©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

Wave Optics

Example

1. What is Ray optics or geometrical optics?

O
 Watch Video Solution

2. According to Newton's corpuscular theory of
light, light is propagated in the form of

D Watch Video Solution
3. By using Hugens' wave theory of the phenomenon of

D Watch Video Solution

4. Explain Maxwell's electromagnetic theory.

- Watch Video Solution

5. What is Dual nature of light?

- Watch Video Solution

6. Why can light waves travel in vacuum whereas sound wave cannot?

- Watch Video Solution

7. What are primary sources of light?

D Watch Video Solution

8. What are secondary sources light?

D Watch Video Solution
9. Explain the concept of a wavefront.
10. What is wavefront ? What is the shape of
the wavefront at a point far away from the source of light?

D Watch Video Solution
11. Define:- Wave surface

D Watch Video Solution

12. Define wavefront of light .

- Watch Video Solution

13. Define:- Wave normal.

- Watch Video Solution

14. State the different types of wavefront with examples.

- Watch Video Solution

15. What do you mean by two particles are in phase?

D Watch Video Solution
16. Draw diagrams for :- Spherical Wavefront

D Watch Video Solution

17. Draw diagrams for :- Plane Wavefront
18. State Huygens' Principle.

- Watch Video Solution

19. Explain the construction of plane spherical wavefront on the basis of Huygen's principle.

- Watch Video Solution

20. State the laws of reflection.

- Watch Video Solution

21. With the help of a neat diagram, explain reflection of light from a plane reflecting surface on the basis of wave theory of light

- Watch Video Solution

22. On the basis of Huygens's Wave theory of light, prove that the angle of incidence is equal to the angle of reflection.
23. What is lateral inversion?

- Watch Video Solution

24. With the help of a neat diagram, explain
reflection of light from a plane reflecting
surface on the basis of wave theory of light
25. What is refraction of light?

D Watch Video Solution

26. Derive Snell's law by Huygen's Construction of a plane wave-front.

- Watch Video Solution

27. Explain Refraction of Light at a plane boundary between two media.
28. Why is it the refracted ray bends towards the normal, and while entering from denser to rarer it bends away from the normal.

- Watch Video Solution

29. Explain Refraction of light on the basis of

Wave Theory. Hence prove the Laws of Refraction.
30. Derive Snell's law by Huygen's Construction of a plane wave-front.

D Watch Video Solution

31. Show that the velocity of light in a rarer medium is greater than velocity in a denser medium.
32. Explain dependence of wavelength on the refractive index of the medium.

D Watch Video Solution

33. White light consists of wavelengths from

400 nm to 700 nm . What will be the wavelegth
range seen, when white light is passed through glass of refractive index 1.55 ?

D Watch Video Solution

34. What is unpolarised light? Explain the concept of unpolarised light.

D Watch Video Solution
35. What is polarisation of light?

D Watch Video Solution

36. Explain the terms:- Plane polarised light.
37. What is an unpolarised light ?

- Watch Video Solution

38. Explain the terms:- Plane of Polarization

D Watch Video Solution

39. Explain the terms:- Plane of Polarization
40. State any five methods to produce plane polarized light.

D Watch Video Solution

41. Explain what is meant by polarization and derive Malus' law.

D Watch Video Solution
42. A system of three polarizers $P 1$, $2, \mathrm{P} 3$ is set up such that the pass axis of $P 3$ is crossed with respect to that of $P 1$. The pass axis of P

2 is inclined at 60° to the pass axis of $P 3$

When a beam of unpolarized light of intensity
lo is incident on P 1 the in of light transmitted by the three polarizers I. The ratio (IO /I) equals (nearly):

D Watch Video Solution

43. The intensity of light coming from one of the slits in Young's experiment is twice the intensity of light coming from the other slit.

What will be the approximate ratio of the intensities of the bright and dark fringes in the resulting interference pattern?

D Watch Video Solution

44. State and prove Brewster's Law.

45. What is Brewster's Law? Derive the formula

for Brewster angle?

- Watch Video Solution

46. State and prove Brewster's Law.

- Watch Video Solution

47. Unpolarized light with intensity I_{0} is incident on two polaroids. The axis of the first polaroid makes an angle of 50° with the vertical, and the axis of the second polaroid is horizontal. What is the intensity of the light, after it has passed through the second polaroid?

- Watch Video Solution

48. Explain polarization by scattering.
49. For what angle of incidence, will light incident on a bucket, filled with liquid having refractive index 1.5 be completely polarized after reflection.

- Watch Video Solution

50. State and explain the principle of superposition of waves.
51. Excplain the concept of interference of light.

D Watch Video Solution

52. State the condition of constructive interference.

D Watch Video Solution
53. State the condition of destructive interference.

D Watch Video Solution
54. State the condition of constructive interference.

D Watch Video Solution
55. Define:- destructive interference.

- Watch Video Solution

56. Explain interference of water waves.

- Watch Video Solution

57. What are coherent sources? How are they produced?

- Watch Video Solution

58. Explain Young's Double Slit Experiment.

D Watch Video Solution

59. Define Interference. Derive expression for
fringe width in Young' double slit experiment.

D Watch Video Solution

60. Show that both dark and Bright fringes
have equal width.

D Watch Video Solution

61. Write out relation between path difference and phase difference ($\triangle \phi$).

- Watch Video Solution

62. State the conditions to get constructive and destructive interference of light.

63. Explain Intensity distribution in

interference with equations.

D Watch Video Solution

64. a double - slit arrangement, the slits are separated by a distance equals to 100 times
the wavelength of light passing through the
slits:- What is the angular separation in radians between the central maximum and an adjacent maximum?
65. a double - slit arrangement, the slits are separated by a distance equals to 101 times the wavelength of light passing through the slits:- What is the distance between these maxima on a screen 50.0 cm from the slits?

D Watch Video Solution

66. In a biprism experiment, the fringes are observed in the focal plane of the eye piece at
a distance of 1.2 m from the slits. The distance
between the central bright band and 20th
bright band is 0.4 cm . When a convex lens is
placed between biprism and the eyepiece, the
distance between the two vertical magnified
images is found to be 0.9 cm . Determine the wavelength of light used.

D Watch Video Solution

67. The distance between two consecutive bright fringes in a biprism experiement using
light of wavelength $6000 \AA$ is 0.32 mm , by how much will the distance change, if light of wavelength $4800 \AA$ is used.

- Watch Video Solution

68. State the conditions for steady state interference.

- Watch Video Solution

69. Explain interference due to thin films.
70. Why are multiple colours observed over a thin film of oil floating on water? Explain with the help of a diagram.

- Watch Video Solution

71. Plane wavefront of light of wavelenght $5500{ }^{\circ}$ is incident on two slits in a screen perpendicular to the direction of light rays. If
the total separation of 10 bright fringes on a screen 2 m away is 2 cm , find the distance between the sits .

D Watch Video Solution

72. In a young's double slit experiment, the difference in optical path length between the rays starting from the slits S_{1} and S_{2} and reaching a point A , on the screen in 0.0075 mm and reaching another point B on the screen, on the other side of the central fringes is
0.0015 mm . How many bright and dark fringes are observed between A and B if the wavelength of light used is $6000 A^{\circ}$

D Watch Video Solution

73. What are the two methods for obtaining coherent sources. Explain them.

D Watch Video Solution
74. An isoceles prism of refracting angle 179°
and refractive index 1.5 is used as a biprism by
keeping it 10 cm . away from the slit, The edge of the biprism being parallel to the slit. The slit is illuminated by light of wavelength 500 nm and the screen is 90 cms . away from the biprism. Calculate the location of the centre of 20th dark band and the path difference at this location.
75. Explain what is Optical Path.

- Watch Video Solution

76. What must be the thickness of a thin film which, when kept near one of the slits shifts
the central fringe by 5 mm for incident light of wavelength $5400 A^{\circ}$ in Young's double slit intereference experiment? The refractive index of the material of the film is 1.1 and the distance between the slits is 0.5 mm .
77. The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is same as that on travelling a distance $\times \mathrm{cm}$ through a medium having refractive index 1.25. Determine the value of x.

D Watch Video Solution

78. Explain the phenomenon of diffraction of light.

- Watch Video Solution

79. Explain in brief Fraunhofer's Diffraction.

- Watch Video Solution

80. Explain in brief Fraunhofer's Diffraction.

- Watch Video Solution

81. Explain with a proper diagram, the experimental set up for Fraunhofer's

Diffraction.

D Watch Video Solution

82. Describe with a neat diagram, the

Fraunhofer's diffracting pattern due to a single slit.
83. In Fraunhofer diffraction by a narrow slit, a screen is placed, at a distance of 2 m , from the lens to obtain a diffraction pattern. If the slit width is 0.2 mm and the first minimum is 5 mm , on either side of the central maximum.

Find the wavelength of light.

D Watch Video Solution

84. A parallel beam of green light of wavelength 546 nm passes through a slit of
width 0.4 mm . The intensity pattern of the
transmitted light is seen on a screen which is

40 cm away. What is the distance between the two first order of minima?

D Watch Video Solution

85. What must be the ratio of slit width on the
wavelength for a single slit to have the firust diffraction minimum at 45°.

- Watch Video Solution

86. Monochromatic electromagnetic radiation
from a distant source passes through a
slit.The diffraction pattern is observed on the screen 2.5 m from the slit. If the width of the central maximum is 6.00 mm , what is the slit width if the wavelength is:- 500 nm (visible light)
87. Monochromatic electromagnetic radiation
from a distant source passes through a slit.The diffraction pattern is observed on the screen 2.5 m from the slit. If the width of the central maximum is 6.01 mm , what is the slit width if the wavelength is:- $50 \mu m$ (infrared radiation)
88. Monochromatic electromagnetic radiation
from a distant source passes through a
slit.The diffraction pattern is observed on the screen 2.5 m from the slit. If the width of the central maximum is 6.02 mm , what is the slit width if the wavelength is:- 0.500 nm (X rays)

- Watch Video Solution

89. Compare Young's Double slit interfemce pattern and single slit Diffraction pattern.
90. Explain what is resolving power?

D Watch Video Solution

91. What is meant by limit of angular resolution and the resolving power of telescope?

D Watch Video Solution
92. According to Rayleigh scattering law,

D Watch Video Solution

93. Define:- Limit of resolution

D Watch Video Solution

94. Define:- Resolving Power.
95. Discuss the resolving power of a microscope:-With luminous point objects.

- Watch Video Solution

96. Derive an expression for Resolving Power of a Microscope.

- Watch Video Solution

97. Derive an expression for resolving Power of
a Telescope.
98. Resolving power of telescope can be increased by

D Watch Video Solution

99. To collect the maximum amount of light coming from an object, the objective lens should be made as..............as possible.
100. Write a short note on Radio Telescope.

D Watch Video Solution

101. A telescope has an objective of diameter
2.5 m . What is the angular resolution, When it observes at $5500 \stackrel{\circ}{A}$.
102. What is the minimum distance between two objects which can be resolved by a microscope having the visual angle of 30° when light of wavelength 500 nm is used?

- Watch Video Solution

103. A double-slit arrangement produces interference fringes for sodium light (
$\lambda=589 \mathrm{~nm})$ that are 0.20° apart. What is the
angular fringe separation, if the entire arrangement is immersed in water. $(\mathrm{n}=1.33)$

D Watch Video Solution

104. A star is emitting light at the wavelength of $5000 \stackrel{\circ}{A}$, Determine the limit of resolution of a telescope, having an objective of diameter of 200 inch.
105. Give one basic difference between interference and diffraction.

D Watch Video Solution

106. What is plane polarised light ?

- Watch Video Solution

107. What is diffraction of light? How does it differ from interference? What are fraunhoffer
and Fresnel diffractions?

D Watch Video Solution

108. Distinguish between the phenomenon of Interference and Diffraction

- Watch Video Solution

Exercise

1. If the refractive indices of glass and water with respect to air is $\frac{3}{2}$ and $\frac{4}{3}$ respectively.

Calculate the velocity of light in glass and water.From these results calculate the refractive index of glass with respect to water.

Given velocity of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

2. Light is incident on a glass slab making an angle of 30° with the surface. Calculate the
angle of refraction in glass and velocity of light in glass. Given $\mu=1.5, \mathrm{Va}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

3. The refractive index for water for red and violet colours are 1.325 and 1.334 respectively.

Find the difference between the velocities of these two colours in water.
4. Red light of wavelength $6400 \AA$ in air, has a wavelength of $4000 \AA$ in glass. If the wavelength of violet light in air is $4400 \AA$, what is the wavelength in glass. (Assume R.I. for violet and red colour are same)

- Watch Video Solution

5. An parallel beam of monochromatic light is incident on a glass slab at an angle of incidence 60°. Find the ratio of the width of
the beam in glass to that in air, if the refractive index of glass is 1.5 .

D Watch Video Solution

6. Light is incident on a glass slab making an angle of 30° with the surface. Calculate the angle of refraction in glass and velocity of light in glass. Given $\mu=1.5, \mathrm{Va}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

7. If the critical angle of the medium is $\sin ^{-1}\left(\frac{3}{5}\right)$ Find the refractive index of the medium and polarising angle.

D Watch Video Solution

8. If the difference in velocities of light in glass
and water is $0.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the velocity
of light in air. (Given ${ }_{a} \mu_{g}=1.5,{ }_{a} \mu_{\omega}=\frac{4}{3}$)

D Watch Video Solution

9. The path difference between two identical
waves arriving at a point is 85.5λ.. If the path
difference is 42.5 micrometer, the wavelength
is

D Watch Video Solution

10. In a biprism experiment the distance between the slit and the screen is 1 m and the separation of the two virtual images of the slit is 0.4 mm . An interference pattern is obtained with light of wavelength $5.5 \times 10^{-7} \mathrm{~m}$. Find
the distance between the 3rd and the 8th bright band.

D Watch Video Solution

11. In a biprism experiment, the eye piece is kept at a distance of 1.5 m from the slit and
the distance of the 2 nd dark band from the central point was found to be 1.2 cm . The sizes
of the magnified and diminished images of slits produced by the convex lens are found to
be 2.4 cm and 60 cm respectively. Calculate the wavelength of light used.

D Watch Video Solution

12. In a biprism experiment, red light of wavelength $6500 \AA$ was used. It was then replaced by green light of wavelength $5200 \stackrel{\circ}{A}$.

Find the value of n for which $(n+1)^{t} h$ green bright band would coincide with the nth bright band, for the same setting.
13. In an experiment with Fresnel biprism sodium light is used and bands 0.0196 cm in width are observed at the distance of 100 cm
from the slit. A convex lens is placed between
the biprism and the slit. If the distance between the slit and screen is one meter, the magnified distance apart of the images is
found to be 0.7 cms , the lens being 30 cm from the slit, calculate the wavelength of light.
14. In a biprism experiment, a source of light has a wavelength of $5500 \AA$. Calculate the change in fringe width, if the screen is at a distance of 1 m from the points which are 1 mm apart.

- Watch Video Solution

15. In a single slit diffraction pattern, the distance between the 1st minima on the right and the 1st minima on the left is 5.2 mm . The screen on which the pattern is displayed is 80
cm from the slit. If $\lambda=5460 \AA$. Calculate the slit width.

- Watch Video Solution

16. Diffraction pattern of a single width 0.5 cm is formed by a lens of a focal length 40 cm .

Calculate the distance between the first dark and next bright fringe from the axis.
$\lambda=4890 \AA$ (given)
17. The semivertical angle of a cone of the rays incident on the objective of the microscope is 20°. If $\lambda=6600 \AA$, calculate the smallest distance between two points which can be just resolved.

- Watch Video Solution

18. Whatis theminimumangularseparation between two stars if a telescope is used to observe them, with an objective of aperture 20 cms. $\left(\lambda=5900{ }^{\circ} A\right)$
19. Two slits in Young Experiment have width in
the ratio $81: 1$. What is the ratio of the amplitudes of the waves coming from them.

- Watch Video Solution

20. Two coherent sources, whose intensity
ratio are $81: 1$, produce interference fringes.

Calculate the ratio of intensities of maxima and minima in the fringe system.

D Watch Video Solution

21. Choose the correct answers:-Michelson and

Morley performed several experiments to detect but obtained negative results.

A. Ether

B. Particles
C. Corpuscles
D. Waves

Answer:

D Watch Video Solution

22. In dual nature of light, particles of light are
called
A. electrons
B. photons
C. neutrons

D. corpuscles

Answer:

D Watch Video Solution

23. Visible light comprises of waves in the
range.
A. 300-600 nm
B. 400-700 nm
C. $500-800 \mathrm{~nm}$

D. 600-700 nm

Answer:

D Watch Video Solution

24. The refractive index of a medium is 1.7 the
velocity of light in this medium is
A. $1.565 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $1.665 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1.765 \times 10^{8} \mathrm{~m} / \mathrm{s}$

D. $1.865 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

25. If the frequency of the light beam is
$14 \times 10^{14} \mathrm{~Hz}$. The wave number of the beam of light in air is

$$
\text { A. } 1.66 \times 10^{6} m^{-1}
$$

$$
\text { B. } 2.66 \times 10^{6} m^{-1}
$$

C. $3.66 \times 10^{6} m^{-1}$
D. $4.66 \times 10^{6} m^{-1}$

Answer:

D Watch Video Solution

26. The wavelength of a certain light in air and in a medium are $4560{ }^{\circ}$ and $3648 \AA$ respectively. The speed of light in air to the speed of light in the medium is
A. 1.15
B. 1.25
C. 1.35
D. 1.45

Answer:

D Watch Video Solution

27. The velocity of light in diamond is $1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of diamond with respect to water $\left({ }_{a} \mu_{\omega}=1.33\right)$ is
A. 1.5
B. 1.6
C. 1.7
D. 1.8

Answer:

D Watch Video Solution

28. Lateral inversion of light does not occur during at a plane surface.
A. reflection
B. refraction
C. rectilinear propogation
D. diffraction

Answer:

D Watch Video Solution
29. If light is constrained or restricted or made to vibrate in one plane it is called
A. plane polarized light
B. Unpolarized light
C. reflection of light
D. refraction of light

Answer:

D Watch Video Solution

30. $I_{2}=I_{1} \cos ^{2} \theta$........ Law gives the intensity
of a linearly polarized wave, after it passes
through a polarizer.
A. Brewster's
B. Nicole's
C. Bragg's
D. Malus'

Answer:

D Watch Video Solution

31. Consider a light beam incident from air to a glass slab at Brewster's angle as shown in figure. A polaroid is placed in the path of the
emergent ray at point P and rotated about an axis passing through the centre and perpendicular to the plane of the polaroid.

A. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

32. Which of the following phenomenon proves that light is a transverse wave.
A. Reflection
B. Interference

C. Diffraction

D. Polarization

Answer:

D Watch Video Solution

33. Which property of light does not change when it travels from one medium to another.
A. velocity
B. Wavelength

C. Amplitude

D. Frequency

Answer:

- Watch Video Solution

34. When its unpolarized light is passed
through a polarizer, its intensity
A. increases
B. decreases

C. remains unchanged

D. depends on the orientation of the polarizer

Answer:

D Watch Video Solution

35. In Young's double slit experiment, the two
coherent sources have different intensities. If
the ratio of maximum intensity to the minimum intensity in the interference pattern
produced is $25: 1$. What was the ratio of intensities of the two sources?
A. $5: 1$
B. $25: 1$
C. $3: 2$
D. 9: 4

Answer:

D Watch Video Solution
36. In Young's double slit experiment, a thin uniform sheet of glass is kept in front of two slits, parallel to the screen having slits. The resulting interference pattern will satisfy
A. The interference pattern will remain
unchanged
B. The fringe width will decrease
C. The fringe width will increase
D. The fringes will shift.

Answer:

- Watch Video Solution

37. A ray of light passes from vaccuum to a medium refractive index μ. The angle of incidence is found to be twice the angle of refraction. The angle of refraction is
A. $\cos ^{-1}\left(\frac{\mu}{2}\right)$
B. $\cos ^{-1}(\mu)$
C. $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
D. $2 \sin ^{-1}\left(\frac{\mu}{2}\right)$

Answer:

D Watch Video Solution

38. The absolute refractive index of air is
A. zero
B. 0.95
C. 1
D. infinity

Answer:

D Watch Video Solution

39. The ratio of velocity of light in glass to that in diamond, if the refractive index of glass and diamond with respective to air are $\frac{3}{2}$ and $\frac{12}{5}$ respectivbely will be
A. $\frac{5}{8}$
B. $\frac{8}{5}$
C. $\frac{18}{5}$

D. $\frac{5}{18}$

Answer:

D Watch Video Solution

40. Polarization of light cannot be produced by
A. Reflection
B. Double refraction
C. Dichroism

D. Diffraction

Answer:

D Watch Video Solution

41. The angle of incidence is 45° and the angle
of refraction is 30°. The polarising angle for
the same medium is
A. $54^{\circ} 43^{\prime}$
B. 30°
C. 45°
D. 60°

Answer:

- Watch Video Solution

42. The refractive index of the material is equal to the tangent of the polarizing angle. This is
known as
A. Huygens' principle
B. Brewster's law
C. Newton's Law
D. Electromagnetic radiation

Answer:

D Watch Video Solution

43. The relation between path length ($\triangle l)$
and phase difference($\triangle \phi$) is given by

$$
\text { A. } \triangle \phi=\left(\frac{2 \pi}{\lambda}\right) \triangle l
$$

B. $\triangle \phi=\left(\frac{\lambda}{2 \pi}\right) \triangle l$
C. $\triangle \phi=(2 \pi \lambda) \triangle l$
D. $\triangle \phi=\left(\frac{1}{2 \pi \lambda}\right) \triangle l$

Answer:

D Watch Video Solution

44. The phase difference between the two waves reaching an arbitary point P from S_{1} and S_{2} is given by
A. $\triangle \phi=\frac{y d}{D}\left(\frac{\lambda}{2 \pi}\right)$
B. $\triangle \phi=\frac{y d}{D}\left(\frac{2 \pi}{\lambda}\right)$
C. $\triangle \phi=\frac{D}{y d}\left(\frac{\lambda}{2 \pi}\right)$
D. $\triangle \phi=\frac{D}{y d}\left(\frac{2 \pi}{\lambda}\right)$

Answer:

D Watch Video Solution

45. The condition for constructive interference
in terms of phase difference is given by
where $\mathrm{n}=0, \pm 2$..........
A. $\triangle \phi_{n}=(n 2 \pi)$
B. $\triangle \phi_{n}=(n \pi)$
C. $\triangle \phi_{n}=\left(\frac{1}{n 2 \pi}\right)$
D. $\triangle \phi_{n}=\left(\frac{1}{n \pi}\right)$

Answer:

D Watch Video Solution

46. The condition for destructive interference in terms of phase difference is given by
where $\mathrm{n}=0, \pm 2$.
A. $\triangle \phi_{n}=\left(n-\frac{1}{2}\right) 2 \pi$
B. $\triangle \phi_{n}=\left(n-\frac{1}{2}\right) 4 \pi$
C. $\triangle \phi_{n}=\left(n-\frac{1}{2}\right) 6 \pi$
D. $\triangle \phi_{n}=\left(n-\frac{1}{2}\right) 3 \pi$

Answer:

D Watch Video Solution

47. The brilliant colours of soap bubbles and
thin oil films on the surface of water are due to
A. Reflection
B. Refraction
C. Interference
D. Diffraction

Answer:

D Watch Video Solution

48. In Fraunhofers' diffraction, the source of
light and screen are kept at

A. Finite

B. Infinite
C. 1 meter
D. half a meter

Answer:

- Watch Video Solution

49. Spherical or cylindrical wavefronts are considered for
A. Fresnel diffraction
B. Braggs diffraction
C. Brewsters diffraction
D. Fraunhoffers' diffraction

Answer:

D Watch Video Solution
50. If the separation between the central maxima of the two objects is greater than the distance between the central maxima and first
minima of any two objects then they are said

to be

A. Just resolved
B. Well resolved
C. Unresolved
D. Resolved

Answer:
(Watch Video Solution
51. The path difference between two identical
waves arriving at a point is 85.5λ.. If the path
difference is 42.5 micrometer, the wavelength is
A. $4771 \stackrel{\circ}{A}$
B. $4871 \stackrel{\circ}{\AA}$
C. $4971 \AA$
D. $4671 \AA$

Answer:

52. In a biprism experiment, the distance between the slit and screen is 1 m and distance between the images of the slit is 0.274 mm . If the fringewidth is 0.2 cm , the wavelength of light is
A. $5380 \AA$
B. $5480 \AA$
C. $5580 \AA$
D. $5680 \AA$

Answer:

D Watch Video Solution

53. In a biprism experiment, the fringe width is
0.4 mm , when the eyepiece is at a distance of

1meter away from the slit. The change in fringe
width, if the eyepiece is moved through a distance of 25 cm towards the byprism without changing any other arrangement is
B. 0.2 mm
C. 0.3 mm
D. 0.4 mm

Answer:

D Watch Video Solution

54. The fringe separation in a biprism is
$3.2 \times 10^{-4} \mathrm{~m}$ when red light of wavelength
$6.4 \times 10^{-7} \mathrm{~m}$ is used, by how much will this
change, if blue light of wavelength 4×10^{-7} m is used with the same setting.
A. 1.2×10^{-4}
B. 2.2×10^{-4}
C. 3.2×10^{-4}
D. 4.2×10^{-4}

Answer:
(Watch Video Solution
55. The path difference of two identical waves arriving at a point is 100.5λ. The phase difference is 44 micrometer. The wavelength of light is used is
A. $4358 \AA$
B. $4368 \AA$
C. $4378 \AA$
D. $4388 \AA$

Answer:

56. If the magnified and diminished images are
4.5 mm and 0.02 mm apart, then d in the biprism experiment is
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer:
57. Calculate the distance of the 30th bright band in a biprism experiment, if the distance of the 15th bright band, from the centre of the interference pattern is 6 mm .
A. 3 mm
B. 6 mm
C. 9 mm
D. 12 mm

Answer:

- Watch Video Solution

58. In Young's experiment, the distance between two slits is 0.8 mm and the distance of the screen from the slit is 1.2 m . If the fringe width is 0.79 mm , the wavelength of light used is
А. $5167{ }^{\circ}$
B. $5267{ }^{\circ}{ }^{\circ}$
C. $5367 \AA$
D. $5467 \AA$

Answer:

D Watch Video Solution

59. In a biprism experiement, the slit is illuminated by light of wavelength $4800 \stackrel{\circ}{A}$. The distance from the slit to the screen is 1 metre.

If the distance between the two virtual sources is 0.3 cm , determine the distance
between the 5th bright band on one side and

5th dark band on the other side.

> A. $12.2 \times 10^{-4} \mathrm{~m}$
> B. $13.2 \times 10^{-4} \mathrm{~m}$
> C. $14.2 \times 10^{-4} \mathrm{~m}$
> D. $15.2 \times 10^{-4} \mathrm{~m}$

Answer:
(Watch Video Solution
60. The limit of resolution of a microscope with self luminous point objects is
A. $0.61 \frac{\lambda}{N . A}$
B. $\frac{N A}{0.61} \lambda$
C. $0.61 \lambda(N A)$
D. $\frac{1}{0.61} \lambda(N A)$

Answer:
(D) Watch Video Solution
61. The resolving power of a microscope, with a pair of non-luminous objects is

$$
\begin{aligned}
& \text { A. } \frac{2(N A)}{\lambda} \\
& \text { B. } \frac{\lambda}{2(N A)} \\
& \text { C. } 2(N A) \lambda \\
& \text { D. } \frac{1}{2(N A) \lambda}
\end{aligned}
$$

Answer:

D Watch Video Solution
62. For constructive interference, the phase difference between two waves should be
А. $0, \frac{\pi}{2}, \pi, \ldots$
B. $0,2 \pi, 4 \pi, \ldots$
C. $\pi, 3 \pi, 5 \pi, \ldots$
D. $\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \ldots$

Answer:

(D) Watch Video Solution
63. For constructive interference, the phase difference between two waves should be

> A. $0, \frac{\pi}{2}, \pi, \ldots$
> B. $0,2 \pi, 4 \pi, \ldots$
> С. $\pi, 3 \pi, 5 \pi, \ldots$
> D. $\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \ldots$

Answer:

D Watch Video Solution
64. In the diffraction pattern due to a single
slit of width 'd' with incident light of wavelength ' λ ', at an angle of diffraction ' θ ', the condition for first minimum is
A. $\lambda \sin \theta=d$
B. $d \cos \theta=\lambda$
C. $d \sin \theta=\lambda$
D. $\lambda \sin \theta=d$

Answer:

65. The resolving power of a telescope of aperture 100 cm for light of wavelength $5.5 \times 10^{-7} \mathrm{~m}$ is

A. 0.149×10^{-7}

B. 1.49×10^{-7}
C. 14.9×10^{-7}
D. 149×10^{-7}

Answer:
66. A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue light?
A. No change
B. Diffraction pattern becomes narrower
C. Band becomes broader
D. Bonds disappear altogether

Answer:

67. Width of the central maxima is

$$
\begin{aligned}
& \text { A. } \frac{\lambda D}{a} \\
& \text { B. } \frac{2 \lambda D}{a} \\
& \text { C. } \frac{3 \lambda D}{a} \\
& \text { D. } \frac{4 \lambda D}{a}
\end{aligned}
$$

Answer:

68. A parallel beam of light $(\lambda=6000 \AA$) is incident normally on a narrow slit of width 0.3 mm . The angular separation between, the first two minima is
A. $2 \times 10^{-3} \mathrm{rad}$
B. 2×10^{-3} degree
C. $3 \times 10^{-3} \mathrm{rad}$
D. $0.3 \times 10^{-3} \mathrm{rad}$

Answer:

69. A plane wave of wavelength $5500 \AA$ is incident normally on a slit of width $2 \times 10^{-2} \mathrm{~cm}$. The width of the central maximum on a screen 50 cms away is

$$
\begin{aligned}
& \text { А. } 2.5 \times 10^{-3} \mathrm{~cm} \\
& \text { B. } 2.75 \times 10^{-3} \mathrm{~cm} \\
& \text { C. } 27.5 \times 10^{-3} \mathrm{~cm} \\
& \text { D. } 5.50 \times 10^{-3} \mathrm{~cm}
\end{aligned}
$$

Answer:

D Watch Video Solution

70. If numerical aperture of a microscope is increased then its
A. resolving power decreases
B. limit of resolution decreases
C. resolving power remains constant
D. limit of resolution increases.

Answer:

- Watch Video Solution

71. If the frequency of the light beam is $14 \times 10^{14} \mathrm{~Hz}$. The wave number of the beam of light in air is
A. $1.66 \times 10^{6} m^{-1}$
B. $2.66 \times 10^{6} m^{-1}$
C. $3.66 \times 10^{6} m^{-1}$
D. $4.66 \times 10^{6} m^{-1}$

Answer:

D Watch Video Solution

72. Which of the following phenomenon proves that light is a transverse wave.
A. Reflection
B. Interference
C. Diffraction
D. Polarization

Answer:

- Watch Video Solution

73. The relation between path length ($\triangle l)$
and phase difference($\triangle \phi$) is given by
A. $\triangle \phi=\left(\frac{2 \pi}{\lambda}\right) \triangle l$
B. $\triangle \phi=\left(\frac{\lambda}{2 \pi}\right) \triangle l$
C. $\triangle \phi=(2 \pi \lambda) \triangle l$
D. $\triangle \phi=\left(\frac{1}{2 \pi \lambda}\right) \triangle l$

Answer:

D Watch Video Solution

74. Select and write the most appropriate answer from the given alternative:- If the magnified and diminished images are 4.5 mm and 2 mm apart, then d in the biprism experiment is
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer:

- Watch Video Solution

75. What are secondary sources light?

- Watch Video Solution

76. What is polarisation of light?

77. What are coherent sources of light ?

- Watch Video Solution

78. Explain interference due to thin films.

- Watch Video Solution

79. A star is emitting light at the wavelength of $5000 \AA$, Determine the limit of resolution of a telescope, having an objective of diameter of 200 inch.

- Watch Video Solution

80. The intensity of light coming from one of
the slits in Young's experiment is twice the intensity of light coming from the other slit.

What will be the approximate ratio of the
intensities of the bright and dark fringes in the resulting interference pattern?

D Watch Video Solution

81. The distance between two consecutive bright fringes in a biprism experiement using light of wavelength $6000 \stackrel{\circ}{A}$ is 0.32 mm , by how much will the distance change, if light of wavelength $4800 \AA$ is used.

D Watch Video Solution

82. A parallel beam of green light of wavelength 546 nm passes through a slit of width 0.4 mm . The intensity pattern of the transmitted light is seen on a screen which is 40 cm away. What is the distance between the two first order of minima?

- Watch Video Solution

83. Whatis theminimumangularseparation between two stars if a telescope is used to
observe them, with an objective of aperture 20 cms. $(\lambda=5900 \AA)$

D Watch Video Solution

84. In a biprism experiment, the fringes are observed in the focal plane of the eye piece at
a distance of 1.2 m from the slits. The distance
between the central bright band and 20th bright band is 0.4 cm . When a convex lens is
placed between biprism and the eyepiece, the distance between the two vertical magnified
images is found to be 0.9 cm . Determine the wavelength of light used.

D Watch Video Solution

85. Monochromatic electromagnetic radiation
from a distant source passes through a slit.The diffraction pattern is observed on the
screen 2.5 m from the slit. If the width of the central maximum is 6.00 mm , what is the slit width if the wavelength is:- 500 nm (visible light)
86. Monochromatic electromagnetic radiation
from a distant source passes through a slit.The diffraction pattern is observed on the screen 2.5 m from the slit. If the width of the central maximum is 6.01 mm , what is the slit width if the wavelength is:- $50 \mu m$ (infrared radiation)
87. Monochromatic electromagnetic radiation
from a distant source passes through a slit.The diffraction pattern is observed on the screen 2.5 m from the slit. If the width of the central maximum is 6.02 mm , what is the slit width if the wavelength is:- 0.500 nm (X rays)

- Watch Video Solution

88. In a biprism experiment, red light of wavelength $6500 \AA$ was used. It was then
replaced by green light of wavelength $5200 \AA$.
Find the value of n for which $(n+1)^{t} h$ green bright band would coincide with the nth bright band, for the same setting.

- Watch Video Solution

89. Compare Young's Double slit interfemce pattern and single slit Diffraction pattern.

90. Derive an expression for fringe width for

 Bright and Dark bands.- Watch Video Solution

