the angle made by the string with the vertical
is 10°. The mass of the bob is 200 g , find
frequency of circular motion of the bob.
6. A body of mass 4 kg is rotating in a vertical circle at the end of a string of length 0.6 m .

Calculate the difference of K.E. at the top and the bottom of the circle

D Watch Video Solution

7. A gramophone twin-table rotating at an angular velocity $3 \frac{r a d}{s}$, stops after one revolution. Find the angular retardation.

- Watch Video Solution

8. A 1 kg stone tied at the end of 1 m long string is whirled in a vertical circle with constant speed of $5 \mathrm{~m} / \mathrm{s}$. If the tension in string is 20 N , then find the position of stone.

D Watch Video Solution

9. An aircraft executes a horizontal loop at a speed of $720 \mathrm{~km} / \mathrm{h}$ with its wings banked at
15°. What is the radius of the loop.

- Watch Video Solution

10. Show that the minimum angular speed
necessary to keep a rider $\omega=\sqrt{\frac{g}{\mu_{s} R}}$.

D Watch Video Solution

11. Calculate the optimum speed and maximum speed of a four wheeler travelling along a curve track of radius 80 m . If the road is
banked at an angle of $21^{\circ} 48^{\prime}$ and the coefficient of friction between the tyres and the road is 0.5.

D Watch Video Solution

12. A solid sphere of radius 20 cm and mass 25
kg rotates about an axis through its centre.

Calculate its moment of inertia. If its angular velocity the torque applied changes from
$2 \mathrm{rads}^{-1}$ to $12 \omega \mathrm{rads}{ }^{-1}$ in 5 sec , calculate the torque applied.

Watch Video Solution

13. A ballet dancer spins about a vertical axis
at 90 rpm with arms outstretched. With her arms folded, the M.I. about the axis of rotation decreases to 75%.Calculate the new rate of revolutions

- Watch Video Solution

14. The M.I. of a disc about an axis passing through its centre and perpendicular to its
plane is $10 \mathrm{kgm}^{2}$, Determine its M.I. about a parallel axis: tangential to its rim and

D Watch Video Solution

15. The M.I. of a disc about an axis passing
through its centre and perpendicular to its
plane is $10 \mathrm{kgm}^{2}$,Determine its M.I. about a
parallel axis: Passing through a point midway between the centre and the rim.
16. Radius of gyration of a disc of mass 5 kg , about a transverse axis passing through its centre is 14.14 cm . Find radius of gyration about its diameter and, hence, calculate M.I. about the diameter

- Watch Video Solution

17. Three particles, each of mass 0.5 kg , are situated at the comers of an equilateral triangle of side 0.4 m . Find the M.I. and radius of gyration of the system about an axis
passing through the centroid of the triangle and perpendicular to its plane

D Watch Video Solution

18. Show that the ratio of radius of gyration of
a thin ring about a tangential axis in its plane
to its radius of gyration about an axis passing
through its Centre and perpendicular to its plane is 1.225
19. A person stands on a uniformly rotating turn table with outstretched arms holding two identical weights. The moment of inertia of the system is $60 \mathrm{kgm}^{2}$. When he brings the arms close to his body, the M.I. of inertia reduces to $58 \mathrm{kgm}^{2}$. The angular speed of the system now becomes $3 \mathrm{rads}^{-1}$. Find the initial angular speed and the final K.E.

D Watch Video Solution

20. A thin uniform rod 2 m long has a mass of
0.6 kg . Find its moment of inertia and radius of gyration about an axis perpendicular to its length and passing through: its centre

D Watch Video Solution

21. A thin uniform rod 2 m long has a mass of
0.6 kg . Find its moment of inertia and radius of gyration about an axis perpendicular to its length and passing through: one end
22. A solid cylinder at rest at top of an inclined
plane of height 2.7 m rolls down without slipping. If the same cylinder has to slide down
a frictionless inclined plane and acquires the
same velocity as that acquired by centre of mass of rolling cylinder at the bottom of the incline, what should be the height of the inclined plane?

D Watch Video Solution
23. Angular acceleration of a body of mass 50
kg under the action of a torque of magnitude
500 Nm is $25 \mathrm{rads}^{2}$. Find the radius of gyration of the body about its axis of rotation.

D Watch Video Solution

24. Four particles of masses $0.2 \mathrm{~kg}, 0.3 \mathrm{~kg}, 0.4$
kg and 0.5 kg , respectively are kept at the
comers A, B, C and D of square $A B C D$ of side

1m. Find the M.I. about an axis passing
through the point A and perpendicular to the plane of the square

D Watch Video Solution

1. Moment of inertia of a disc about the axis of
rotation is $10 \mathrm{kgm}^{2}$. A constant torque of 50

Nm acts on it. Find :Angular acceleration .

D Watch Video Solution

2. Moment of inertia of a disc about the axis of rotation is $10 \mathrm{kgm}^{2}$. A constant torque of 50

Nm acts on it. Find :Angular velocity at the end of 10 s, if the disc is initially at rest.

- Watch Video Solution

3. A torque of 1500 Nm acting on a body produces an angular acceleration of 13.2 rads $^{-2}$. Find M.I of the body.
4. The moment if inertia of the earth about its axis of rotation is $9.83 \times 10^{37} \mathrm{kgm}^{2}$ and if its angular velocity is $7.3 \times 10^{-5} \mathrm{rads}^{-1}$.

Calculate Kinetic Energy of rotation.

D Watch Video Solution

5. The moment if inertia of the earth about its axis of rotation is $9.83 \times 10^{37} \mathrm{kgm}^{2}$ and if its angular velocity is $7.3 \times 10^{-5} \mathrm{rads}^{-1}$.

Calculate Radius of gyration
6. Choose the correct answer from option given and write it with its corresponding alphabet: In ten minutes, the angular displacement of the minute hand of a wrist watch is
A. $\frac{\pi}{90} \mathrm{rad}$
B. $\frac{\pi}{30} \mathrm{rad}$
C. $\frac{\pi}{3} \mathrm{rad}$
D. $2 \frac{\pi}{3} r a d$

Answer:

D Watch Video Solution

7. The angular speed of a fly-wheel making 120

revolution per minute is
A. $\pi\left(\frac{r a d}{s}\right)$
B. $2 \pi\left(\frac{r a d}{s}\right)$
C. $4 \pi\left(\frac{r a d}{s}\right)$
D. $4 \pi^{2}\left(\frac{r a d}{s}\right)$

Answer:

D Watch Video Solution

8. To stimulate the acceleration of large rockets astronauts are spun at the end of a long rotating beam of radius 9.8 m . Angular velocity, required to generate a centripetal acceleration 8 times the acceleration due to gravity, is.
A. $2\left(\frac{r a d}{s}\right)$
B. $2 \sqrt{2}\left(\frac{r a d}{s}\right)$
C. $\sqrt{2}\left(\frac{r a d}{s}\right)$
D. $8\left(\frac{r a d}{s}\right)$

Answer:

D Watch Video Solution

9. Define and explain centrifugal force.
A. it is in the accelerated frame of reference
B. it is opposite to that of centripetal force
C. it obeys newton's law of motion
D. it effect is not observed.

Answer:

- Watch Video Solution

10. A particle moves with a constant angular velocity in circular path of certain radius and is acted upon by a certain force F . If the angular velocity is will be doubled, keeping the radius same, the new force
A. F/4
B. 4 F
C. F/2
D. 2 F

- Watch Video Solution

11. When the angular velocity of a unit uniformly rotating body becomes 3 times its original value, the resultant of forces applied to it increase by 60 N . Find the acceleration of the body $\mathrm{m}=3 \mathrm{~kg}$.
A. $2.5 m s^{-2}, 7.5 m s^{-2}$
B. $7.5 m s^{-2}, 22.5 m s^{-2}$
C. $5 m s^{-2}, 45 m s^{-2}$

$$
\text { D. } 2.5 m s^{-2}, 22.5 m s^{-2}
$$

Answer:

D Watch Video Solution

12. A circular road of radius 1000 m has
banking angle 45°. If the coefficient of friction
between tyres and road is 0.5 , the maximum
safe speed of a car having mass 2000 kg will be
A. $172 \mathrm{~m} / \mathrm{s}$
B. $124 \mathrm{~m} / \mathrm{s}$
C. $99 \mathrm{~m} / \mathrm{s}$
D. $86 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

13. A road is banked at an angle of 0.01 radian.

If the radius of the road is 80 m , then safe speed for the driver will be: $\left(g=10 N k g^{-1}\right)$
A. $2.8 \mathrm{~m} / \mathrm{s}$
B. $3.8 \mathrm{~m} / \mathrm{s}$
C. $4.8 \mathrm{~m} / \mathrm{s}$
D. $5.8 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

14. When seen from below, the blades of a ceiling fan are seen to be revolving anticlockwise and their speed is
decreasing.Select correct statement about the directions of its angular velocity and angular acceleration.
A. Angular velocity upwards, angular accleration downwards
B. Angular velocity downwards, angular acceleration upwards
C. Both, angular velocity and angular acceleration, upwards
D. Both, angular velocity and angular acceleration, downwards

Answer:

- Watch Video Solution

15. Find the length of a simple pendulum
whose time period is same as at of a conical of
length L and an angle 0 with vertical.
A. $\frac{L}{\cos \theta}$
B. L
C. $L \sin \theta$
D. $L \cos \theta$

Answer:

D Watch Video Solution

16. The radius of orbit of the bob of a conical pendulum whose length is $\sqrt{2} \mathrm{~m}$ and time period of 2 second ($g=9.8 m s^{-2}$)
A. 1 m
B. $\frac{1}{\sqrt{2}} m$
C. $\sqrt{3} m$
D. $\sqrt{2} m$

Answer:

- Watch Video Solution

48

1. The minimum horizontal velocity that must
be imparted to a small bob that is suspended
by a string of length L, such that it reaches the height of suspension is :
A. $\sqrt{2 g l}$
B. $\sqrt{g l}$
C. $\sqrt{5 g l}$
D. $18 g l$

Answer:

2. A particle of mass 1 kg , tied to a 1.2 m long string is whirled to perform vertical circular motion, under gravity. Minimum speed of a particle is $5 m / s$. Consider following statements. (P) Maximum speed must be $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$. (Q) Difference between maximum and minimum tensions along the string is 60
N. Which of the following is true?
A. Only the statement P is correct
B. Only the statement Q is correct
C. Both the statements are correct.

D. Both the statements are incorrect

Answer:

D Watch Video Solution

3. A body of mass 1 kg is moving in a vertical circular path of radius 1 m . The difference between kinetic energies at its highest and lowest position is
A. 20 J
B. 10 J
C. $4 \sqrt{5} J$
D. $10(\sqrt{5}-1) J$

Answer:

- Watch Video Solution

4. When a car crosses a convex bridge, the bridge exerts a force on it. It is given by

> A. $F=m g+\frac{m v^{2}}{r}$
> B. $F=\frac{m v^{2}}{r}$
> C. $F=m g-\frac{m v^{2}}{r}$
> D. $F=m g+\frac{m v^{2}}{r}$

Answer:

D Watch Video Solution

5. A circular road is banked at an angle θ for an optimum speed V . The vertical component of the normal reaction on a car driven at the
speed V on the road is equal to (in usual notations)
A. Mg
B. $M g-\mu_{s} N \sin \theta$
C. $M g+\mu_{s} N \sin \theta$
D. $N\left(1-\mu_{s} N \sin \theta\right)$

Answer:

D Watch Video Solution
6. In a conical pendulum, the axial height of
the right circular cone described by the string
is equal to half the radius of the circular path of its bob. The tension in the string is

$$
\begin{aligned}
& \text { A. } \frac{m g}{\sqrt{5}} \\
& \text { B. } \frac{m g}{\sqrt{2}} \\
& \text { C. } \sqrt{5} m g \\
& \text { D. } \sqrt{2} m g
\end{aligned}
$$

Answer:

7. A pendulum bob has a speed of $3 \mathrm{~m} / \mathrm{s}$ at its
lowest is position. The pendulum is 0.5 m long.
The speed of the bob, when string makes an angle of 60° to the vertical is
A. $2 \mathrm{~m} / \mathrm{s}$
B. $1 / 2 \mathrm{~m} / \mathrm{s}$
C. $1 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

8. In a conical pendulam, when the bob moves
in a horizontal circle of radius r with uniform
speed v, the string of length L describes a cone of semivertical angle θ. The tension in the string is given by

$$
\begin{aligned}
& \text { А. } T=\frac{m g l}{L^{2}-r^{2}} \\
& \text { В. } T=\frac{L^{2}-r^{2}}{m g l}
\end{aligned}
$$

> C. $T=\frac{m g l}{L^{2}-r^{2}}$
> D. $T=\frac{m g l}{\left(L^{2}-r^{2}\right)^{2}}$

Answer:

D Watch Video Solution

9. simple pendulam oscillates in a vertical plane. When it passes through the mean postion, the tension in the string is 3 times the weight of the pendulam bob. What is the
maximum displacement of the pendulam of the string with respect to the vertical?
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

D Watch Video Solution
10. A simple pendulum is of length /. It is
displaced so that its length becomes
horizontal and then released, then its velocity
at bottom will be:
A. $\sqrt{g l}$
B. $\sqrt{6 g l}$
C. $\sqrt{5 g l}$
D. $\sqrt{2 g l}$

Answer:

11. A bucket full of water is rotated in vertical circle of radius 20 m . The minimum speed that
the bucket should have so that water will not
fall when it is at the highest point is:
A. $\sqrt{98} \frac{m}{s}$
B. $\sqrt{9.8} \frac{m}{s}$
C. $14 \mathrm{~m} / \mathrm{s}$
D. $1.4 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

12. A body of mass m hangs at one end of a string of length Z, the other end of which is
fixed. It is given a horizontal velocity so that the string would just become slack, when it makes an angle of 60° with the upward drawn
vertical. The tension in string at this at this position is
A. 4.5 mg
B. 2 mg
C. 3 mg
D. $\sqrt{m g}$
A. 4.5 mg
B. mg
C. 3 mg
D. $\sqrt{m g}$

Answer:

- Watch Video Solution

13. A bucket full of water is rotated in a vertical circle of radius R. If the water does not spill out, then the speed of the bucket at the topmost point will be
A. $\sqrt{R r}$
B. $\sqrt{5 g R}$
C. $\sqrt{2 g R}$
D. $\sqrt{\left(\frac{R}{g}\right)}$

Answer:
14. Select correct statement about the formula

9expression) of moment of inertia (M.I) in terms of mass M of the object and some of its distance parameter/s, suchy as R,L, etc.
A. Different objects must have different expressions for their MI.
B. When rotating, about their central axis,
a disc have the same expression for the
M.I.
C. Expression for the M.I. for a parallelepiped rotating about the trasverse axis passing through its centre includes its depth.
D. Expression for M.I. of a rod and that of a
plane sheet is the same about a transverse axis.

Answer:

D Watch Video Solution

1. In a certain unit, the radius of gyration of a uniform disc about its central and transverse axis is $\sqrt{2.5}$. Its radius of gyration about a tangent in its plane (in the same unit) must be
A. $\sqrt{5}$
B. 2.5
C. $2 \sqrt{2.5}$
D. $\sqrt{12.5}$

Answer:

D Watch Video Solution

2. Consider following cases:(P) A planet revolving in an elliptical orbit. (Q)A planet revolving in a circular orbit. Principle of conservation of angular momentum comes in force in which of these:
A. Only for (P)
B. Only for (Q)

C. For both, (P) and (Q)

D. Neither for (P), nor for (Q)

Answer:

D Watch Video Solution

3. A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is:
A. 1:1:2
B. $1: 2: 3$
C. $1: 1: 1$
D. 2:1:3

Answer:

D Watch Video Solution

4. A body of mass M is rotating about an axis
with angular velocity ω. If k is radius of
gyration of the body about the given axis, its angular momentum is
A. $\frac{1}{2} M V^{2} \omega$
B. $M K \omega^{2}$
C. $M K \omega$
D. $M K^{2} \omega$

Answer:
(Watch Video Solution

5．The moment of inertia of a thin uniform rod of mass M about an axis passing through its centre and perpendicular to its length is given to be I_{0} ．The moment of inertia of the same road about an axis passing through one of it sends and perpendicular to its length is：

A．$\frac{1}{2} I$ 。
B． $3 I$ 。

C． $5 I$ 。

D． $4 I$ 。

Answer:

- Watch Video Solution

6. With the increase in temperature, moment of inertia of a solid sphere about a diameter:
A. decreases
B. increases
C. does not change
D. cannot be predicted

Answer:

- Watch Video Solution

7. The sum of moments of masses of all the particles in a system about the centre of mass is always
A. zero
B. maximum
C. infinite
D. minimum

Answer:

- Watch Video Solution

8. If a thin wire of length L and mass m is bent
in the form of a semi-circle, then its M.I. about an axis joining its free ends will be
A. $M L^{2}$
B. Zero
C. $\frac{M L^{2}}{P} I^{2}$
D. $\frac{M L^{2}}{2 P I^{2}}$
A. $M L^{2}$
B. Zero
C. $\frac{M L^{2}}{P} I^{2}$
D. $\frac{M L^{2}}{2 P I^{2}}$

Answer:

D Watch Video Solution

9. A loop of mass M and Radius R is rolling on a smooth horizontal surface with speed 'V'. Its total kinetic energy
A. $\frac{1}{2} m V^{2}$
B. $\frac{3}{2} m V^{2}$
C. $M v^{2}$
D. $\frac{1}{2} M R^{2} \omega^{2}$

Answer:

D Watch Video Solution

10. A sphere of moment of inertia I and mass ' m ' rolls down on an inclined plane without slipping. Its K.E. of rolling is.
A. $I \omega+M v$
B. $0.5 m V^{2}$
C. $0.5 I \omega^{2}$
D. $0.5 I \omega^{2}+0.5 m V^{2}$

Answer:

- Watch Video Solution

11. A body of mass 'm' and radius of gyration ' K ' is rotating with angular acceleration α. Then, the torque acting on the body is:
A. $\frac{1}{2} m K^{2} \alpha$
B. $\frac{1}{4} m K^{2} \alpha$
C. $2 m k \alpha$
D. $M k^{2} \alpha$

Answer:

D Watch Video Solution

12. The radius of a wheel is R and its radius of gyration about an axis passing through its centre and perpendicular to its plane is K . If
the wheel is rolling without slipping the ratio of its rotational kinetic energy to its translational kinetic energy is

$$
\begin{aligned}
& \text { A. } \frac{K^{2}}{R^{2}} \\
& \text { B. } \frac{R^{2}}{K^{2}} \\
& \text { C. } \frac{K^{2}}{R^{2}+K^{2}} \\
& \text { D. } \frac{R^{2}}{R^{2}+K^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

13. A rod of mass M and length l is suspended freely from its end and it can oscillate in the vertical plane about the point of suspension. It is pulled to one side and then released. It passes through the equilibrium position with angular speed ω. What is the kinetic energy while passing through the mean position?

$$
\begin{aligned}
& \text { A. } \frac{M l^{2} \omega^{2}}{2} \\
& \text { B. } \frac{M l^{2} \omega^{2}}{6}
\end{aligned}
$$

C. $\frac{M l^{2} \omega^{2}}{4}$
D. $\frac{M l^{2} \omega^{2}}{8}$

Answer:

- Watch Video Solution

50

1. A person is standing on a rotating wheel. If
he sits on the wheel, then the angular momentum of the system will
A. increase
B. decrease

C. remains same

D. double

Answer:

D Watch Video Solution

2. A constant torque acting on a uniform circular wheel changes its angular momentum
from A to 4 A in 4 second, then the magnitude of the torque is
A. 0.75 A
B. 4 A
C. A
D. 12A

Answer:

D Watch Video Solution

3. M.I of a thin uniform rod about the axis passing through its centre and perpendicular
to its length is $\frac{M L}{12}$. The rod is cut transversely into two halves, which are then riveted end to end M.I. of the composite rod about the axis passing through its centre and perpendicular to its length will be:

$$
\begin{aligned}
& \text { A. } \frac{M L^{2}}{3} \\
& \text { B. } \frac{M L^{2}}{12} \\
& \text { C. } \frac{M L^{2}}{48} \\
& \text { D. } \frac{M L^{2}}{6}
\end{aligned}
$$

4. The radius of disc is 2 m , the radius of gyration of disc about an axis passing through its diameter is
A. 2 m
B. 2 cm
C. 1 m
D. 0.2 m

- Watch Video Solution

5. A coin is placed on a gramophone record rotating at a speed of 45 rpm , it flies away when the rotational speed is 50 rpm . If two such coins are placed one over the other on
the same record both of then will fly away when rotational speed is
A. 10rpm
B. 25 rpm
C. 12.5rpm

D. 50rpm

Answer:

D Watch Video Solution

6. A fly wheel revolves at $100 \mathrm{rev} / \mathrm{min}$, a torque is applied to the flywheel for 10s. If the torque increases the speed to $200 \mathrm{rev} / \mathrm{min}$, then the angular acceleration of the fly wheel will be

$$
\text { A. } \frac{\pi}{6} r a d s^{-2}
$$

$$
\begin{aligned}
& \text { B. } \frac{\pi}{5} r a d s^{-2} \\
& \text { C. } \frac{\pi}{3} r a d s^{-2} \\
& \text { D. } \frac{\pi}{3} r a d^{-2}
\end{aligned}
$$

Answer:

D Watch Video Solution

7. The angular momentum \bar{L}, the linear momentum \bar{P} and position vector \bar{r} are related as:
A. $\bar{L}=\bar{r} \times \bar{p}$
B. $L=\frac{p}{r}$
C. $\bar{L}=\bar{p} \times \bar{r}$
D. $\bar{L}=\bar{p} \cdot \bar{r}$

Answer:

D Watch Video Solution

8. A disc of moment of inertia $\frac{9.8}{\pi^{2}} \mathrm{kgm}^{2}$ is rotating at 600 r.p.m. If the frequency of rotation changes from 600 r.p.m. to 300 r.p.m.,
then what is the work done?
A. 1470 J
B. 1452J
C. 1567J
D. 1632J

D Watch Video Solution
9. By keeping moment of inertia of a body constant, if we double the time period, then angular momentum of body
A. remains constant

B. becomes half

C. Doubles
D. Quadruples
A.
A. remains constant
B. becomes half
C. Doubles
D. Quadruples

Answer:

D Watch Video Solution
10. Calculate M.I. of a thin uniform ring about an axis tangent to the ring and in a plane of the ring, if its M.I. about an axis passing through the centre and perpendicular to plane is 4 kgm 2
A. $3 \mathrm{kgm}^{2}$
B. $6 \mathrm{kgm}^{2}$
C. $9 \mathrm{kgm}^{2}$
D. $12 \mathrm{kgm}^{2}$
A. $0.25 \mathrm{kgm}^{2}$
B. $0.5 \mathrm{kgm}^{2}$
C. $2 \mathrm{kgm}^{2}$
D. $1 \mathrm{kgm}^{2}$

Answer:

- Watch Video Solution

11. A uniform disc of mass 2 kg is rotated about an axis perpendicular to the plane of the disc. If radius gyration is 50 cm , then the M.I. of the disc about same axis is
A. $\frac{A L^{3} D W^{2}}{12}$
B. $\frac{A L^{3} D W^{2}}{24}$
C. $\frac{A L^{2} D W^{2}}{6}$
D. $\frac{A L^{3} D W^{2}}{48}$

Answer:

- Watch Video Solution

51

1. Select and write the correct answer choosing the correct option :if the angular momentum of a body increases by 50%,its kinetic energy of rotation increases by:
A. 0.5
B. 0.25
C. 1.25
D. 1

Answer:

2. If L is the angular momentum and I is the moment of inertia of a rotating body, then $L^{2} / 2 I$ represents its:
A. Rotational P.E
B. Total Energy
C. Rotational K.E.
D. Translational K.E.
3. A body of mass 0.1 kg tied to a string of length 5 m is revolved in a vertical circle such that the maximum tension in the string is 9 N .

The minimum tension in the string is
A. ON
B. 3 N
C. 4 N
D. 6 N
A. ON
B. 3 N
C. 4 N
D. 6 N

Answer:

D Watch Video Solution

4. The maximum speed at which a cyclist can
ride on a curved road of radius 20 m when inclined at angle of 45° with horizontal is....

Given, g=9.8 ms -2 .
A. $10.74 \mathrm{~m} / \mathrm{s}$

B. $12 \mathrm{~m} / \mathrm{s}$

C. $13 \mathrm{~m} / \mathrm{s}$
D. $14 \mathrm{~m} / \mathrm{s}$
A. $10.74 \mathrm{~m} / \mathrm{s}$
B. $12 \mathrm{~m} / \mathrm{s}$
C. $13 \mathrm{~m} / \mathrm{s}$
D. $14 \mathrm{~m} / \mathrm{s}$

Answer:

5. State characteristics of circular motion

D Watch Video Solution

6. State Theorem of parallel Axes

D Watch Video Solution

7. State the Law of conservation of momentum

 and derive the formula.8. A spherical water balloon is revolving at 60 rpm. In the course of time, 48.8% of its water leaks out. With what frequency will the remaining balloon revolve now? Neglect all non-conservative forces.

- Watch Video Solution

9. A racing track of curvature $9.9 m$ is banked at $\tan ^{-1} 0.5$. coefficient of static friction
between the track and the tyres of a vehicle is
0.2 . Determine the minimum and maximum speed of the vehicle.

- Watch Video Solution

10. For a rolling hollow sphere find the relation, Translational K.E.: Rotational K.E.:

Total K.E. Also find what percentage of total is translational and rotational

- Watch Video Solution

11. Distinguish between centripetal and centrifugal force.

D Watch Video Solution

12. Two wheels of moment of inertia $4 \mathrm{kgm}^{\wedge} 2^{`}$
rotate side by side at the rate of $120 \mathrm{rev} / \mathrm{min}$
and $240 \mathrm{rev} / \mathrm{min}$ respectively in the opposite directions. If now both the wheels are coupled by means of weightless shaft so that the both wheels now rotates with a common angular speed. Find the new speed of rotation.
13. Derive an expression for M.I. about an axes
passing through one end and perpendicular to length of a thin uniform rod.

- Watch Video Solution

14. Obtain an expression $\bar{\tau}=\bar{I} \times \bar{\alpha}$ for a rigid body rotating about perpendicular axis
15. Derive an expression for most safe speed of a vehicle moving on a curved banked road ignoring friction?

D Watch Video Solution

16. A metallic ring of a mass 1 kg has moment of Inertia $1 \mathrm{kgm}^{2}$ when rotating about one of its diameters. It is molten remolded into a thin uniform disc of the same radius. Find M.I.
about central axis of uniform disc perpendicular to plane.

D Watch Video Solution

17. A rogid object is rolling down an inclined
plane. Derive an expressions for the acceleration along the track and the speed after falling through a certain vertical distance.
18. Using the energy conservation, derive the expression for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Also prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the object.

D Watch Video Solution

