

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHEMATICS 2004

Mcq

1. IF the angle between the pair of straight lines

represented by the equation

$$x^2-3xy+\lambda y^2+3x-5y+2=0$$
 is $an^{-1}igg(rac{1}{3}igg)$, where

 λ is non-negative real number, then value of λ is

- A. 2
- B. 0
- C. 3
- D. 1

- **2.** distance of the lines 2x 3y 4 = 0 from the point
- (1,1) measured paralel to the line x+y=1 is
 - A. $\sqrt{2}$
 - B. $5/\sqrt{2}$
 - C. $1/\sqrt{2}$

Watch Video Solution

3. The equations of bisectors of the angles between the lines $\left|x\right|=\left|y\right|$ are

A.
$$y = \pm x$$
 and $x = 0$

B.
$$x = \frac{1}{2} \text{ and } y = \frac{1}{2}$$

C.
$$y=0$$
 and $x = 0$

D. none of these

Answer:

4. The base of vertices of an isosceles triangle PQR are Q 1,3 and R -2,7.The vertex p can be:

B.
$$\frac{1}{2}$$
, §

B.
$$\frac{1}{2}$$
, 5

D. 'none of these

Answer:

5. The normal at the point (3, 4) on a circle cuts the circle at the point (-1,-2). Then the equation of the circle is

A.
$$x^2 + y^2 + 2x - 2y - 13 = 0$$

B.
$$x^2 + y^2 - 2x - 2y - 11 = 0$$

$$\mathsf{C.}\, x^2 + y^2 - 2x + 2y + 12 = 0$$

D.
$$x^2 + y^2 - 2x - 2y + 14 = 0$$

Answer:

Watch Video Solution

6. If $\cos P=\frac{1}{7}$ and $\cos Q=\frac{13}{14}$, whera P and Q both are acute angles. Then the value of P-Q is

A. 30°
B. 60°
C. 45°
D. 75°
Answer:
Watch Video Solution
7. The equation $3 \cos x + 4 \sin x = 6 \text{ has Solution}$
A. finite
B. infinite
C. one

D. no

Answer:

Watch Video Solution

8. If
$$\sec^{-1} x = \cos ec^{-1} y$$
 then $\frac{\cos^{-1}(1)}{x} + \frac{\cos^{-1}(1)}{y} =$

A. π

B. $\pi/4$

 $\mathsf{C.} - \pi/2$

D. $\pi/2$

Answer:

9. If 'n' be any integer ,then n(n+1)(2n+1) is :

A. odd number

B. integral

C. perfect square

D. does not

Answer:

Watch Video Solution

10. If $\tan \theta = -\frac{4}{3}$, then $\sin \theta$ is

 $A. -\frac{4}{5} \quad \text{but} \quad \neq \frac{4}{5}$

B.
$$-\frac{4}{5}$$
 or $\frac{4}{5}$

C.
$$\frac{4}{5}$$
 but $\neq -\frac{4}{5}$
D. $\frac{1}{5}$

11. If
$$C=2\cos heta$$
, then the value of the determinant

$$\Delta = egin{vmatrix} C & 1 & 0 \ 1 & C & 1 \ 6 & 1 & c \end{bmatrix}$$
 , is

A.
$$\frac{\sin 4\theta}{\sin \theta}$$

$$\mathrm{B.}\; \frac{2\sin^2 2\theta}{\sin \theta}$$

C.
$$4\cos^2\theta 2\cos\theta - 1$$

D. none of these

Answer:

Watch Video Solution

- 12. The set of values of x for which the inequality
- |x-1|+|x+1|< 4 always holds true, is
 - A. 2,2
 - B. $-\infty, 2\cup 2, \infty$
 - $\mathsf{C}.-\infty,1]\cup[1,\infty]$
 - D. none of these

Answer:

13. Equation of the parabola, whose vertex is (-1, -2), axis is vertical and which passes through the point (3, 6), is

A.
$$x^2 + 2x - 2y - 3 = 0$$

$$\mathtt{B.}\,2x^2=3y$$

C.
$$x^2 - 2x + 2y + 3 = 0$$

D.
$$x^2 - 2x - 2y - 3 = 0$$

Answer:

$$9x^2 + 4y^2 - 4y + 1 = 0$$
, are

A.
$$\frac{1}{2}$$
, 9

B.
$$3, \frac{2}{5}$$

c. $\frac{2}{2}$

Answer:

Watch Video Solution

15.
$$f(x) = \cot^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) \text{ and } g(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

If

D. $-\frac{3}{2}$

A. $\frac{3}{2(1+a^2)}$

B. $\frac{3}{2(1+x^2)}$

c. $\frac{3}{2}$

then $\lim_{x o a} rac{f(x) - f(a)}{g(x) - g(a)}, 0 < rac{1}{2}$ is :

Answer:

Watch Video Solution

A. f is discontinous at x = 1

16. If fx = $\left\{ egin{array}{ll} x & x \leq \\ 2x-1 & 1 < x \end{array}
ight. x \leq 1$ then :

B. f is differentiable at x = 1

C. c is continous but not different at x = 1

D. none of these

Answer:

Watch Video Solution

17. $\lim_{x o -2} \ rac{\sin^{-1}(x+2)}{x^2+2x}$ is equal to

A. 0

 $B. \infty$

 $C. - \frac{1}{2}$

D. none of these

Answer:

18. The derivative of f(x)=3ert 2+xert at the point

$$x_0=\,-\,3$$
 is

A. 3

B.-3

C. 0

D. none of these

Answer:

19. Derivative of the function $f(x) = \log_5(\log_7(x))$ and

$$x > 7$$
 is :

A.
$$\frac{1}{(x \log 5)(\log 7)(\log_7 x)}$$

$$\mathsf{B.}\;\frac{1}{x(\log 5)(\log 7)}$$

$$\mathsf{C.}\,\frac{1}{x\log x}$$

D. none of these

Answer:

Watch Video Solution

20. If z=x+iy, $z^{1/3}=a-ib$, then $\dfrac{x}{a}-\dfrac{y}{b}=ka^2-b^2$

, where k is equal to :

- **A.** 1
- B. 2
- C. 3
- D. 4

- 21. The number of real solutions of the equation
- $1+|e^x-1|=e^x(e^x-2)$ is :
 - A. 1
 - B. 2
 - C. 4

Answer: B

Watch Video Solution

 $u = x^2 + y^2$ and x = s + 3t, y = 2s - t, then

22.

If

A. 12

B. 10

C. 32

D. 36

Watch Video Solution

23. If the equation $x^2+qx+p=0$ have a common root then p+q+1 is equal to :

A. 0

B. 1

C. 2

D. -1

Answer:

24. Let z_1, z_2, z_3 be three vertices of an equilateral triangle

circumscribing the circle $|z|=rac{1}{2}.$ If $z_1=rac{1}{2}+rac{\left(\sqrt{3}
ight)i}{2}$ and z_1,z_2,z_3 were in anticlockwise sense then z_2 is

A.
$$1+\sqrt{3i}$$

B.
$$1-\sqrt{3i}$$

$$D. - 1$$

Answer:

Watch Video Solution

25. If $z=\dfrac{-2}{1+\sqrt{3i}}$, then the value of age z is

B.
$$\pi/3$$

$$\mathsf{C.}\,2\pi/3$$

D.
$$\pi/4$$

Watch Video Solution

26. The locus of the point z satisfying arg $\left[\frac{z-1}{z+1}\right]$ = k,where k is non zero is :

A. a circle with centre on y - axis

B. circle with centre on x - axis

C. a straight line parallel to x- axis

D. a straight line making an angle $60\,^\circ$ with the x - axis

Answer:

Watch Video Solution

- **27.** If P(3,4,5),Q(4,6,3) ,R (-1,2,4) ,S(1,0,5) ,then the projection of
- RS on PQ is:
 - A. -2/3
 - $\mathsf{B.}\,4/3$
 - $\mathsf{C.}\,1/2$
 - D. 2

Answer:

28. If a line makes α, β, γ with the positive direction of x,y,z-

axis respectively . Then $\cos^2 lpha + \cos^2 eta + \cos^2 \gamma$ is equal to :

A.
$$1/2$$

$$B. -1/2$$

$$C. -1$$

D. 1

Answer:

29. The projection of a line segment on the coordinate axes
are 2,3,6. Then the length of the line segment is
A. 7
B. 5
C. 1
D. 11
Answer:
Watch Video Solution
30. The decimal equivalent ot the binay number 10011.1 is
A. 19.5

B. 11001.11 C. 5005.55 D. 19.1 **Answer: Watch Video Solution 31.** The binary represents of 60 is : A. 111100 B. 101110 C. 110000 D. 110011

Watch Video Solution

32. Which of the following statement is acontradiction $(p \wedge q) \wedge (\neg (p \vee q))$

A.
$$p \wedge q \Rightarrow p$$

B.
$${ ilde{\sim}}(p \wedge q) \vee p$$

C.
$$({ extstyle extstyle p}) \cap ({ extstyle extstyle p})$$

D.
$$q \wedge { ilda \cdot} (p \wedge q)$$

Answer:

$$f(x) = \sin\Bigl(rac{\pi x}{n-1}\Bigr) + \cos\Bigl(rac{\pi x}{n}\Bigr), n \in Z, n > 2$$
, is

- A. 2rnn-1
- B. 4nn-1
- C. 2nn-1
- D. none of these

Watch Video Solution

34. The radius of the circle whose arc of length 15 km makes an angle of $\frac{3}{4}$ radian at the centre ,is :

B. 10cm

$$\mathsf{C.}\ 22\frac{2}{2}cm$$

D. $11\frac{1}{4}cm$

Answer:

Watch Video Solution

35. If $3^x+2^{2x}\geq 5^x$, then the solution set for x, is

A.
$$-\infty, 2$$
]

B.
$$[2, \infty$$

C. [2]

D. [0,2]

Answer:

Watch Video Solution

- **36.** The number of integral solutions of $\dfrac{x+1}{x^2+2}>\dfrac{1}{4}$ is
 - A. 1
 - B. 2
 - C. 5
 - D. none of these

Answer:

37. The value of k for which the equation $(k-2)x^2+8x+k+4=0$ has both roots real, distinct and negative, is

- A. 0
- B. 2
- C. 3
- D.-4

Answer:

38. The triangle PQR of which the angles P,Q,R satisfy cos P

$$=\frac{\sin Q}{2\sin R}$$
 is:

A. equilateral

B. right angled

C. any triangle

D. isosceles

Answer: D

Watch Video Solution

39. The function $f(x) = \begin{bmatrix} x^2 \end{bmatrix}$ (where [y] is the greatest integer less than or equal to y), is discontinuous at a. all

integers b. all integers except 0 and 1 c. all integers except 0

d. all integers except 1

A. all integers

B. all integers except 0 and 1

C. all integers except 0

D. all integers except 1

Answer:

Watch Video Solution

40. A function f(x) $= \frac{x^2 - 3x + 2}{x^2 + 2x - 3}$ is

A. maximum at x = -3

B. maximum at x = -3 and maximum at x = 1

C. maximum at x = 1

D. function is increasing in its domain

Answer:

Watch Video Solution

41. The locus of the point P(x,y) satisfying the relation

$$\sqrt{\left(x-3
ight)^2+\left(y-1
ight)^2}+\sqrt{\left(x+3
ight)^2+\left(y-1
ight)^2}=6$$
, is

