©゙" doubtnut

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

DIFFERENTIAL EQUATIONS

Others

1. A particle just clears a wall of height b at distance a and strikes the ground at a
distance c from the point of projection. The angle of projection is (1) $\frac{\tan ^{-1} b}{a c}$ (2) 45° (3) $\frac{\tan ^{-1}(b c)}{a(c-a)}(4) \frac{\tan ^{-1}(b c)}{a}$

D Watch Video Solution

2. The differential equation of all circles passing through the origin and having their centres on the x -axis is (1) $x^{2}=y^{2}+x y \frac{d y}{d x}$ (2) $x^{2}=y^{2}+3 x y \frac{d y}{d x}$ (3) $y^{2}=x^{2}+2 x y \frac{d y}{d x}$
(4) $y^{2}=x^{2}-2 x y \frac{d y}{d x}$
3. The solution of the differential equation
$\frac{d y}{d x}=\frac{x+y}{x} \quad$ satisfying the condition
$y(1)=1$ is (1) $y=\ln x+x$ (2) $y=x \ln x+x^{2}$
(3) $y=x e(x-1)(4) y=x \ln x+x$

- Watch Video Solution

4. The differential equation of the family of circles with fixed radius 5 units and centre on the line

$$
\begin{equation*}
y=2 \tag{1}
\end{equation*}
$$

is

$$
\begin{align*}
& (x-2) y^{\prime 2}=25-(y-2)^{2} \\
& (y-2) y^{\prime 2}=25-(y-2)^{2} \tag{3}\\
& (y-2) 2 y^{\prime 2}=25-(y-2)^{2} \tag{4}\\
& (x-2) 2 y^{\prime 2}=25-(y-2)^{2}
\end{align*}
$$

D Watch Video Solution

5. The differential equation which represents
the family of curves $y=c_{1} e^{c_{2} x}$, where c_{1} and c_{2}
are arbitrary constants, is (1) $y^{\prime}=y^{2}$

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime} y(3) y y^{\prime \prime}=y^{\prime}(4) y y^{\prime \prime}=\left(y^{\prime}\right)^{2} \tag{2}
\end{equation*}
$$

6. Solution of the differential equation $\cos x d y=y(\sin x-y) d x, 0<x<\frac{\pi}{2}$
$\sec x=(\tan x+c) y$ (B) $y \sec x=\tan x+c$
(C) $\quad y \tan x=\sec x+c$
$\tan x=(\sec x+c) y$

D Watch Video Solution

7.

If
$\frac{d y}{d x}=y+3 \quad$ and $\quad \mathrm{y}(0)=2$, then $y(\ln 2)$
is equal to : (1) $7(2) 5(3) 13(4)-2$
8. The population $p(t)$ at time t of a certain mouse species satisfies the differential
equation $\quad \frac{d p(t)}{d t}=0.5 p(t)-450$.
$p(0)=850$, then the time at which the population becomes zero is
9. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (1) 3000 (2) 3500 (3) 4500 (4) 2500

D Watch Video Solution

10. Let the population of rabbits surviving at a
time t be governed by the differential
equation $\quad\left(d p \frac{t}{d t}=\frac{1}{2} p(t)-200\right.$.
$p(0)=100$, then $\mathrm{p}(\mathrm{t})$ equals

D Watch Video Solution

