

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHEMATICS 2010

Mcqs

1. If
$$|z_1-1|<1, |z_2-2|<2, |z_3-3|<3$$
, then

$$|z_1 + z_2 + z_3|$$

- A. is less than 6
- B. is more than 3
- C. is less than 12
- D. lies between 6 and 12

Watch Video Solution

2. If z_1 and z_2 are two complex numbers such that

$$|z_1| = |z_2| + |z_1 - z_2|$$
 then

A. Im
$$rac{z_1}{z_2}=0$$

B. Re
$$rac{z_1}{z_2}=0$$

C. Re
$$rac{z_1}{z_2}=Imrac{z_1}{z_2}$$

Answer:

Watch Video Solution

- 3. The largest term common to the sequences
- $1,\,11,\,21,\,31,\,\,
 ightarrow\,100$ terms and
- $31,\,36,\,41,\,46,\,\,
 ightarrow\,100$ terms is 381 b. 471 c. 281 d.
- none of these

A. 381

B. 471

C. 281

D. none of these

Answer:

Watch Video Solution

4. If the roots of $a_1x^2+b_1x+c_1=0$ are α_1,β_1 and those of $a_2x^2+b_2x+c_2=0$ are α_2,β_2 such that $\alpha_1\alpha_2=\beta_1\beta_2=1$ then

A.
$$rac{a_1}{a_2} = rac{b_1}{b_2} = rac{c_1}{c_2}$$

B.
$$rac{a_1}{c_2} = rac{b_1}{b_2} = rac{c_1}{a_2}$$

C.
$$a_1a_2=b_1b_2=c_1c_2$$

_

5.

Answer:

Watch Video Solution

 $(x+3)^4 + (x+5)^4 = 16$

The number of real roots of

B. 2

C. 4

D. none of the above

Answer:

Watch Video Solution

6. The number of six digit numbers that can be formed from the digits 1, 2, 3, 4, 5, 6&7 so that digits do not repeat and terminal digits are even is:

- A. 144
- B. 72
- C. 288
- D. 720

7. The system of equations x+2y +3z =4,

2x+3y+4z=5,3x+4y+5z=6 has

A. many solution

B. no solution

C. unique solution

D. none of the above

Answer:

Watch Video Solution

8. A skew symmetric matrix S satisfies the relations

 $S^2+1=0$ where I is a unit matrix then SS' is

equal to

A. I

B. 21

 $\mathsf{C}.-I$

D. none of the above

Answer: A

Watch Video Solution

9. A die is loaded so that the probability of a face i is proportional to i, i = 1, 2, 6. Then find the probability of an even number occurring when the die in rolled.

A.
$$\frac{7}{4}$$

B.
$$\frac{4}{7}$$

Answer:

Watch Video Solution

10. if
$$an^{-1}\left\{rac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}
ight\}=lpha$$
 then x^2

is:

A. $\sin 2 \alpha$

B.
$$\sin$$
 2 α

C. cos 2
$$lpha$$

D.
$$\cos \alpha$$

Watch Video Solution

$$\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right)$$

is:

A.
$$\frac{2a}{b}$$

$$\mathsf{B.} \; \frac{a}{b}$$

C.
$$\frac{a}{a}$$

$$\mathsf{D.}\;\frac{2b}{a}$$

Watch Video Solution

12. In a \triangle ABC, A :B:C= 3:5:4. Then $a+b+c\sqrt{2}$

is equal to

A. 2b

B. 2c

C. 3b

D. 3a

Answer:

Watch Video Solution

 $rac{ an 3x - an 2x}{1 + an 3x an 2x} = 1$ is

13. The set of values of x for which

 $A. \phi$

B. $\left\{\frac{\pi}{4}\right\}$

C. $\left\{n\pi+rac{\pi}{4},n=1,2,3.\,.
ight\}$

D.
$$\left\{2n\pi+rac{\pi}{4},n=1,2,3.\,.
ight.
ight\}$$

Watch Video Solution

14. Which of the two 3x-4y+4=0 and 3x-3y+12=0 is nearer to origin

A. 4x-3y+12=0

B. 3x-3y+12=0

C. 3x-4y+4=0

D. none of the above

Watch Video Solution

15. If the equal sides AB and AC (each equal to 5 units) of a right-angled isosceles triangle ABC are produced to P and Q such that $BP \cdot CQ = AB^2$, then the line PQ always passes through the fixed point (where A is the origin and AB, AC lie along the positive x and positive y - axis respectively)

A. a,0

B. 0,a

C. a,a

D. none of the above

Answer:

Watch Video Solution

16. A variable circule having fixed radius 'a' passes through origin and meets the co-ordinate axes in point A and B. Locus of centroid of triangle OAB where 'O' being the origin, is -

A.
$$9x^2 + y^2 = 4a^2$$

$$\mathtt{B.}\,9x^2+y^2=a^2$$

C.
$$9x^2 + y^2 = 2a^2$$

D.
$$9x^2 + y^2 = 8a^2$$

17. Find the condition that the straight line $cx-by+b^2=0$ may touch the circle $x^2+y^2=ax+by$.

A.
$$abc=1$$

$$B.a = c$$

$$\mathsf{C}.\,b=ac$$

D. none of these

Answer:

Watch Video Solution

18. If two circles $(x-1)^2+(y-3)^2=r^2$ and $x^2+y^2-8x+2y+8=0$ intersect in two distinct points , then

$$\mathsf{A.}\,2 < r < 8$$

B.
$$r < 2$$

Watch Video Solution

19. Find the number of distinct normals that can be drawn from (-2,1) to the parabola $y^2-4x-2y-3=0$

A. 1

B. 2

C. 3

D. 0

Answer:

Watch Video Solution

20. If parabolas $y^2=\lambda x$ and $25\Big[(x-3)^2+(y+2)^2\Big]=(3x-4y-2)^2$ are equal, then the value of λ is 9 (b) 3 (c) 7 (d) 6

A. 1

B. 2

C. 3

D. 6

Answer:

Watch Video Solution

conjugate diameter are y=x and 3y=-2x is

21. The eccentricity of an ellipse whose pair of a

(A)
$$\frac{2}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) none

A. $\frac{2}{3}$

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\,\frac{1}{\sqrt{3}}$$

Answer:

Watch Video Solution

22. If the foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide write the value of b^2 .

A. 18

$$B. - 16$$

C. 16

D. - 18

Answer:

Watch Video Solution

23. The number of vectors of unit length perpendicular to the vectors

$$\widehat{a} = \widehat{i} + \widehat{j} \text{ and } \overrightarrow{b} = \widehat{j} + \widehat{k} \text{ is}$$

A. - 1

B. 2

C. 4

 $D. \infty$

Answer:

Watch Video Solution

24. If
$$\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k}$$
 and

$$\overrightarrow{c} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$$

are linearly dependent vectors and $\left|\overrightarrow{c}\right|=\sqrt{3}$ then

A.
$$\alpha=1, \beta=-1$$

B.
$$\alpha=1, \beta=\pm 1$$

C.
$$\alpha = \pm 1, \beta = \pm 1$$

D.
$$\alpha=\pm 1, \beta=1$$

Watch Video Solution

25. Let the pairs $|\hat{i}|\hat{b}|$ and $|\hat{c},\hat{d}|$ each determines a plane then the planes are paralle if

A.
$$\hat{i} imes \hat{c}x\hat{b} imes \hat{d} = \hat{0}$$

B.
$$\hat{i} imes \hat{b}$$
. $\hat{c} imes \hat{d} = \hat{0}$

C.
$$\hat{i} imes \hat{c}x\hat{b} imes \hat{d} = \hat{0}$$

D.
$$\hat{i} imes\hat{c}$$
 . $\hat{b} imes\hat{d}=\hat{0}$

Watch Video Solution

26. The equation of the plane perpendicular to the yz plnae and passing through the point 1,-24 and 3,-4,5 is

A.
$$y+2z=5$$

B.
$$2y+z=5$$

C.
$$y+2z=6$$

Watch Video Solution

27. If the planes
$$\hat{r}.2\hat{i}+\gamma\hat{j}-3\hat{k}=0$$
 and $\hat{r}.\,\gamma\hat{i}+3\hat{j}+\hat{k}$ =5 are perpendicular then γ is equal to

A. 2

$$B.-2$$

$$D. - 3$$

Watch Video Solution

28. The sine of the angle between the straight line

$$rac{x-2}{3}=rac{y-3}{4}=rac{z-4}{5}$$
 and the plane

$$2x - 2y + z = 5$$
 is

$$\cdot \frac{10}{6\sqrt{5}}$$

B.
$$\frac{4}{5\sqrt{2}}$$
C. $\frac{\sqrt{2}}{10}$

$$\text{D.}\ \frac{2\sqrt{3}}{5}$$

29.

$$y=\cos^{-1}\sqrt{rac{\sqrt{1+x^2+1}}{2\sqrt{1+x^2}}}, thenrac{dy}{dx}isequa < o \ rac{1}{2(1+x^2)}, x \in R \qquad ext{(b)} \qquad rac{1}{2(1+x^2)}, x > 0 \ rac{-1}{2(1+x^2)}, x < 0 ext{(d)} rac{1}{2(1+x^2)}, x < 0 \ ext{(d)}$$

If

A.
$$\dfrac{1}{1+x^2}$$

B.
$$\frac{1}{1-x^2}$$

$$\mathsf{C.}\,\frac{1}{2(1+x^2)}$$

Answer:

Watch Video Solution

30. The value of
$$\lim_{x \to \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right]$$
 is

B. 1

C. 0

D. none of the above

Answer:

Watch Video Solution

31. The values of a,b and c which make the function

$$f(x) = \left\{ egin{array}{ll} rac{\sin\left(a+1
ight)x+\sin\mathrm{x}}{x} & x < 0 \ C & x = 0 \ rac{\sqrt{x+bx^2-\sqrt{\mathrm{x}}}}{b\mathrm{x}^{3/2}} & \mathrm{x} > 0 \end{array}
ight.$$

continuous at x=0 are

$$\frac{1}{2}, b = 0$$

32. If the slope of the curve $y = \frac{ax}{b-x}$ at the

A.
$$a=-rac{3}{2}, c=rac{1}{2}, b=0$$

$$=-\frac{}{2},$$

B. $a=rac{3}{2}, c=rac{1}{2}, b
eq 0$

C.
$$a = -\frac{3}{2}, c = \frac{1}{2}, b \neq 0$$

D. none of the above

Answer:

point (1, 1) is 2, then

A.
$$1, -2$$

B.
$$-1, 2$$

Answer:

Watch Video Solution

 $\sqrt{x} + \sqrt{y} = \sqrt{a}$ & coordinate axes.

33. Find area bounded by the curve

B. a

 $C. 2\sqrt{2a}$

D. none of the above

Answer:

Watch Video Solution

34. The function $f(x) = \frac{\sin x}{x}$ is decreasing in the interval

A.
$$\left(\frac{-\pi}{2},0\right)$$

$$\mathsf{B.}\left(\frac{\pi}{2},0\right)$$

$$\mathsf{C.}\left(\frac{-\pi}{4},0\right)$$

Answer:

Watch Video Solution

35. The set of points where the function $f(x) = |x-2| \cos x$ is differentiable is

A.
$$-\infty, \infty$$

$$\mathsf{B.}-\infty,\infty-\{2\}$$

$$\mathsf{C}.\,0,\,\infty$$

D. none of the above

Watch Video Solution

36. The domain of the function $f(x) = \sin^{-1} \left\{ (\log)_2 \frac{x^2}{2} \right\}$ is given by___

A.
$$[\,-2,\,-1]\mu[1,2]$$

B.
$$[\,-\,2,\,\,-\,1]\mu[1,\,2]$$

$$\mathsf{C}.-2,\;-1]\mu[1,\,2]$$

D.
$$-2, -1\mu 1, 2$$

Answer:

37. If f is an even function and g is an odd function then the function fog is

A. an even function

B. an odd function

C. neither even nor odd

D. a periodic funtion

Answer: A

Watch Video Solution

38. integrate of $\sec^n x \tan x dx$ is equal to

A.
$$\frac{\sec^n x}{n} + c$$

$$\mathsf{B.}\,\frac{\sec^2x}{n}+c$$

C.
$$\frac{\tan x}{n} + c$$

$$\mathsf{D.}\,\frac{\sec^n x \tan x}{n} + c$$

Answer:

Watch Video Solution

39. Evalaute
$$\int_{\pi/6}^{\pi/3} rac{\sqrt{(\sin x)} dx}{\sqrt{(\sin x)} + \sqrt{(\cos x)}}$$

A.
$$\frac{\pi}{4}$$

$$\text{B.}\ \frac{\pi}{6}$$

$$\mathsf{C.}\;\frac{\pi}{12}$$

Answer:

Watch Video Solution

40. The area enclosed by |x|+|y|=1 is

A. 2 sq unit

B. 3 sq unit

C. $\frac{1}{2}$ sq unit

D. $\bar{2}$ sq unit

Answer:

Watch Video Solution

41. The constraints

$$-x_1+x_2<1,\;-x_1+3x_2\leq 9,x_1,x_2>,0$$

difines on

A. bounded feasible space

B. unbounded feasible space

C. both bounded and unbounded feasible

space

D. none of the above

Answer:

Watch Video Solution

42. If a variate takes values $a, ar, ar^2, \dots ar^{n-1}$ which of the relation between means hold

A.
$$AH=G^2$$

$$\mathsf{B.}\,\frac{A+H}{2}=G$$

 $\mathsf{C}.\,A>G>H$

 $\mathsf{D}.\,A=G=H$

Answer:

Watch Video Solution

43. If for n=4 the approximate value of integral

is

$$\int_1^9 x^2 dx$$
 by trapezoidal $2igg[\Big(rac{1}{2}\Big)ig(1+9^2ig)+lpha^2+eta^2+7^2igg]$ then

A. lpha=1,eta=3

B. lpha=2, eta=4

C.
$$lpha=3, eta=5$$

D.
$$lpha=4,eta=6$$

Watch Video Solution

 $2\cos\left(\frac{\pi}{13}\right)\cos\left(9\frac{\pi}{13}\right) + \cos\left(3\frac{\pi}{13}\right) + \cos\left(5\frac{\pi}{13}\right) = 0$

B. 0

Watch Video Solution

45. If the angles of elevation of the top of a tower from two points at distances a and b from the base and in the same straight line with it are complementary then the height of the tower is

A.
$$\frac{a+b}{a-b}$$

B.
$$\frac{a-b}{a+b}$$

C.
$$\dfrac{(a-b)b}{a+b}$$
D. $\dfrac{a-b}{(a+b)b}$

Watch Video Solution

46. The probability that out of 10 person, all born in June, at least two have the same birthday is

A.
$$\frac{3c_{10}}{30^{10}}$$

$$\frac{3c_{10}}{30}$$

$$\frac{-3c_{10}}{0}$$

Answer:

Watch Video Solution

47. There are n person sitting in a row two of them are selected at random the probability that two selected persons are not together is

A.
$$\frac{2}{n}$$

$$\mathsf{B.}\,1-\frac{\mathsf{Z}}{n}$$

$$\mathsf{C.}\,\frac{n(n-1)}{(n+1)(n+2)}$$

Answer: B

Watch Video Solution