A. straight line

B. pair of straight lines

C. circle

D. ellipse

Watch Video Solution

42. If z_1, z_2 and z_3 are complex numbers such that

$$|z_1|=|z_2|=|z_3|=\left|rac{1}{z_1}+rac{1}{z_2}+rac{1}{z_2}
ight|=1, then |z_1+z_2+z_3|$$

is (A) equal to 1 (B) gt1 (C) gt3 (D) equal to 3

A. equal to 1

B. less than 1

C. greater than 3

D. equal to 3

Answer:

43. If a_1, a_2, a_3 be any positive real numbers, then which of the following statement is not true.

A.
$$3a_1a_2a_3 \leq a_1^3 + a_2^3 + a_3^3$$

$$\mathsf{B.} \; \frac{a_3}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} \geq 3$$

$$\mathsf{C.}\, a_1 a_2 a_3 \bigg(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \bigg) \geq 9$$

D.
$$a_1a_2a_3igg(rac{1}{a_1}+rac{1}{a_2}+rac{1}{a_3}igg)^3\leq 27$$

Answer:

Watch Video Solution

44. If $ab=2a+3b,\,a>0,\,b>0$, then the minimum value of ab is

B. 24

c.
$$\frac{1}{6}$$

D. none of these

Answer:

Watch Video Solution

45. If $f(x)=\cos\left[\pi^2\right]x$, where [x] stands for the greatest integer function, then $f\Big(\frac{\pi}{2}\Big)=-1$ (b) $f(\pi)=1$ $f(-\pi)=0$ (d) $f\Big(\frac{\pi}{4}\Big)=1$

A.
$$f\pi/4=2$$

B.
$$f-\pi=2$$

C.
$$f\pi = 1$$

D.
$$f\pi/2 = -1$$

Watch Video Solution

46. Let
$$f(x)=rac{x^2-4}{x^2+4}$$
 , for $|x|\geq 2$, then the function $f\!:\!(\,-\infty,\,-2]\cup[2,\infty) o(\,-1,1)$ is :

A. one-one into

B. one -one onto

C. many - onto into

D. many - one onto

Watch Video Solution

47. The function
$$f(x) = \sin \Bigl| \log \Bigl(x + \sqrt{x^2 + 1} \Bigr) \Bigr|$$
 is :

- A. even function
- B. odd function
- C. neither even nor odd
- D. periodic function

Answer: B

48. Find the range of $f(x) = \sec\left(\frac{\pi}{4}\cos^2x\right)$, where 'oo

A.
$$\left[1,\sqrt{2}\right]$$

B. $[1, \infty]$

C.
$$[1, \sqrt{2}, -1] \cup [1, \sqrt{2}]$$

 $[D.-\infty,1]\cup[1,\infty]$

Answer:

Watch Video Solution

49. For any three sets $A_1,A_2,A_3.$ Let $B_1=A_1,B_2=A_2-A_1$ and $B_3=A_3-A_1\cup A_2$, then which of the following statement is always true ?

A. $A_1 \cup A_2 \cup A_3 \supset B_1 \cup B_2 \cup B_3$

B. $A_1\cup A_2\cup A_3=B_1\cup B_2\cup B_3$

 $\mathsf{C}.\,A_1\cup A_2\cup A_3\subset B_1\cup B_2\cup B_3$

D. none of these

Answer:

Watch Video Solution

50. the domain of the function $f(x) = rac{\sin^{-1}(3-x)}{\log(x-2)}$ is :

A. [2, 4]

B. $(2,3)\cup(3,4]$

C. $[2, \infty]$

$$extsf{D.} - \infty, 3] \cup [2, \infty]$$

Watch Video Solution

- **51.** Write the remainder obtained when 1! + 2! + 3! + +
- 200! is divided by 14
 - **A.** 3
 - B. 4
 - C. 5
 - D. none of these

Answer:

