

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHEMATICS 2009

Mcqs

1. If z_1, z_2, z_3 are three complex numbers such that there exists a complex number z with

$$|z_1-z|=|z_2-z|=|z_3-z|$$
 show that z_1,z_2,z_3

lie on a circle in the Argand diagram.

- A. A straight line
- B. A circle
- C. A parabola
- D. An ellipse

Answer:

Watch Video Solution

2. Prove that the complex numbers z_1, z_2 and the origin form an equilateral triangle only if

$$z_1^2 + z_2^2 - z_1 z_2 = 0.$$

A. z
$$_1z_2$$

B.z
$$_1+z_2$$

$$\mathsf{C.}\ 2z_1z_2$$

D.
$$z_1$$
 – z_2

Watch Video Solution

3. Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers

are in A.P. The common ratio of the G.P. is $2-\sqrt{3}$ b.

$$2+\sqrt{3}$$
 c. $\sqrt{3}-2$ d. $3+\sqrt{2}$

A. 2 -
$$\sqrt{3}$$

B.
$$2\pm\sqrt{3}$$

$$\mathsf{C.}\,3\sqrt{2}$$

D.
$$3+\sqrt{2}$$

Answer:

$$ax^2 + 2cx + b = 0$$
 and $ax^2 + 2bx + c = 0 (b \neq c)$

have a common root, then a + 4b + 4c =

 $A_{\cdot}-2$

B. 1

C. -1

D. None of these

Answer:

Watch Video Solution

5. If one root of the equation $ax^2 + bx + c = 0$, is two times the other, then b^2 : ac = ?

A.
$$b^2=9ac$$

B.
$$2b^2$$
 = 9ac

$$\mathsf{C.}\,2b^2=\mathsf{ac}$$

D.
$$b^2$$
 = ac

Watch Video Solution

6. The number of ways of distributing 8 distinct toys among 5 children will be

A. 5^8

 $B.8^5$

 $\mathsf{C.}\ 8_{ps}$

D. 40

Answer:

Watch Video Solution

7. If $C_0,\,C_1,\,C_2,\,...,\,C_n$ denote the binomial coefficients in the expansion of $(1+x)^n$, then .

$$1.\ C_1-2.\ C_2+3.\ C_3-4.\ C_4+...+(-1)^{n-1}nC_n=$$

A. -1

- B. 1
- C. 0
- D. None of these

Watch Video Solution

8. Given , 2x-y+2z=2, x-2y+z=-4, $x+y+\lambda z=4$, then the value of λ such that the given system of equations has no solution is :

A. 1

$$D.-4$$

Watch Video Solution

9. If
$$A=\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B=\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ then value of $lpha$ for which $A^2=B$, is

A. 4

B. 3

C. 5

D. None of these

Answer:

Watch Video Solution

10. The probability that at least one of the events AandB occurs is 0.6. If AandB occur simultaneously with probability 0.2, then find P(A) + P(B).

A. 11

B. 1.3

C. 1.2

D. 0.8

Answer:

11. If
$$\sin\Bigl(\sin^{-1}\Bigl[\dfrac{1}{5}\Bigr]+\cos^{-1}x\Bigr)=$$
 1,then x is

A.
$$\frac{1}{5}$$

$$\mathsf{B.}\,\frac{2}{5}$$

A.
$$\frac{1}{5}$$
B. $\frac{2}{5}$
C. $\frac{3}{5}$

D.
$$\frac{\pi}{2}$$

Watch Video Solution

12. The value of $an \left[\cos^{-1} \! \left(rac{4}{5}
ight) + an^{-1} \! \left(rac{2}{5}
ight) \right]$ will

be

A.
$$\frac{6}{11}$$

$$\mathsf{B.}\;\frac{6}{17}$$

c.
$$\frac{11}{6}$$

D.
$$\frac{17}{6}$$

Answer:

13. If in
$$\Delta ABC$$
, $\tan \frac{A}{2} = \frac{5}{6} = \frac{2}{5}$, then prove that a, b, and c are in A.P.

A. AP

B. GP

C. HP

D. None of these

Answer:

14. The value of
$$cos\frac{\pi}{5}cos.2\frac{\pi}{5}cos.2\frac{\pi}{5}cos.2\frac{\pi}{5}$$

A.
$$\frac{1}{16}$$

B.
$$-\frac{1}{16}$$

D.
$$\frac{1}{2}$$

Watch Video Solution

15. The distance between the line

3x + 4y = 9 and 6x + 8y = 15 is

A.
$$\frac{3}{2}$$

$$\mathsf{B.}\,\frac{3}{8}$$

c.
$$\frac{3}{10}$$

D. 6

Answer:

Watch Video Solution

16. The algebraic sum of the perpendicular distances from the points A(-2,0), B(0,2) and C(1,1) to a variable line be zero, then all such lines

A. 1,2

B. a straight line

C. 0,0

D. 2, 1

Answer:

Watch Video Solution

17. The locus of the point of intersection of the lines $x\cos\alpha+y\sin\alpha=p$ and $x\sin\alpha-y\cos\alpha=q$, α is a variable will be

A. a circle

B. a straight line

C. a parabola

D. an ellipse

Answer:

Watch Video Solution

18. Find the locus of the midpoint of the chords of the circle $x^2+y^2=a^2$ which subtend a right angle at the point (c,0).

A.
$$x^2+y^2=3a^2$$

$$\mathtt{B.}\,x^2+y^2=\frac{a^z}{3}$$

$$\mathsf{C.}\,2x^2+y^2=a^2$$

D.
$$4x^2 + y^2 = a^2$$

19. If the line 3x-2y+p=0 is normal to the circle

$$x^2+y^2=2x-4y$$
,then p will be

$$A.-5$$

B. 7

 $\mathsf{C.}-7$

D. 5

Answer:

Watch Video Solution

20. Find k , if the line y = 2x + k touches the circle $x^2 + y^2$

-4x - 2y = 0

 $\mathsf{A.}\,1 < r < 7$

B.
$$3 < r < 10$$

$$\mathsf{C.}\, 2 < r < 9$$

D.
$$2 < r < 8$$

Watch Video Solution

21. The equation of the common tangent to the parabolas $y^2=2x$ and $x^2=16y$ is

A.
$$x + y + 2 = 0$$

B.
$$x - 3y + 1 = 0$$

$$C. x + 2y - 2 = 0$$

D.
$$x + 2y + 2 = 0$$

Watch Video Solution

22. The equation of the tangent to the parabola y^2 = 8x, which is parallel to the line 2x-y+7=0,will be

A.
$$y = x + 1$$

B.
$$y = 2 x + 1$$

C.
$$y = 3x + 1$$

D.
$$y = 4x + 1$$

Watch Video Solution

23. The distance of a point on ellipse $\frac{x^2}{6}+\frac{y^2}{2}$ = 1 from its centre is $\sqrt{2}$. The eccentric is $\sqrt{2}$ angle of the point will be

A.
$$\frac{\pi}{4}$$
 or $\frac{\pi}{3}$

B.
$$\frac{\pi}{3}$$
 or $\frac{2\pi}{5}$

C.
$$\frac{\pi}{4}$$
 or $\frac{3\pi}{4}$

D.
$$\frac{\pi}{2}$$

Watch Video Solution

24. The distance between the foci of a hyperbola is 16 and its eccentricity is
$$\sqrt{2}$$
 then equation of the hyperbola is $x^2+y^2=32$ b. $x^2-y^2=16$ c. $x^2+y^2=16$ d. $x^2-y^2=32$

B.
$$x^2 - y^2 = 20$$

A. $x^2 - y^2 = 1$

C.
$$x^2 - y^2 = 4$$

D.
$$x^2 - y^2 = 32$$

Watch Video Solution

25. The vector of magnitude 9 unit perpencular to the vectors $4\hat{i}-\hat{j}+3\hat{k}$ and $-2\hat{i}+\hat{j}-2\hat{k}$ will be

A.
$$3\hat{i}+6\hat{j}-6\hat{k}$$

B.
$$-3\hat{i}+6\hat{j}+6\hat{k}$$

C.
$$3\hat{i}-6\hat{j}-5\hat{k}$$

D.
$$\hat{i}+6\hat{j}+6\hat{k}$$

Watch Video Solution

26. The value of ' λ ' so that the vectors $\hat{i}-3\hat{j}+\hat{k},2\hat{i}+\lambda\hat{j}+\hat{k}$ and $3\hat{i}+\hat{j}-2\hat{k}$ are coplanar, will be

A. 0

B. 2

 $\mathsf{C.} - \frac{1}{2}$

Answer: D

Watch Video Solution

27. The line passing through the point -1, 2, 3 and perpendicular to the plane x - 2y + 3z + 5 = 0 will be

A.
$$\frac{x+1}{1} = \frac{y-2}{3} = \frac{z-3}{5}$$

B.
$$\frac{x+1}{1} = \frac{y-2}{3} = -\frac{z-3}{3}$$

C.
$$\frac{x+1}{1} = \frac{y-2}{3} = \frac{z-3}{z}$$

D.
$$\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{3}$$

Answer: D

Watch Video Solution

28. Value of k such that the line

$$rac{x-4}{1}=rac{y-2}{1}=rac{z-k}{2}$$
 lies in the plane 2x-

Watch Video Solution

29. Let L be the line of intersection of the planes 2x+3y+z=1 and x+3y+2z=2 . If L makes an angles α with the positive x-axis, then $\cos\alpha$ equals 1 1 1

$$\frac{1}{\sqrt{3}} \frac{1}{2} 1 \frac{1}{\sqrt{2}}$$

A.
$$\frac{1}{\sqrt{2}}$$

$$\mathsf{B.}\;\frac{1}{\sqrt{5}}$$

$$\mathsf{C.}\;\frac{1}{\sqrt{7}}$$

D.
$$\frac{1}{\sqrt{3}}$$

Watch Video Solution

30. If
$$y= an^{-1}\sqrt{rac{1-\cos x}{1+\cos x}},$$
 prove that $dy=1$

A. sin x cos

$$\mathsf{B.}\;\frac{\pi}{2}$$

$$\mathsf{C.}\,\frac{1}{2}$$

D.
$$\frac{1}{1+\cos^2 x}$$

Answer:

31.
$$\lim_{x->1} (1-x) Tan \Big(\frac{\pi x}{2} \Big) =$$

A.
$$\frac{\pi}{2}$$

B.
$$\frac{2}{\pi}$$

$$\mathsf{C}.\,\pi$$

D.
$$\pi$$

32. Let f (x =
$$\begin{cases} \frac{x^2-4x+3}{x^2+2x-3} & x \neq 1 \\ k & x = 1 \end{cases}$$
 If f (x) is continuous

at x= 1, then the value of k will be

- A. 1
- $\mathsf{B.}\,\frac{1}{2}$
- C. -1
- D. $\frac{1}{2}$

Answer:

33. Find the point on the curve $y=2x^2-6x-4$ at which the tangent is parallel to the x-axis

- A. 1,3
- B. -1, 3
- C. 1, -3
- D. -1, -3

Answer:

34. Find the point on the parabolas $x^2=2y$ which is closest to the point $(0,\ 5)$.

- A. $2\sqrt{2}$, O
- B. 0,0
- C. 2,2
- D. None of these

Answer:

35. The interval in which the function $f(x) = x^2 e^{-x}$ is non-decreasing, is

$$A.-\infty,\infty$$

$$B. -2, 0$$

$$\mathsf{C}.\,2,\infty)$$

Answer:

36. Let $f(x)=\left\{egin{array}{ccc} x^n\sin & rac{1}{x} & x
eq 0 \ 0 & x=0 \end{array}
ight.$ Then f(x) is

continuous but not differentiable at x=0. If

A.
$$n\in 0,1$$

B.
$$n\in 0,2$$

C.
$$n\in 1,\infty$$

D.
$$n \in -\infty, \infty$$

Answer:

37. The domain of the function

$$f9x igg) = \left[\left(\log
ight)_{10} \left(rac{5x}{4}
ight)
ight]^{-rac{1}{2}}$$
 is '-oo

A. [1, 4]

B. [0, 5

C. 0,1

 $D.-1, \infty$

Answer:

38. The function $f(x) = \sin x + \cos x$ will be

A. an even function

B. an odd function

C. a constant function

D. None of these

Answer:

$$39. \int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$

A. 2 sin
$$\sqrt{x}$$
 + c

B.
$$2\sin\sqrt{x}+c$$

$$\mathsf{C.}\,2\sin x + c$$

D.
$$\sqrt{2} \sin x + c$$

40. The value of
$$\int_2^3 rac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx is_-$$

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{1}{\sqrt{2}}$$

$$\mathsf{C.}\,\frac{1}{2}$$

D.
$$\frac{1}{\sqrt{3}}$$

- **41.** The area common to $y^2=x \ ext{and} \ x^2=y$ is
 - A. 1 sq unit
 - B. $\frac{2}{3}$ sq unit
 - C. $\frac{1}{4}$ sq unit
 - D. $\frac{1}{3}$ sq unit

Watch Video Solution

42. if $x+y\leq 2, x\geq 0$ then point at which maximum value of 3x+2y attained will be

A. 0,0

$$\mathsf{B.}\left(\frac{1}{2},\frac{1}{2}\right)$$

C. 2,0

D. 0,2

Answer:

43. Maximum value of p=6x+8y

subject to $2x+y\leq 30, x+2y\leq 24, x\geq 0, y\geq 0$

is

A. 90

B. 120

C. 96

D. 240

Answer:

44. The solution of the equation

$$(\log)_7(\log)_5 \left(\sqrt{x+5}+\sqrt{x}=0 ext{ is...}
ight)$$

A.
$$x = -2$$

B.
$$x = 2$$

$$C. x = 4$$

D.
$$x = 5$$

Answer:

45. A balloon is coming down at the arate of 4m/min and its angle of elevation is 45^0 from apoint on the ground which has been reduced to 30^0 , after 10 min . Balloon will be onthe ground at a distance of how many meters from the observer ?

A. 20
$$\sqrt{3}$$
 m

B. 20(3 +
$$\sqrt{3}$$
) m

C.
$$10(3+\sqrt{3})$$
 m

D. None of these

Answer: B

46. A fair coin is tossed n times. If the probability of getting 7 heads is equal to the probability of getting 9 heads, then the value of n will be

A. 8

B. 13

C. 15

D. None of these

Answer:

47. The probabilities of solving a question by three students are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$ respectively. The probability of the equation being solved will be $\frac{33}{48}$ (b) $\frac{35}{48}$ (c) $\frac{31}{48}$ (d) $\frac{37}{48}$

- A. $\frac{35}{48}$
- B. $\frac{1}{48}$
- c. $\frac{11}{16}$
- D. $\frac{2}{11}$

Answer:

