©゙doubtnut

 India's Number 1 Education App
PHYSICS

BOOKS - CHETANA PUBLICATION

Thermodynamics

Example

1. When a piece of ice is placed in water at room temperatur, ice melts and water cools down. Why does their temperture change?

-

2. When water boils, why does its temperature remain constant?

(D) Watch Video Solution

3. When an inflated ballon is suddenly burst,why is the emerging air slightly cooled?

- Watch Video Solution

4. Describe the methods of heat transfer?

D Watch Video Solution

5. What is thermodynamics and thermal equilibrium?

- Watch Video Solution

6. Heat transfer occurs from which body to which body?

(D) Watch Video Solution

7. Why different objects kept on table at room temperature do not exchange heat with the table?

- Watch Video Solution

8. State Zeroth law of thermodynamics?

- Watch Video Solution

9. State and explain Zero law of thermodynamics?

- Watch Video Solution

10. Why is it necessary to make a physical contact between a thermocouple and the object for measuring its temperature?

D Watch Video Solution

11. Define- Internal energy.

(D) Watch Video Solution

12. Define- Heat.
13. Define- Work.

D Watch Video Solution

14. Calculate the internal energy of argon and oxygen.

(D) Watch Video Solution

15. Calculate the internal energy of hydrogen and nitrogen.

- Watch Video Solution

16. What is the thermodynamic system.
17. What is Surroundings.

D Watch Video Solution

18. What is Boundary.

- Watch Video Solution

19. What are different types of systems?

(D) Watch Video Solution

20. Explain the classification of systems.
21. What is thermodynamic state?

(D) Watch Video Solution

22. What is thermodynamic process?

- Watch Video Solution

23. What is the sign convention used for energy transfer between the system and its environment?

Watch Video Solution

24. What is the sign convention used for workdone in case of system and its environment?

- Watch Video Solution

25. Explain the transfer of energy between system and its environment.

- Watch Video Solution

26. What is the relation between change in internal energy of the system and heat energy supplied to the system or heat extracted from the system?
27. How are internal energy and work related?

- Watch Video Solution

28. How is the change in internal energy brought about?

D Watch Video Solution

29. Why is there a change in the energy of a gas when its volume changes?

- Watch Video Solution

30. State first law of thermodynamics.
31. What is positive work and negative work in thermodynamics.

D Watch Video Solution

32. Derive an expression for work done for a system.

- Watch Video Solution

33. State the relation between change in internal energy with work

- Watch Video Solution

34. State the relation between change in internal energy with heat exchanged.

- Watch Video Solution

35. Can you explain the thermodynamicsinvolved in cooking food using a pressure cooker?

- Watch Video Solution

36. 1.0 kg of liquid water is boiled at $100^{\circ} \mathrm{C}$ and all of it is converted to steam. If the change of state takes place at the atmospheric pressure $\left(1.01 \times 10^{5} \mathrm{~Pa}\right)$,calculate the energy transferredto the system.
37. 1.0 kg of liquid water is boiled at $100^{\circ} \mathrm{C}$ and all of it is converted to steam. If the change of state takes place at the atmospheric pressure $\left(1.01 \times 10^{5} \mathrm{~Pa}\right)$,calculate the change in the internal energy
ofthesystem. Given, thevolumeofwaterchan \geq som
$1.0 \times x 10^{\wedge}(-3) \mathrm{m}^{\wedge} 3 \in \operatorname{liquidf}$ or $m \rightarrow 1.671 \mathrm{~m}^{\wedge} 3^{\wedge}$ when in the form of steam.

- Watch Video Solution

38. Can you explain how the work done by the system is utilized?

D Watch Video Solution

39. Change in internal energy of the system can be positive, negative or zero. Explain.

- Watch Video Solution

40. 104 kj of work is done on certain volume of a gas. If the gas releases 125 kj of heat, calculate the change in internal energy (in kj) of the gas.

- Watch Video Solution

41. A system releases 125 kj of heat while 104 kj of work done on the system. Calculate the change in internal energy.
42. A gas contained in a cyclinder fitted with a frictionless piston expands against a constant external pressure of 1 atm from a volume of 5 litres to a volume of 10 litres. In doing so it absorbs 400 J of thermal energy from its surrounding .Determine the change in internal energy of system.

- Watch Video Solution

43. What are intensive and extensive variables?

- Watch Video Solution

44. When is the system said to be in thermodynamical equilibirium?
45. Explain property of a system or a system variable.

- Watch Video Solution

46. What are macroscopic variables of a system?

- Watch Video Solution

47. Write short notes on: Mechanical equilibirium

- Watch Video Solution

48. Write short notes on: Chemical equilibirium
49. Write short notes on: Thermal equilibirium

- Watch Video Solution

50. How is thermodynamic equilibrium defined?

- Watch Video Solution

51. What is equation of state?

- Watch Video Solution

52. A mixture of hydrogen and oxygen is enclosed in a rigid insulated cyclinder. It is ignited by a spark. The temperature and the pressure both increase considerably. Assume that the
energy supplied by the spark is negligible, what conclusions may be drawn by application of the first law of thermodynamics?

(D) Watch Video Solution

53. A resistor held in running water carries electric current.

Treat the resistor as the system. Does heat flow into the resistor?

- Watch Video Solution

54. A resistor held in running water carries electric current.

Treat the resistor as the system. Is there a flow of heat into the water?
55. A resistor held in running water carries electric current. Treat the resistor as the system. Assuming the state if resistance to remain unchanged, apply the first law of thermodynamics to this process.

(Watch Video Solution

56. A mixture of fuel and oxygen is burned in a constantvolume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process.Treating the mixture of fuel and oxygen as the system. Has heat been transferred?
57. A mixture of fuel and oxygen is burned in a constantvolume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process.

Treating the mixture of fuel and oxygen as the system. Has work been done?

- Watch Video Solution

58. A mixture of fuel and oxygen is burned in a constantvolume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process.

Treating the mixture of fuel and oxygen as the system. What is the sign of _U?
59. What is indicator diagram?

- Watch Video Solution

60. What is an Isotherm?

- Watch Video Solution

61. Verify that the area under the $\mathrm{p}-\mathrm{V}$ curve has dimensions of work.
(D) Watch Video Solution
62. How is work done found using p-V diagram ?
63. Draw a $\mathrm{p}-\mathrm{V}$ diagram and explain the concept of positive and negative work. Give one example each.

- Watch Video Solution

64. What is thermodynamic process?

- Watch Video Solution

65. What happens in a thermodynamic process?

- Watch Video Solution

66. What is reversible process?

- Watch Video Solution

67. What is irreversible process?

- Watch Video Solution

68. What is quasi-static process?

- Watch Video Solution

69. Explain Reversible and Irresible process by p-V diagram.
70. What are state dependent processes and path dependent processes?

- Watch Video Solution

71. Explain work as a path function.

D Watch Video Solution

72. Explain how heat added or removed from a system is a path function
73. What are the assumptions for discussing thermodynamic processes?

- Watch Video Solution

74. What do you mean by isothermal process?

D Watch Video Solution

75. Explain thermodynamics of an Isothermal process

(Watch Video Solution

76. Derive an expression for work done during an Isothermal
process

(D) Watch Video Solution

77. What is an Isotherm?

(D) Watch Video Solution

78. Show that isothermal work is also given as $\mathrm{Q}=\mathrm{W}=\mathrm{nRT} \ln \frac{V f}{V i}$

- Watch Video Solution

79. 0.5 mole of gas at temperature 300 K expands isothermally from an initial volume of 2.0 L to final volume of 6.0 L . What is the work done by the gas ? $\left(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-(1)}\right.$
80. 0.5 mole of gas at temperature 300 K expands isothermally from an initial volume of 2.0 L to final volume of 6.1 L . How much heat is supplied to the gas?.

D Watch Video Solution

81. An ideal gas is taken through an isothermal process. If it does 2000 J of work on its environment, how much heat is added to it?

- Watch Video Solution

82. What is an isobaric process?
83. How do you find work done, heat transferred and the change in internal energy for an isobaric process?

D Watch Video Solution

84. One mole of an ideal gas is initially kept in a cylinder with a movable frictionless and massless piston at pressure of $0.1 m P a$ and temperature $27^{\circ} \mathrm{C}$. It is then expanded till its volume is doubled. How much work is done if the expansion is isobaric?

- Watch Video Solution

85. What do you mean by Isochoric process?
86. Explain the thermodynamics of Isochoric process?

D Watch Video Solution

87. What is adiabatic process?

- Watch Video Solution

88. State the equation for adiabatic process.

(D) Watch Video Solution

89. Derive expression for work done during adiabatic process?
90. An ideal gas of volume 1.0 L is adiabatically compressed to $\frac{1}{15} t h$ of its initial volume. Its initial pressure and temperature is $1.01 \times 10^{5} \mathrm{~Pa}$ and $275^{\circ} \mathrm{C}$ respectively. Given Cv for ideal gas
$=20.8 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ and $\gamma=1.4$. Calculate final pressure.

(D) Watch Video Solution

91. An ideal gas of volume 1.0 L is adiabatically compressed to $\left.\frac{1}{15}\right) t h$ of its initial volume. Its initial pressure and $\begin{array}{lll}\text { temperature } & \text { is } 1.01 \times 10^{5} \quad \mathrm{~Pa} \text { and }\end{array}$ 275° Crespectively. GivenCvf or idealgas $=20.8 \frac{\mathrm{~J}}{\mathrm{~m}} \mathrm{ol} . K$ and gamma` $=1.4$. Calculate final temperature

(D) Watch Video Solution

92. An ideal gas of volume 1.0 L is adiabatically compressed to $\left.\frac{1}{15}\right) t h$ of its initial volume. Its initial pressure and temperature is 1.01×10^{5}

Pa and
275° Crespectively. GivenCvf or idealgas $=20.8 \frac{\mathrm{~J}}{\mathrm{~m}}$ ol. K and gamma` $=$ 1.4. Calculate final temperature

- Watch Video Solution

93. An ideal gas of volume 1.0 L is adiabatically compressed to $\left.\frac{1}{15}\right) t h$ of its initial volume. Its initial pressure and temperature is 1.01×10^{5}

Pa and
275° Crespectively. GivenCvf or idealgas $=20.8 \frac{J}{m} o l . K$ and
gamma` $=1.4$. How would your answers change, if the process were isothermal?
94. An ideal monatomic gas is adiabatically compressed so that itsfinal temperature is twice its initial temperature. What is the ratio of the final pressure to itsinitial pressure?

(D) Watch Video Solution

95. Why is $p-V$ curve for adiabatic process steeper than that for isothermal process?

D Watch Video Solution

96. Explain formation of clouds at high altitude.
97. When the temperature of a system is incresed or decreased in an adiabatic heating or cooling, is there any transfer of heat to the system or from the system?

D Watch Video Solution

98. A gas contained in a cylinder surrounded by a thick layer of insulating material is quickly compressed. Has there been a transfer of heat?

- Watch Video Solution

99. A gas contained in a cylinder surrounded by a thick layer of insulating material is quickly compressed. Has work been done?
100. Give an example of some familiar process in which no heat is added to or removed form a system,but the temperature of the system changes.

- Watch Video Solution

101. Give an example of some familiar process in which heat is added to an object, without changing its temperature .

(Watch Video Solution

102. What do you understand by cyclic process?

- Watch Video Solution

103. A solar cooker and a pressure cooker both are used to cook food. Treating them as thermodynamic system, discuss the similarities and differences between them.

(D) Watch Video Solution

104. In cyclic processes, when is the work done positive or negative?

- Watch Video Solution

105. A system is taken to its final state from initial state in hypothetical paths as shown in the figure. Calculate the work done in each case.
106. An engine works at 5000 RPM and it performs 1000 J of work in one cycle. If the engine runs for 10 min , how much total work is done by the engine?

D Watch Video Solution

107. How would you interpret the $Q=W$ for a cyclic process?

(D) Watch Video Solution

108. Write a note on free expansion

D Watch Video Solution

109. What are heat engines?

(D) Watch Video Solution

110. What is a reservoir?

- Watch Video Solution

111. What are the different elements of heat engine.

(D) Watch Video Solution

112. Describe different elements of heat engine.
113. Classify heat engine based on working substance.

- Watch Video Solution

114. Explain the working of a heat engine.

- Watch Video Solution

115. What is the thermal efficiency of a heat engine?

- Watch Video Solution

116. Explain heat engine cycle with help of $p-\mathrm{V}$ diagram?
117. How do refrigerators work?

(D) Watch Video Solution

118. Explain how heat flow from colder region to a hotter region occur?

D Watch Video Solution

119. Explain the schematic diagram for transferring heat from cold region to hot region.

D Watch Video Solution

120. Explain the schematics of a refrigerator.

(D) Watch Video Solution

121. Explain the working of a refrigerator with energy flow diagram?

- Watch Video Solution

122. Explain the working of a refrigerator with energy flow diagram?

- Watch Video Solution

123. What are the steps in one cycle of refrigeration.
124. Explain coefficient of performance of a refrigerator.

- Watch Video Solution

125. What is an air conditioner? Explain working and coefficient of performance of an air conditioner?

D Watch Video Solution

126. Explain a heat pump.

(D) Watch Video Solution

127. What are the limitations of 1st law of thermodynamics.
128. What is the second law of thermodynamics?

- Watch Video Solution

129. What sets the limits on efficiency of a heat engine?

- Watch Video Solution

130. Whatsetsthelimiton performanceof refrigerator/ air conditioner/heat pump.
131. What is Carnot cycle?

(D) Watch Video Solution

132. What is an ideal heat engine?

- Watch Video Solution

133. What is Camot engine?

- Watch Video Solution

134. Why should a Carnot cycle have two isothermal two adiabatic processes?
135. Suggest a practical way to increase the efficiency of a heat engine.

- Watch Video Solution

136. Explain Carnot refrigerator?

- Watch Video Solution

137. A Carnot engine receives 2.0 kj of heat from a reservoir at

500 K , does some work, and rejects some heat to a reservoir at

350 K. How much work does it do?
138. A Carnot engine receives 2.0 kj of heat from a reservoir at

500 K , does some work, and rejects some heat to a reservoir at
351 K . How much heat is rejected.

D Watch Video Solution

139. A Carnot engine receives 2.0 kj of heat from a reservoir at

500 K , does some work, and rejects some heat to a reservoir at
352 K . What is its efficiency?

- Watch Video Solution

140. Efficiency of a Carnot cycle is 75%.If temperature of the hot reservoir is $727^{\circ} \mathrm{C}$, calculate the temperature of the cold reservoir.
141. A Carnot refrigerator operates between $250^{\circ} \mathrm{K}$ and $300^{\circ} \mathrm{K}$
. Calculate its coefficient of performance.

(D) Watch Video Solution

142. Explain sterling cycle?

- Watch Video Solution

143. Where issterling cycle used?

- Watch Video Solution

144. Distinguish between Reversible and Irreversible process.

- Watch Video Solution

145. Distinguish between Heat pump and Refrigerator.

- Watch Video Solution

Exercise

1. A gas initially at $17^{\circ} C$ issuddenly compressed to $1 / 8$ of its original volume. Find the temperature after compression ?
$\left[\right.$ gamma $\left.=\frac{5}{3}\right]$
2. A gas expands from 75 litres to 125 litres at constant pressure of 4 atmosphere. Find the work done by the gas during this expansion.

(D) Watch Video Solution

3. When the temperature of 5 mol of a gas is changed from $100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ keeping the volume constant, the change in internal energy of the gas is 80 J , then find the heat capacity of the gas at constant volume.

- Watch Video Solution

4.5 mol of oxygen is heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. Find the change in internal energy of the gas
5. An amount of heat of 100 cal is supplied to a gas. The work done by the gas is 210 J . Find the increase in internal energy.

- Watch Video Solution

6. 400 J of work is performed on a gasfor reducing its volume by compression. If the change is done adiabatically, whatisthe amount of heat absorbed by it?

- Watch Video Solution

7. A cylinder contains one gram mole of H_{2} at $17^{\circ} \mathrm{C}$ and 2 atms. The initial volume of the gas is $2 \times 10(-3) m^{3}$. Find the
work done if its volume changes by 15 percent.

- Watch Video Solution

8. In a thermodynamic process 400 J of heat is given to a gas and 100 J of work is also done on it. Find the change in the internal energy of the gas.

(D) Watch Video Solution

9. If 5 moles of oxygen at STP is adiabatically compressed so that temperature increases to $400^{\circ} C$, then find the work done on the gas. $\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
10. 70 calories of heat is required to raise the temperature 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.

What is the amount of heat required to raise the temperature of the same gas from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume?

- Watch Video Solution

11. If 1200 calories of heat is removed from a gas which is held at constant volume, what is the change in internal energy of the system?

- Watch Video Solution

12. The volume of 1 kilomole of an ideal gas increases isothermally from 1 litre to 10 litres at $27^{\circ} \mathrm{C}$. If the universal
gas constant is $8312 \mathrm{Jkmol}^{-1} \mathrm{~K}^{-1}$, calculate the work done.

- Watch Video Solution

13. Work done for the rise of one mole of helium gas adiabatically through $2^{\circ} C$ is W . What is the work done for the rise of one mole of hydrogen gas adiabatically through $2^{\circ} C$?

(D) Watch Video Solution

14. A diatomic gas at pressure P and volume V is compressed adiabatically to $\frac{1}{32}$ times the original volume. Find the final pressure.
15. During an adiabatic process, if the pressure of an ideal gas is proportional to the cube of its temperature, find f value.

- Watch Video Solution

16. Calculate the efficiency of a Carnot's engine working between steam point and ice point.

- Watch Video Solution

17. A Carnot engine takes in 1000 k cal of heat from a reservoir at $627^{\circ} \mathrm{C}$ and exhausts heat to sink at $27^{\circ} \mathrm{C}$. What is the efficiency?
18. A Carnot engine whose low temperature reservoir is at $7^{\circ} \mathrm{C}$ has an efficiency of 40. It is desired to increase the efficiency to 50%. By how many degree must the temperature of the high temperature reservoir be increased?

- Watch Video Solution

19. A refrigerator has to transfer an average of 263 J of heat per second from temperature $(-10)^{\circ} C$ to $25^{\circ} C$. Calculate the average power consumed assuming ideal reversible cycle and no other losses.

D Watch Video Solution

20. Refrigerator A works between $(-10)^{\circ} C$ and $27^{\circ} C$ while refrigerator B works between $-20^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$, both removing heat equal to 2000 J from the freezer. Which of the two is the better refrigerator?

- Watch Video Solution

21. For a given amount of gas at a given temperature when volume is ten folded isothermally, the work done is x. What is the work done for the same amount of gas at the same temperature, if the volume is hundred folded?

- Watch Video Solution

22. Thermal equilibrium implies the equality of
A. energy
B. internal energy
C. kinetic energy
D. temperature

Answer:

(D) Watch Video Solution

23. The direction of flow of heat between two bodies is determined by
A. temperature
B. kinetic energy
C. total energy
D. internal energy

Answer:

D Watch Video Solution

24. A quantity of heat Q issupplied to a monoatomic ideal gas, which expands at constant pressure. The fraction of heat that goes into work done by the gasis
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{5}{7}$

25. An adiabatic process occurs at constant

A. temperature
B. pressure
C. heat
D. temperature and pressure

Answer:

Watch Video Solution
26. In an adiabatic expansion of a gas
A. heat is gained or lost
B. heat is neither gained nor lost
C. temperature is kept adiabatically
D. volume is kept constant

Answer:

- Watch Video Solution

27. When a gas expands adiabatically
A. no energy is required for expansion
B. energy is required and it comesfrom the wall of the container of the gas
C. internal energy of the gasis used in doing the work
D. law of conservation of energy does not hold good

- Watch Video Solution

28. The pressure temperature relationship for an ideal gas undergoing adiabatic change is
A. $P^{1-\gamma} T^{\gamma}=$ constant
B. $P^{\gamma-1} T \gamma=\mathrm{constant}$
C. $P^{\gamma} T^{1-\gamma}=$ constant
D. $P^{\gamma} T^{\gamma-1}=$ constant

Answer:

29. A gas is compressed at a constant pressure of 50 Pa from a volume $10 \mathrm{~m}^{3}$ to a volume of $4 \mathrm{~m}^{3}$. If 100 J of heat is added to the gas, then its internal energy.
A. increase by 400 J
B. decreases by 400 J
C. increases by 200 J
D. decreases by 200 J

Answer:

D Watch Video Solution

30. Two samples A and B of a gas initially of the same temperature and pressure are compressed from a volume V to
a volume $\frac{V}{2}$ such that A is compressed isothermally and B adiabatically. The final pressure of
A. A is greater than that of B
$B . A$ is equal to that of B
C. A is less than that of B
D. A is twice the pressure of B

Answer:

(D) Watch Video Solution

31. A quantity of heat Q issupplied to a monoatomic ideal gas, which expands at constant pressure. The fraction of heat that goes into work done by the gasis
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer:

- Watch Video Solution

32. Starting with same initial conditions, an ideal gas expands
from volume V_{1} to V_{2} in three different ways. The work done by the gas is W_{1} if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic. Then
A. $W_{2}>W_{3}>W_{1}$
B. $W_{1}>W_{2}>W_{3}$
C. $W_{1}>W_{3}>W_{2}$
D. $W_{2}>W_{1}>W_{3}$

Answer:

D Watch Video Solution

33. An ideal gas A and a real gas B have their volumesincreased fromV to 2 V under isothermal conditions. The increase in internal energy
A. will be same for both A and B
B. will be zero in both the gases
C. of B will be more than that of A
D. of A will be more than that of B
34. For a gas undergoing an adiabatic process, the relation between temperature and volume is found to be $T V^{0.4}=$ constant. The gas may be
A. argon
B. nitrogen
C. marsh gas
D. carbondioxide

Answer:

35. The internal energy of a gas decreases by an amount equal to the external work, the gas is undergoing
A. adiabatic expansion
B. adiabatic compression
C. isothermal expansion
D. isochoric expansion

Answer:

- Watch Video Solution

36. In a cyclic process
A. work done is zero
B. work is done by the system
C. work is done on the system
D. work done depends upon the quantity of heat given to

the system or taken

Answer:

- Watch Video Solution

37. $\delta Q=\delta U$ is true for
A. isochoric process
B. adiabatic process
C. isothermal process
D. isobaric process

- Watch Video Solution

38. For isothermal expansion of perfect gas, the value of $\delta \mathfrak{a}(P)(P)$ is equal to
A. $\left(-\gamma^{1.2}\right)\left[\frac{\delta V}{V}\right]$
B. $\left[-\frac{\delta V}{V}\right]$
C. $(-\gamma[(\delta V V)]$
D. $\gamma^{2}[\operatorname{frac}(\delta V V)]$

Answer:

(D) Watch Video Solution
39. Four curves A, B, Cand Dare drawn in the figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are
A. C and D respectively
B. D and C respectively
C. A and B respectively
D. B and A respectively

Answer: dia

(Watch Video Solution

40. A given mass of a gas expands from state A to state B by three paths 1,2 and 3 as shown in the figure. If W_{1}, W_{2} and W_{3} respectively are the work done by the gas along the three paths, then. br>
A. $W_{1}>W_{2}<W_{3}$
B. $W_{1}<W_{2}<W_{3}$
C. $W_{1}=W_{2}=W_{3}$
D. $\mathrm{W} 1=\mathrm{W} 2>\mathrm{W} 3$

Answer:

41. If w_{1} and w_{2} are the amounts of work done in the given two indicator diagrams, then br>
A. $w_{1}>w_{2}$
B. $w_{2}>w_{1}$
C. $w_{1}=w_{2}$
D. insufficient data

Answer:

- Watch Video Solution

42. In the indicator diagram shown, the work done along the path AB is br>

A. zero
B. 45 J
C. 90 J
D. 30 J

- Watch Video Solution

43. In the indicator diagram shown, the work done in the cyclic
process
is br>

A. $107 \pi J$
B. $104 \pi J$
C. $102 \pi J$
D. $103 \pi J$

Answer:

- Watch Video Solution

44. The internal energy of air in a room of volume $40 \mathrm{~m}^{3}$ atstandard atmospheric pressure is
A. $10^{7} \mathrm{Joe}$
B. $10^{6} \mathrm{Jow}$
C. $10^{5} \mathrm{Jow}$
D. $10^{4} \mathrm{Jow}$

Answer:

45. A gas undergoes a change of state during which 100 J of heat is supplied to it does 20 J of work. The system is brought back to its original state through a process during which 20 J heat is released by the gas. The work done by the gas in the second processes.
A. 60 J
B. 40 J
C. 80 J
D. 20 J

Answer:

46. The amount of work done to increase the temperature of one mole of an ideal gas by $30^{\circ} \mathrm{C}$, if it expands under the condition $V \propto T^{\frac{2}{3}}$ is
A. 60 cal
B. 136 J
C. 252 J
D. 168 J

Answer:

D Watch Video Solution

47. Two engines A and B have their sources at 400 K and 350 K and sinks at 350 K and 300 K respectively. Which is more
efficient and by how much ?
A. 1.8%
B. 1.7%
C. 1.6%
D. 1.5%

Answer:

D Watch Video Solution

48. If two thirds of the heat taken by a heat engine from the source is given to the sink, its efficiency is
A. 33.33%
B. 66.67%
C. 30%
D. 40%

Answer:

- Watch Video Solution

49. The efficiency of a heat engine is 20%, when the working
substance is hydrogen. Its efficiency if hydrogen is replaced by oxygen is
A. 20%
B. 40%
C. 60%
D. 80%

- Watch Video Solution

50. If the absolute temperatures of the source and sink of a heat engine are in the ratio $4: 3$, its efficiency is
A. 25%
B. 33.33%
C. 13%
D. 20%

Answer:

51. Two Carnot engines A and B are operated in series. A receives heat at 900 K and rejects it to the reservoir at TK. B receives the rejected heat from Aand rejectsit to itsreservoir at 400 K . If the work outputs of A and B are equal, then T is
A. 750 K
B. 700 K
C. 650 K
D. 600 K

Answer:

D Watch Video Solution

52. A refrigerator has a coefficient of performance 9. If the surrounding temperature is $27^{\circ} \mathrm{C}$, the minimum temperature
it can cool a body inside is
A. $(-20)^{\circ} \mathrm{C}$
B. $(-13)^{\circ} C$
C. $(-7)^{\circ} C$
D. $(-3)^{\circ} C$

Answer:

D Watch Video Solution

53. A refrigerator works between $0^{\circ} C$ and $27^{\circ} C$. If heat is to be removed from the refrigerated space at $t /$ rate of 50 $\mathrm{kcal} /$ minute, the power of the motor of the refrigerator should be
A. 0.346 kW
B. 3.46 kW
C. 0.173 kW
D. 1.73 kW

Answer:

- Watch Video Solution

54. A gas in a closed container is heated with 10 J of energy, causing the lid of the container to rise 2 m with 3 N of force. What is the total change in energy of the system?
A. 10J
B. 4J
C. (-10) J
D. (-4) J

- Watch Video Solution

55. Which of the following is an example of the first law of thermodynamics?
A. The specific heat of an object explains how easily it changestemperatures.
B. While melting, an ice cube remains at the same temperature.
C. When a refrigerator is unplugged, everything inside of it returns to room temperature after some time.
D. After falling down the hill, a ball's kinetic energy plus heat energy equals the initial potential energy

- Watch Video Solution

56. Efficiency of a Carnot engine is large when
A. TH islarge
B. TC islow
C. TH-TCis large
D. TH-TC is small

Answer:

(Watch Video Solution

57. The second law of thermpdynamics deals with transfer of
A. work done
B. energy
C. momentum
D. heat

Answer:

- Watch Video Solution

58. During refrigration cycle, heat is rejected by the refrigerant in the
A. condenser
B. cold chamber
C. evaporator
D. hot chamber

Answer:

D Watch Video Solution

59. Select and write correct alternative from the following alternatives: The indicator diagrams representing maximum and minimum amounts of work done are respectively:
A. 3 and 1
B. 1 and 3
C. 2 and 1
D. 4 and 2

Answer:

- Watch Video Solution

60. State first law of thermodynamics.

- Watch Video Solution

61. Work done during expansion is positive. Explain.

- Watch Video Solution

62. State zeroth law of thermo dynamics? OR Give the characteristics of isobaric process.
63. Draw a neat labelled diagram to show the energy flow of heat engine.

- Watch Video Solution

64. State both the statements of second law of thermodynamics.

(D) Watch Video Solution

65. Mention the set of processesin a Carnot cycle.
66. Distinguish between Reversible and Irreversible process.

- Watch Video Solution

67.5 mol of oxygen is heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} C$. Find the change in internal energy of the gas

D Watch Video Solution

68. An amount of heat of 100 cal is supplied to a gas. The work done by the gas is 210 J . Find the increase in internal energy.

D Watch Video Solution

69. An ideal gasin a cylinder is compressed adiabatically to onethird its original volume. During the processif 45 J of work is done on the gas by the compressing agent, what is the change in internal energy?

- Watch Video Solution

70. Derive an expression for efficiency of Carnot cycle.

D Watch Video Solution

71. Derive an expression for work done in adiabatic process.
72. Explain the working of a refrigerator with energy flow diagram?

(D) Watch Video Solution

73. A Carnot engine absorbs 1000 J of heat from a reservoir at $127^{\circ} \mathrm{C}$ and rejects 600 J of heat during each cycle.Calculatethe temperature of the sink

- Watch Video Solution

74. A Carnot engine absorbs 1000 J of heat from a reservoir at $127^{\circ} \mathrm{C}$ and rejects 600 J of heat during each cycle.Calculatethe amount of the useful work done during each cycle.
75. What isthe process modification in sterling cycle compared to Carnot.
(D) Watch Video Solution
76. what are the uses of sterling cycle.

- Watch Video Solution

