

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

DETERMINANTS

1. If $D=|11111+x1111+y|{
m f\,o\,r} x
eq 0,\,y
eq 0$ then D is (1)

divisible by neither x nor y (2) divisible by both x and y (3)

divisible by x but not y (4) divisible by y but not x

2. Let a, b, c be any real numbers. Suppose that there are real numbers y, z not all zero such that Х, x = cy + bz, y = az + cx, z = bx + ay. Then $a^2 + b^2 + c^2 + 2abc$ is equal to (1) 2 (2) 1 (3) 0 (4) 1

Watch Video Solution

3. If
$$\alpha, \beta \neq 0$$
, and $f(n) = \alpha^n + \beta^n$ and
 $\begin{vmatrix} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{vmatrix} = K(1-\alpha)^2(1-\beta)^2(\alpha-\beta)^2$
then K is equal to

.nen k is equal to

(1)
$$\alpha\beta$$

(2) $\frac{1}{\alpha\beta}$

(3) 1

(4) - 1

4. The set of all values of λ for which the system of linear equations : $2x_1 - 2x_2 + x_3 = \lambda x_1 \ 2x_1 - 3x_2 + 2x_3 = \lambda x_2$ $-x_1 + 2x_2 = \lambda x_3$ has a non-trivial solution, (1) is an empty set (2) is a singleton (3) contains two elements (4) contains more than two elements

View Text Solution

5. The system of linear equations $x + \lambda y - z = 0$ $\lambda x - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for : (1) infinitely many values of λ . (2) exactly one value of λ . (3) exactly two values of λ . (4) exactly three values of λ . **6.** If S is the set of distinct values of 'b for which the following system of linear equations x + y + z = 1 x + ay + z = 1ax + by + z = 0 has no solution, then S is : (1) a finite set containing two or more elements (2) a singleton set (3) an empty set (4) an infinite set

