

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHEMATICS 2007

1. If $(p \wedge {\sc -} r) o ({\sc -} p \lor q)$ is false, then truth values of p,q and r are respectively.

A. T,F and F

B. F,F and T

C. F,T and T

D. T,F and T

2. If α, β and γ are the roots of equation $x^3 - 8x + 8 = 0$, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha\beta}$ are respectively

A. 0 and - 16

B. 16 and 8

 ${\sf C}.-16$ and ${\sf 0}$

D. 16 and 0

Answer:

D Watch Video Solution

3. The GCD of 1080 and 675 is

A. 145

B. 135

C. 225

D. 125

Answer:

Watch Video Solution

4. x = 4 (1+cos θ) and y=3 (1+sin θ) are the paramatic equations of

A.
$$\frac{(x-3)^2}{9} + \frac{(y-4)^2}{16} = 1$$

B. $\frac{(x+4)^2}{16} + \frac{(y+3)^2}{9} = 1$
C. $\frac{(x-4)^2}{16} - \frac{(y-3)^2}{9} = 1$
D. $\frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$

Answer: D

5. If the distance between the foci and the distance between the directrices of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are in the ratio 3:2,then a:b is

A. $\sqrt{2}:1$

 $\mathsf{B}.\sqrt{3}:\sqrt{2}$

C. 1: 2

D. 2

Answer:

Watch Video Solution

6. The ellipse
$$rac{x^2}{25}+rac{y^2}{16}=1$$
 and the hyperbola $rac{x^2}{25}-rac{y^2}{16}=1$ have in

common

A. centre only

B. centre, foci and directrices

C. centre, foci and vertices

D. centre and vertices only

Answer:

7. If
$$\sec heta = m, an heta = n$$
, then $rac{1}{m} iggl\{ (m+n) + rac{1}{m+n} iggr\}$

A. 2

B. 2m

C. 2n

D. m

Answer:

8. The value of $\frac{\sin 85^\circ - \sin 35^\circ}{\cos 65^\circ}$ is A. 2 B. -1C. 1 D. 0

Answer:

Watch Video Solution

9. If the length of the tengent from any point on the circle $x - 3^2 + y + 2^2 = 5r^2$ to the circle $x - 3^2 + y + 2^2 = r^2$ is 16 unit, then the area between the two circles in sq unit is

A. 32π

 $\mathsf{B.}\,4\pi$

 $\mathsf{C.}\,8\pi$

D. 256π

Answer:

Watch Video Solution

10. The equation of the common tangent f the two touching circles $y^2 + x^2 - 3x - 8y + 22 = 0$ and $x^2 + y^2 - 5y + 7 = 0$ is A. x + y - 5 = 0 B. x - y + 5 = 0 C. x - y - 5 = 0 D. x + y + 5 = 0

Answer:

11. The equation of the parabolas with vertex at -1,1 and focus 2,1 is

A.
$$y^2 - 2y - 12x = 11 = 0$$

B. $x^2 + 2x - 12y + 13 = 0$
C. $y^2 - 2y + 12x + 11 = 0$
D. $y^2 - 2y - 12x + 13 = 0$

Answer:

Watch Video Solution

12. The equation(s) of the line(s) which touch both the circle $x^2 + y^2 = 5$

and the parabola $y^2=40x$ is

A.
$$2x - y \pm 5 = 0$$

B. 2x - y + 5 = 0

C. 2x - y - 5 = 0

D. 2x + 5y - 5 = 0

13. If
$$2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}$$
 and $A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$, then *B* is
A. $\begin{bmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$
B. $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$
C. $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$
D. $\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$

Answer:

14. If
$$A = \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$$
 and $A^2 - 4A + 10I = A$, then k is equal to

A. 0

B.-4

C. 4

D. none of these

Answer:

Watch Video Solution

15. The value of
$$\begin{vmatrix} x+y & y+z & z+x \\ x & y & z \\ x-y & y-z & z-x \end{vmatrix}$$
 is euqal to
A. 2x+y+z
B. 2x+y-z
C. x+y+z
D. 0

Answer:

16. On the set \mathbb{Q} of all rational number the operation * which is both associative and commutative is given by a * b =

A. a+b+ab B. $a^2 + b^2$ C. ab + 1D. 2a + 3b

Answer:

Watch Video Solution

17. From an aeroplaneflying, vertically above a horizontal road, the angles of depression of two consecutive stones on the same side of aeroplane are observed to be 30° and 60° respectively. The height at which the aeroplane is flying in km is

A.
$$\frac{4}{\sqrt{3}}$$

$$B. \frac{\sqrt{3}}{2}$$
$$C. \frac{2}{\sqrt{3}}$$

D. 2

Answer:

Watch Video Solution

18. If the angles of a triangle are in the ratio 3:4:5,then the sides are in the ratio

A.
$$\sqrt{6}$$
: $\sqrt{3} + 1$
B. $\sqrt{2}$: $\sqrt{6}$: $\sqrt{3} + 1$
C. 2: $\sqrt{3}$: $\sqrt{3} + 1$

D. 3:4:6

19.

$$\cos^{-1}(x) = lpha, (0 < x < 1) ~~ ext{and} ~~ \sin^{-1} \Bigl(2x \sqrt{1-x^2} \Bigr) + \sec^{-1} \Bigl(rac{1}{2x^2-1} \Bigr)$$

, than an^{-1} (2x) equals

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

D Watch Video Solution

20. If a > b > 0,than the value of
$$\tan^{-1}\left(\frac{a}{b}\right) + \tan^{-1}\left(\frac{a+b}{a-b}\right)$$
 depends

on

A. both a and b

lf

B. b and not a

C. a and not b

D. neither a nor b

Answer:

Watch Video Solution

21. If
$$A = \{a, b, c\}, B = \{b, c, d\}$$
 and $C = \{a, d, c\}$, then $(A - B) \times (B \cap C)$

=

A. {a,c , a,d}

B. {a,b , c,d}

C. {c,a , d,a}

D. {a,c , a,d ,b,d}

22. The function $f\colon X o Y$ defined by $f(x)=\sin x$ is one-one butnot onto if X and Y are respectively equal to

A. R and R

B.
$$[0, \pi]$$
 and $[0, 1]$
C. $\left[0, 1, \frac{\pi}{2}\right]$ and $[-1, 1]$
D. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and $[-1, 1]$

Answer:

Watch Video Solution

23. If
$$\log_4 2 + \log_4 4 + \log_4 16 + \log_4 x = 6$$
, then x =

A. 64

B.4

C. 8

D Watch Video Solution

24. If
$$S_n = \frac{1}{6.11} + \frac{1}{11.16} + \frac{1}{16.21} + \dots$$
 to n terms then $6S_n$ equals
A. $\frac{5n-4}{5n+6}$
B. $\frac{n}{5n+6}$
C. $\frac{2n-1}{5n+6}$
D. $\frac{1}{5n+6}$

Answer:

25. The remainder obtained when $1!^2 + 2!^2 + 3!^2 + \ldots + 100!^2$ is divided by 10^2 is

A. 27

B. 28

C. 17

D. 14

Answer:

Watch Video Solution

26. Find the inverse of 5 under multiplication modulo 11 on Z_{11} .

A. 5

B. 1

C. 7

D. 11

27. If $\overrightarrow{p} = \hat{i} + \hat{j}$, $\overrightarrow{q} = 4\hat{k} - \hat{j}$ and $\overrightarrow{r} = \hat{i} + \hat{k}$, then the unit vector in the direction of $3\overrightarrow{p} + \overrightarrow{q} - 2\overrightarrow{r}$ is

A.
$$rac{1}{3} ig(\hat{i} + 2\hat{j} + 2\hat{k} ig)$$

B. $rac{1}{3} ig(\hat{i} - 2\hat{j} - 2\hat{k} ig)$
C. $rac{1}{3} ig(\hat{i} - 2\hat{j} + 3\hat{k} ig)$
D. $\hat{i} + 2\hat{j} + 2\hat{k}$

28. If
$$\overrightarrow{a}$$
 and \overrightarrow{v} are the two vectors such that $\left|\overrightarrow{a}\right| = 3\sqrt{3}, \left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{7}$, then the anlge between \overrightarrow{a}

and $\stackrel{\longrightarrow}{b}$ is

A. $120^{\,\circ}$

B. 60°

C. 30°

D. 150°

Answer:

Watch Video Solution

29. If
$$\overrightarrow{a}$$
 is vector perpendicular to both \overrightarrow{b} and \overrightarrow{c} then

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$

B. $\overrightarrow{a} x \times \overrightarrow{b} + \overrightarrow{c} = 0$
C. $\overrightarrow{a} \times \overrightarrow{\times} \overrightarrow{c} = 0$
D. $\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c} = 0$

30. If the area of the parallelogram with \overrightarrow{a} and \overrightarrow{b} as two adjacent sides is 15 sq unit ,than the area of the parallelogram having, $3\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{a} + 3\overrightarrow{b}$ as two adjacent sides in sq unit is

A. 120

B. 105

C. 75

D. 45

Answer:

Watch Video Solution

31. If the lines x + 3y-9=0, 4x + by-2=0 and 2x - y-4=0 are concurrent, the b is

equal to

A. -5	
B. 5	
C . 1	
D. 0	

Watch Video Solution

32. The equation of the circle having x-y-2=0 and x-y+2=0 as two langents and x-y=0 as diameter, is

A.
$$x^2 + y^2 + 2x - 2y + 1 = 0$$

B. $x^2 + y^2 - 2x + 2y - 1 = 0$
C. $x^2 + y^2 = 2$
D. $x^2 + y^2 = 1$

33.
$$\int \frac{x^3 + 3x^2 + 3x + 1}{(x+1)^5} dx =$$
A. $-\frac{1}{x+1} + c$
B. $\frac{1}{5} \log x + 1 + c$
C. $\log x + 1 + c$
D. $\tan^{-1} x + c$

34.
$$\int \frac{\csc x}{\cos^2 \left(1 + \log \tan \frac{x}{2}\right)} dx$$
 is equal to
A.
$$\sin^2 \left[1 + \frac{\log \tan x}{2}\right] + c$$

B.
$$\tan \left[1 + \frac{\log \tan x}{2}\right] + c$$

$$\mathsf{C.} \sec^2 \left[1 + rac{\log \tan x}{2}
ight] + c$$

 $\mathsf{D.} \tan \left[1 + rac{\log \tan x}{2}
ight] + c$

Watch Video Solution

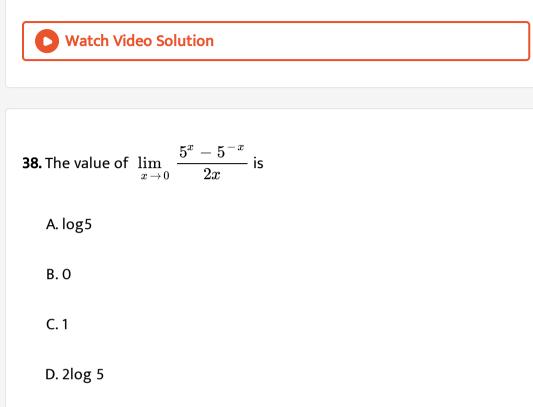
35. The complex number,
$$z=rac{\Big(-\sqrt{3}+3i\Big)(1-i)}{\Big(3+\sqrt{3}i\Big)(i)\Big(\sqrt{3}+\sqrt{3}i\Big)}$$

A. in the second quadrant

B. in the first quadrant

C. on the y -axis imaginary axis

D. on the x -axis real axis


Answer:

36.	lf	$2x=~-1+\sqrt{3}i,$	then	the	value	of	
$\left(1-x^2+x ight)^6-\left(1-x+x^2 ight)^6$ is 32 (b) -64 (c) 64 (d) 0							
A.	32						
B.	-64						
C.	64						
D.	0						
Answer:							

Watch Video Solution

37. The modulus and amplitude of $\left(1+i\sqrt{3}
ight)^8$ are respectively

A. 256 and $\frac{\pi}{3}$ B. 256 and $\frac{2\pi}{3}$ C. 256 and $\frac{2\pi}{3}$ D. 256 and $\frac{8\pi}{3}$

Answer:

39. Which one of the following isnot true always?

A. if f(x) is not continuous at x=a,then it is not differentiable at x=a

B. If fx is continuous at x= a,then it is differentiable at x=a

C. If f(x) and gx are differentiable at x=a,then f(x + gx) is also

differentiable at x=a

D. If a function f(x is continuous at x=a,then $\lim_{x \, o \, a} \, f(x)$ exists

Answer:

> Watch Video Solution

$$\begin{aligned} \textbf{40.} & \int \frac{dx}{x\sqrt{x^6 - 16}} = \\ & \textbf{A.} \ \frac{1}{3} \mathrm{sec}^{-1} \bigg(\frac{x^3}{4} \bigg) + c \\ & \textbf{B.} \cos h^{-1} \bigg(\frac{x^3}{4} \bigg) + c \\ & \textbf{C.} \ \frac{1}{12} \mathrm{sec}^{-1} \bigg(\frac{x^3}{4} \bigg) + c \\ & \textbf{D.} \ \mathrm{sec}^{-1} \bigg(\frac{x^3}{4} \bigg) + c \end{aligned}$$

41. If
$$I_1=\int_0^{\pi/2}x\sin xdx\,\, ext{and}\,\,I_2=\int_0^{\pi/2}x\cos xdx$$
,then which one of

the following is true ?

A.
$$I_1 + I_2 = rac{\pi}{2}$$

B. $I_1 - I_2 = rac{\pi}{2}$
C. $I_1 + I_2 = 0$
D. $I_1 = I_2$

Answer:

42. If f(x) is defined on
$$[-2,2]$$
 by $f(x) = 4x^2 - 3x + 1$ and $g(x) = \frac{f(-x) - f(x)}{x^2 + 3}$ then $\int_{-2}^2 g(x) dx$ is equal to

B.-48

C. 0

D. 24

Answer:

Watch Video Solution

43. The area enclosed between the parabola $y=x^2-x+2$ and the line

y = x + 2 (in sq unit) equals to

A.
$$\frac{8}{3}$$

B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

44. The solution of the differential equation $e^{-x}(y+1)dy + (\cos^2 x - \sin 2x)y(dx) = 0$ subjected to the condition that y = 1 when x = 0 is

A.
$$y + \log y + e^x \cos^2 x = c$$

 $\mathsf{B}.\log y + 1 + e^x \cos^2 x = 1$

$$\mathsf{C}.\, y + \log y = e^x \cos^2 x$$

D. $y + 1 + e^x \cos^2 x = 2$

Answer:

Watch Video Solution

45. If the curve $y = 2x^3 + ax^2 + bx + c$ passes through the origin and the tengents drawn to it at x= -1 and x=2 are parallel to the x axis, then the values of a,b and c are respectively A. 12, -3 and 0

B. -3,-12 and 0

C. -3,12 and 0

D. 3, -12 and 0

Answer:

Watch Video Solution

46. The locus of the point which moves such that the ratio of its distance

from two fixed point in the plane is always a constant k(< 1) is

A. hyperbola

B. ellipse

C. straight line

D. circle

47. The circles $ax^2+ay^2+2g_1x+2f_1y+c_1=0$ and $bx_2+by^2+2g_2x+2f_2y+c_2=0a
eq 0$ and b
eq 0 Ocut orthogonally if

A.
$$g_1g_2 + f_1f_2 = ac_1 + bc_2$$

B.
$$2g_1g_2 + f_1f_2 = bc_1 + ac_2$$

C.
$$bg_1g_2+af_1f_2=bc_1+ac_1$$

D.
$$g_1g_2 + f_1f_2 = c_1 + c_2$$

Answer: