©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - NDA PREVIOUS YEARS

QUESTION PAPER 2021(I)

Multiple Choice Question

1. If $x^{2}+x+1=0$, then what is the value of $x^{199}+x^{200}+x^{201}$
A. -1
B. 0
C. 1
D. 3

Answer:

D Watch Video Solution

2. If $x y, z$ are in GP, then which of the following is/are
correct?
3. In $(3 x), \ln (3 y)$, in (3z) are in AP
4. $x y z+\ln (x), x y z+\ln (y), x y z+\ln (z)$ are in HP

Select the correct answer using the code given below.
A. I only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

D Watch Video Solution

3. $\mathrm{f} \log _{10} 2, \log _{10}\left(2^{x}-1\right), \log _{10}\left(2^{x}+3\right)$ are in AP, then what is x equal to?
A. 0
B. 1
C. $\log _{2} 5$
D. $\log _{5} 2$

Answer:

D Watch Video Solution

4. Let $S=\{2,3,4,5,6,7,9\}$. How many different 3digit numbers (with all digits different) from S can be made which are less than 500?
A. 30
B. 49
C. 90
D. 147

Answer:

- Watch Video Solution

5. If $p=$ (1111... up to n digits), then what is the value of $9 p^{2}+p$?
A. $10^{n} p$
B. $2 p .10^{n}$
C. $10^{n} p-1$
D. $10^{n} p+1$

Answer:

6.

The quadratic
equation
$3 x^{2}-\left(k^{2}+5 k\right) x+3 k^{2}-5 k=0$
has real roots of equal magnitude and opposite sign.

Which one of the following is correct?
A. $0<k<\frac{5}{3}$
B. $0<k<\frac{3}{5}$ only
C. $\frac{3}{5}<k<\frac{5}{3}$
D. No such value of k exists

Answer:
7. If $a_{n}=n(n!)$, then what is $a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{10}$ equal to ?
A. $10!-1$
B. $11!+1$
C. $10!+1$
D. 11 ! -1

Answer:

- Watch Video Solution

8. If p and q are the non-zero roots of the equation
$x^{2}+p x+q=0$, then how many possible values can q
A. Nil
B. One
C. Two
D. Three

Answer:

(D) Watch Video Solution

9. If $\Delta=\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|$ then what is
$3 d+5 g \quad 4 a+7 g \quad 6 g$
$3 e+5 h \quad 4 b+7 h \quad 6 h \quad$ equal to ?
$3 f+5 i \quad 4 c+7 i \quad 6 i$
A. Δ
B. 7Δ
С. 72Δ
D. -72Δ

Answer:

D Watch Video Solution

10. If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are are in HP, then which of the following is/are correct?
$1 \mathrm{a}, \mathrm{b}$, care in AP
11. $(b+c)^{2}(c+a)^{2},(a+b)^{2}$ are in GP
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

D Watch Video Solution

11. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ where $a \in N$, then what is
$A^{100}-A^{50}-2 A^{25}$ equal to ?
A. $-2 I$
B. $-I$
C. 21
D. 1

Answer:

(D) Watch Video Solution

12.

$$
\left|\begin{array}{ccc}
a & -b & a-b-c \\
-a & b & -a+b-c \\
-a & -b & -a-b+c
\end{array}\right|-k a b c=0(a \neq 0, b \neq 0, c \neq 0)
$$

then what is the value of k ?
A. -4
B. -2
C. 2
D. 4

Answer:

- Watch Video Solution

13. What is $\sum_{r=1}^{8 n+7} i^{r}$ equal to where $i=\sqrt{-1}$?
A. -1
B. 1
C. i
D. $-i$

Answer:

D Watch Video Solution

14. If $\mathrm{z}=\mathrm{x}+$ iy where $i=\sqrt{-1}$, then what does the equation $z \bar{z}+|z|^{2}+4(z+\bar{z})-48=0$ represent?
A. Straight line
B. Parabola
C. Circle
D. Pair of straight lines

Answer:
15. Which one of the following is a square root of $2 a+2 \sqrt{a^{2}+b^{2}}$, where $\mathrm{a}, \mathrm{b} \in \mathrm{R}$?
A. $\sqrt{a+i b}+\sqrt{a-i b}$
B. $\sqrt{a+i b}-\sqrt{a-i b}$
C. $2 a+i b$
D. $2 a-i b$

Answer:

D Watch Video Solution

16. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $a x^{2}-b x+c=0$, then which of the following selection is correct :
A. $a^{2}+b^{2}-2 a c=0$
B. $-a^{2}+b^{2}+2 a c=0$
C. $a^{2}-b^{2}+2 a c=0$
D. $a^{2}+b^{2}+2 a c=0$

Answer:

D Watch Video Solution
17. If $C(n, 4), C(n, 5)$ and $C(n, 6)$ are in AP, then what is the value of n ?
A. 7
B. 8
C. 9
D. 10

Answer:

- Watch Video Solution

18. How many 4-letter words (with or without meaning) containing two vowels can be constructed using only
the letters (without repetition) of the word 'LUCKNOW?
A. 240
B. 200
C. 150
D. 120

Answer:

D Watch Video Solution

19. Suppose 20 distinct points are placed randomly on a circle. Which of the following statements is/are correct?
20. The number of straight lines that can be drawn by
joining any two of these points is 380 .
21. The number of triangles that can be drawn by joining any three of these points is 1140 .
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither I nor 2

Answer:

20. How many terms are there in the expansion of $\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+2\right)^{21}$ where a $a \neq 0, b \neq 0$?
A. 21
B. 22
C. 42
D. 43

Answer:

- Watch Video Solution

21. For what values of k is the system of equations $2 k^{2} x+3 y-1=0,7 x-2 y+3-0,6 k x+y+1=0$

consistent?

$$
\begin{aligned}
& \text { A. } \frac{3 \pm \sqrt{11}}{10} \\
& \text { B. } \frac{21 \pm \sqrt{161}}{10} \\
& \text { C. } \frac{3 \pm \sqrt{7}}{10} \\
& \text { D. } \frac{4 \pm \sqrt{11}}{10}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. The inverse of a matrix A is given by $\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$

What is A equal to?
A. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]$

Answer:

- Watch Video Solution

23. What is the period of the function $f(x)=\ln \left(2+\sin ^{2} x\right) ?$
A. $\frac{\pi}{2}$
B. π
C. 2π
D. 3π

Answer:

- Watch Video Solution

24. If $\sin (A+B)=1$ and $2 \sin (A-B)=1$, where $0<A, B<\frac{\pi}{2}$ then what is $\tan \mathrm{A}: \tan \mathrm{B}$ equal to?
A. $1: 2$
B. 2:1
C. $1: 3$
D. $3: 1$

Answer:

D Watch Video Solution

25. Consider a regular polygon with 10 sides, What is
the number of triangles that can be formed by joining
the vertices which have no common side with any of the
sides of the polygon?
A. 25
B. 50
C. 75
D. 100

Answer: B

- Watch Video Solution

26. Consider all the real roots of the equation $x^{4}-10 x^{2}+9=0$. What is the sum of the absolute values of the roots?
A. 4
B. 6
C. 8
D. 10

Answer:

- Watch Video Solution

27. Consider the expansion of $(1+x)^{n}$. Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s
be the coefficients of first, second, nth and $(n+1)$ th terms respectively. What is $(p s+q r)$ equal to?
A. $1+2 n$
B. $1+2 n^{2}$
C. $1+n^{2}$
D. $1+4 n$

Answer:

D Watch Video Solution

28. Let $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2} \quad$ for
$0 \leq x, y, z \leq 1$.What is the value of
$x^{1000}+y^{1001}+z^{1002} ?$
A. 0
B. 1
C. 3
D. 6

Answer: C

D Watch Video Solution

29. Let $\sin x+\sin y=\cos x+\cos y$ for all $x, y \in R$.

What is $\tan \left(\frac{x}{2}+\frac{y}{2}\right)$ equal to?
A. 1
B. 2
C. $\sqrt{2}$
D. $2 \sqrt{2}$

- Watch Video Solution

30. Let $A=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $(m I+n A)^{2}=A$ where m ,
n are positive real numbers and I is the identity matrix.
What is $(m+n)$ equal to?
A. 0
B. $\frac{1}{2}$
C. 1
D. $\frac{3}{2}$
31. Whet is the value of the following?
$\cot \left[\sin ^{-1}\left(\frac{3}{5}\right)+\cot ^{-1}\left(\frac{3}{2}\right)\right]$
A. $\frac{6}{17}$
B. $\frac{7}{16}$
C. $\frac{16}{7}$
D. $\frac{17}{6}$

Answer:

D Watch Video Solution

32. Let $4 \sin ^{2} x-3$, where $0 \leq x \leq \pi$. What is $\tan 3 x$ is equal to?
A. -2
B. -1
C. 0
D. 1

Answer:

- Watch Video Solution

33. Let p, q and 3 be respectively the first, third and fifth terms of an A.P. Let d be the common difference. If the
product [pq] is minimum, then what is the value of d ?
A. 1
B. $\frac{3}{8}$
C. $\frac{9}{8}$
D. $\frac{9}{4}$

Answer:

- Watch Video Solution

34. Consider the following statements for the equation
$x^{3}-8=0$
35. The roots are non-collinear.
36. The roots lie on a circle of unit radius.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

D Watch Video Solution

35. Let the equation $\sec x \cdot \operatorname{cosec} x=p$ have a solution, where p is a positive real number, what should be the
smallest value of p ?
A. $\frac{1}{2}$
B. 1
C. 2
D. Minimum does not exist

Answer:

- Watch Video Solution

36. For what value of θ, where $0<\theta<\frac{\pi}{2}$ does $\sin \theta+\sin \theta \cdot \cos \theta$ attain maximum value?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer:

- Watch Video Solution

37. Consider three sets X, y and Z having 6,5 and 4 elements respectively. All these 15 elements are distinct.

Let $S=(X-Y) \cup Z$. How many proper subsets does
S have?
A. 255
B. 256
C. 1023
D. 1024

Answer:

- Watch Video Solution

38. Consider the following statements in respect of relations and functions:
39. All relations are functions but all functions are not relations.
40. A relation from A to B is a subset of Cartesian product AxB.
41. A relation in A is a subset of Cartesian product $A \times A$. Which of the above statements are correct?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer:

D Watch Video Solution

39. If $\log _{10} 2 \log _{2} 10+\log _{10}\left(10^{x}\right)=2$, then what is the value of x ?
A. 0
B. 1
C. $\log _{2} 10$
D. $\log _{5} 2$

Answer:

D Watch Video Solution

40. Let $A B C$ be a triangle. If
$\cos 2 A+\cos 2 B+\cos 2 C=-1$, then which one of
the following is correct?
A. $\sin A \sin B \sin C=0$
B. $\sin A \sin B \cos C=0$
C. $\cos A \sin B \sin C=0$
D. $\cos A \cos B \cos C=0$

Answer: D

- Watch Video Solution

41. What is the value of the following determinants?
$\left|\begin{array}{lll}\cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C\end{array}\right|$
A. -1
B. 0
C. $2 \tan A \sin B \sin C$
D. $-2 \tan A \sin B \sin C$

Answer: B

- Watch Video Solution

42. Suppose set A consists of first 250 natural numbers
that are multiple of 3 and set B consists of first 200 even natural numbers. How many elements does $A \cup B$ have?
A. 324
B. 364
C. 384
D. 400

Answer:

D Watch Video Solution

43. Let S , denote the sum of first k terms of on AP. What
is $\frac{S_{30}}{S_{20}-S_{10}}$ equal to?
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

44. If the roots of the equation,
$4 x^{3}-(5 k-1) x+5 k=0$
differ by unity them which one of the following is a possible value of k ?
A. 3
B. -1
C. $-\frac{1}{5}$
D. $\frac{3}{5}$

Answer:

D Watch Video Solution

45. Consider the digits $3,5,7,9$. Which is the number of 5
digit numbers formed by these digits in which each of these four digits appears?
A. 240
B. 180
C. 120
D. 60

- Watch Video Solution

46. How many distinct matrices exist which all four entries taken from $(1,2)$?
A. 16
B. 24
C. 32
D. 48

Answer:
47. If $i=\sqrt{-1}$, then how many values does $i^{-2 n}$ have for different $n \in Z$?
A. One
B. Two
C. Four
D. Infinite

Answer:

D Watch Video Solution

48. If $x=\frac{a}{b-c}, y=\frac{b}{c-a}, z=\frac{c}{a-b}$, then what is the value of the following ?
$\left|\begin{array}{lll}1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1\end{array}\right| \cdot\left|\begin{array}{lll}1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 3 & 1\end{array}\right|$
A. 0
B. 1
C. abc
D. $a b+b c+c a$

Answer:

- Watch Video Solution

49. Consider the following in respect of the matrix:
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
50. Inverse of A does not exist.
51. $A^{3}=A$
52. $3 A=A^{2}$

Which of the above are correct?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer:

- Watch Video Solution

50. Consider the following for the next two que that follow:

A circle is passing through the points [5,-8], $(-2,9)$ and $(2,1)$

Which are the coordinates of the centre of the circle.
A. [-2,-50]
B. [-50,-20]
C. [-24,-58]
D. [-58,24]

Answer:

51. A circle is passing through the points $[5,-8],(-2,9)$ and
$(2,1)$
If r is the radius of the circle, then which of the following is correct?
A. $r<10$
B. $10<r<30$
C. $30<r<60$
D. $r>60$

Answer:

52. Conider the following for the next two (02 items
that follow)
The two vertices of an equilateral triangle are [0.0] and
[2,2].
53. The third vertex has least one irrational coordinate
54. The area is irrational

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2
53. Direction: Consider the following for the next two
[02] items that follow,
The coordinates of three consecutive vertices of a parallelogram $A B C D$ are $A[1,3], B[-1,2]$ and $C[3,5]$

What is the equation of the diagonal $B D$?
A. $2 x-3 y+2=0$
B. $3 x-2 y+5=0$
C. $2 x-3 y+8=0$
D. $3 x-2 y-5=0$

- Watch Video Solution

54. The equations of the sides $A B, B C$ and $C A$ of a triangle ABC are $\quad x-2=0, y+1=0 \quad$ and $x+2 y-4=0$ respectively.

What is the equation of the altitude through B on $A C$?
A. $x-3 y+1=0$
B. $x-3 y+4=0$
C. $2 x-y+4=0$
D. $2 x-y-5=0$

Answer:

55. The locus of a point $P(x, y, z)$ which moves in such a way that $\mathrm{z}=7$ is a
A. line parallel to x-axis
B. line parallel to y-axis
C. line parallel to z -axis
D. plane parallel to $x y$-plane.

Answer:

- Watch Video Solution

56. The xy-plane divides the line joining the points $(-1,3,4)$ aned ($2,-5,6$)
A. internally in the ratio $2: 3$
B. internally in the ratio $3: 2$
C. externally in ratio $2: 3$
D. extenally in the ratio $2: 1$

Answer:

- Watch Video Solution

57. Find the number of sphere of radius r touching the coordinate axes.
A. 4
B. 6
C. 8
D. infinite

Answer:

- Watch Video Solution

58. If $\vec{a}+3 \vec{b}=3 \hat{i}-\hat{j}$ and $2 \vec{a}+\vec{b}=\hat{i}-2 \hat{j}$, then what is the angle between \vec{a} and \vec{b} ?
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

59. If $(\vec{a}+\vec{b})$ is perpendicular to \vec{a} and magnitude of \vec{b} is twice that of \vec{a} then what is the value of $(4 \vec{a}+\vec{b}) \cdot \vec{b}$ equal to?
A. 0
B. 1
C. $8|\vec{a}|^{2}$
D. $8\left|\vec{b}^{2}\right|$

Answer:

D Watch Video Solution

60. If the position vectors of A and B are $(\sqrt{2}-1) \hat{i}-\hat{j}$ and $\hat{i}+(\sqrt{2}+1) \hat{j}$ respectively, then what is the magnitude of $\vec{A} B$?
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. $2 \sqrt{3}$
D. $3 \sqrt{3}$

Answer:

- Watch Video Solution

61. If $y=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+x^{16}\right)$
then what is $\frac{d y}{d x}$ at $\mathrm{x}=0$ equal to?
A. 0
B. 1
C. 2
D. 4

Answer:

62. If $y=\cos x \cdot \cos 4 x \cdot \cos 8 x$, then what is $\frac{1}{y} \frac{d y}{d x}$ at $x=\frac{\pi}{4}$ equal to?
A. -1
B. 0
C. 1
D. 3

Answer: A

- Watch Video Solution

63. Let $f(x)$ be a polynomial function such that $f(x)=x^{4}$. What is $f^{\prime}(1)$ equal to?
A. 0
B. 1
C. 2
D. 4

Answer:

- Watch Video Solution

64. What is $\lim _{n \rightarrow \infty} \frac{a^{n}+b^{n}}{a^{n}-b^{n}}$ where $a>b>1$, equal to?
A. -1
B. 0
C. 1
D. Limit does not exist

Answer:

D Watch Video Solution

65. Let $f(x)= \begin{cases}1+\frac{x}{2 k} & 0<x<2 \\ k x & 2 \leq x<4\end{cases}$

If $\lim _{x \rightarrow 2} f(x)$ exists, then what is the value of k ?
A. -2
B. -1
C. 0
D. 1

Answer:

- Watch Video Solution

66. Consider the following statements in respect of
$f(x)=|x|-1:$
67. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$.
68. $f(x)$ is differentiable at $x=0$.

Which of the above statement is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neithe 1 nor 2

Answer:

- Watch Video Solution

67. If $f(x)=\frac{[x]}{|x|}, x \neq 0$, where [.] denotes the greatest integer function, then what is the right-hand limit of $f(x)$ at $x=1$?
A. -1
B. 0
C. 1
D. Right-hand limit of $f(x)$ at $x=1$ does not exist.

Answer:

D Watch Video Solution

68. What is the range of the function $f(x)=1-\sin x$ defined on entire real line?
A. $(0,2)$
B. $[0,2]$
C. $(-1,1)$
D. $[-1,1]$

Answer:

- Watch Video Solution

69. What is the slope of the tangent of
$y=\cos ^{-1}(\cos x)$ at $x=-\frac{\pi}{4} ?$
A. -1
B. 0
C. 1
D. 2
70. What is the integral of $f(x)=1+x^{2}+x^{4}$ with respect to x^{2} ?
A. $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+C$
B. $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+C$
C. $x^{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+C$
D. $x^{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+C$

Answer:

D Watch Video Solution

71. Consider the following statements in respect of the function $f(x)=x^{2}+1$ in the interval $[1,2]$:
72. The maximum value of the function is 5 .
73. The minimum value of the function is 2 .

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neithe 1 nor 2

Answer:

72. If $\mathrm{f}(\mathrm{x})$ satisfics $\mathrm{f}(1)=\mathrm{f}(4)$, the what is $\int_{1}^{4} f^{\prime}(x) \mathrm{dx}$ equal to?
A. -1
B. 0
C. 1
D. 2

Answer:

- Watch Video Solution

73. What is $\int_{0}^{\frac{\pi}{2}} e^{\ln (\cos x)} d x$ equal to?
A. -1
B. 0
C. 1
D. 2

Answer:

D Watch Video Solution

74. If $\int \sqrt{1-\sin 2 x} d x=A \sin x+B \cos x+C$, where
$0<x<\frac{\pi}{4}$, then which one of the following is correct?
A. $A+B=0$
B. $A+B-2=0$
C. $A+B+2=0$
D. $A+B-1=0$

Answer:

- Watch Video Solution

75. What is the order of the differential equation of all ellipses whose axes are along the coordinate axes?
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

76. What is the degree of the differential equation of all circles touching both the coordinate axes in the first quadrant?
A. 1
B. 2
C. 3
D. 4

(D) Watch Video Solution

77. What is the differential equation of $y=A-\frac{B}{x}$?
A. $x y_{2}+y_{1}=0$
B. $x y_{2}+2 y_{1}=0$
C. $x y_{2}-2 y_{1}=0$
D. $2 x y_{2}+y_{1}=0$

Answer:

D Watch Video Solution

78. What is $\int_{0}^{\pi} \log \left(\tan \frac{x}{2}\right) \mathrm{dx}$ equal to?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer:

D Watch Video Solution

79. Where does the tangent to the curve $y=e^{x}$ at the point $(0,1)$ meet x-axis?
A. $(1,0)$
B. $(-1,0)$
C. $(2,0)$
D. $\left(-\frac{1}{2}, 0\right)$

Answer:

D Watch Video Solution

80. Consider the following statements in respect of the
function $f(x)=x+\frac{1}{x}$,
81. The local maximum value of $f(x)$ is less than its local minimum value.
82. The local maximum value of $f(x)$ occurs at $x=1$.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neithe 1 nor 2

Answer:

D Watch Video Solution

81. What is the maximum area of a rectangle that can be inscribed in a circle of radius 2 units?
A. 4 square units
B. 6 square units
C. 8 square units
D. 16 square units

Answer: C

D Watch Video Solution

82. $\int \frac{d x}{x\left(x^{2}+1\right)}$
A. $\frac{1}{2} \ln \left(\frac{x^{2}}{x^{2}+1}\right)+C$
B. $\ln \left(\frac{x^{2}}{x^{2}+1}\right)+C$
C. $\frac{3}{2} \ln \left(\frac{x^{2}}{x^{2}+1}\right)+C$
D. $\frac{1}{2} \ln \left(\frac{x^{2}+1}{x^{2}}\right)+C$

Answer:

D Watch Video Solution

83. What is the derivative of $e^{e^{x}}$ with respect to e^{x} ?
A. $e^{e^{x}}$
B. e^{x}
C. $e^{e^{x}} e^{x}$
D. $e e^{x}$

Answer:
84. What is the condition that $f(x)=x^{3}+x^{2}+k x$ has no local extremum?
A. $4 k<1$
B. $3 k>1$
C. $3 k<1$
D. $3 k \leq 1$

Answer:
85. If $f(x)=2^{x}$, then what is $\int_{2}^{10} \frac{f^{\prime}(x)}{f(x)} d x$ equal to ?
A. $4 \ln 2$
B. In 4
C. $\ln 5$
D. $8 \ln 2$

Answer:

- Watch Video Solution

86. If $\int_{-2}^{0} f(x) d x=k$, then $\int_{-2}^{0}|f(x)| d x$ is
A. less than k
B. greater than k
C. less than or equal to k
D. greater than or equal to k

Answer:

- Watch Video Solution

87. If the function $f(x)=x^{2}-k x$ is monotonically increasing the interval $(1, \infty)$, then which one of the following is correct ?
A. $k<2$
B. $2<k<3$
C. $3<k<4$
D. $k>4$

Answer:

- Watch Video Solution

88. What is the area bounded by $\mathrm{y}=[\mathrm{x}]$, where [.] is the greatest integer function, the x-axis and the lines $x=-1$.

5 and $x=-1.8$?
A. 0.3 square unit
B. 0.4 square unit
C. 0.6 square unit
D. 0.8 square unit

Answer:

D Watch Video Solution

89. The tangent to the curve $x^{2}=y$ at $(1,1)$ makes an angle θ with the positive direction of x-axis. Which one of the following is correct?
A. $\theta<\frac{\pi}{6}$
B. $\frac{\pi}{6}<\theta<\frac{\pi}{4}$
C. $\frac{\pi}{4}<\theta<\frac{\pi}{3}$
D. $\frac{\pi}{3}<\theta<\frac{\pi}{2}$

Answer:

- Watch Video Solution

90. Consider the following relations for two events E and F :
91. $P(E \cap F) \geq P(E)+P(F)-1$
92. $P(E \cup F)=P(E)+P(F)+P(E \cap F)$
93. $P(E \cup F) \leq P(E)+P(F)$

Which of the above relations is/are correct ?
A. 1 only
B. 3 only
C. 1 and 3 only
D. 1, 2 and 3

Answer:

D Watch Video Solution

91. If $P(A \mid B)<P(A)$, then which one of the following is correct ?
A. $P(B \mid A)<P(B)$
B. $P(B \mid A)>P(B)$
C. $P(B \mid A)=P(B)$
D. $P(B \mid A)>P(A)$

Answer:

- Watch Video Solution

92. A problem is given to three students A, B and C, whose probabilities of solving the problem indrependently are $\frac{1}{2}, \frac{3}{4}$ and p respectively, if the probability that the problem can be solved is $\frac{29}{32}$, then what is the value of p ?
A. $\frac{2}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer:

D Watch Video Solution

93. In a cricket match, a batsman hits a six 8 times out
of 60 balls he play What is the probability that on a ball
played he does not hit a six ?
A. $\frac{2}{3}$
B. $\frac{1}{15}$
C. $\frac{2}{15}$
D. $\frac{13}{15}$

- Watch Video Solution

94. Two regression lines are given as $3 x-4 y+8=0$ and $4 x-$
$3 y-1=0$
Consider the following statements :
95. The regression line of y on x is $y=\frac{3}{4} x+2$
96. The regression line of x on y is $x=\frac{3}{4} y+\frac{1}{4}$.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

D Watch Video Solution

95. Two regression lines are given as $3 x-4 y+8=0$ and $4 x-$
$3 y-1=0$
Consider the following statements:
96. The coefficient of correlations r is $\frac{3}{4}$.
97. The means of x and y are 3 and 4 respectively.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2

D. Neither 1 nor 2

Answer:

D Watch Video Solution

96. The marks obtained by 60 students in a certain
subject out of 75 are given below :

Warks	Number of students
$15-20$	4
$20-25$	5
$25-30$	11
$30-35$	6
$35-40$	5
$40-45$	8
$45-50$	9
$50-55$	6
$55-60$	4
$60-65$	2

What is the median ?
A. 35
B. 38
C. 39
D. 40

Answer:

D Watch Video Solution

97. The marks obtained by 60 students in a certain
subject out of 75 are given below:

Marks	Number of students
$15-20$	4
$20-25$	5
$25-30$	11
$30-35$	6
$35-40$	5
$40-45$	8
$45-50$	9
$50-55$	6
$55-60$	4
$60-65$	2

What is the mode?
A. $27 \cdot 27$
B. $27 \cdot 73$
C. $27 \cdot 93$
D. $28 \cdot 27$

Answer:

D Watch Video Solution

98. What is the mean of natural numbers contained in
the interval $(15,64)$?
A. $36 \cdot 8$
B. $38 \cdot 3$
C. $39 \cdot 5$
D. $40 \cdot 3$

Answer:

99. For the set of number $x, x, x+2, x+3, x+10$ where x is a natural number, which of the following is/are correct ?
\&
100. Mean > Mode
101. Median > Mean

Select the correct answer using the code given below.
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

D Watch Video Solution

100. The mean of 10 observations is 5.5. If each observation is multiplied by 4 and subtracted from 44, then what is the new mean ?
A. 20
B. 22
C. 34
D. 44

- Watch Video Solution

101. If g is the geometric mean of $2,4,8,16,32,64,128$,
$256,512,1024$, then which one of the following is correct
?
A. $8<g<16$
B. $16<g<32$
C. $32<g<64$
D. $g>64$

Answer:
102. If the harmonic mean of 60 and x is 48 , then what is the value of x ?
A. 32
B. 36
C. 40
D. 44

Answer: C

D Watch Video Solution

103. What is the mean deviation of first 10 even natural
A. 5
B. $5 \cdot 5$
C. 10
D. $10 \cdot 5$

Answer:

D Watch Video Solution

104. If
$\sum_{r=1}^{10} x_{i}=110$ and $\sum_{i=1}^{10} x_{i}^{2}=1540$
then what is the variance ?
A. 22
B. 33
C. 44
D. 55

Answer:

- Watch Video Solution

105. 3-digit numbers are formed using the digits $1,3,7$ without repetion of digits. A number is randonly selected. What is the probability that the number is divisible by 3 ?
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer:

- Watch Video Solution

106. What is the probability that the roots of the equation $\quad x^{2}+x+n=0 \quad$ are real, where $n \in N$ and $\pi<4$?
A. 0
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

107. If A and B are two events such that $P(\operatorname{not} A)=\frac{7}{10}$, $\mathrm{P}($ not B$)=\frac{3}{10}$ and $P\left(\frac{A}{B}\right)=\frac{3}{14}$, then what is $P\left(\frac{B}{A}\right)$ equal to ?
A. $\frac{11}{14}$
B. $\frac{9}{11}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer:

D Watch Video Solution

108. Seven white balls and three black balls are randomly placed in a row. What is the probability that no two black balls are placed adjecently ?
A. $\frac{7}{15}$
B. $\frac{8}{15}$
C. $\frac{11}{15}$
D. $\frac{13}{15}$

Answer: A

- Watch Video Solution

