

India's Number 1 Education App

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHMATICS 2011

Mcq

1. The domain of
$$\cos^{-1}\!\left(\frac{x-3}{2}\right) - \log_{10}(4-x)$$
 is

A. 1,4

B. [1,4

C. 1,4]

D. [1,4]

2. If f(x) is a polynomial function of the second degree such that, $f(-3)=6, f(0)=6 \ \ {
m and} \ \ f(2)=11$, then the graph of the function,

f(x) cuts the ordinate x = 1 at the point

A. 1,8

B. 1,4

C. 1,-2

D. None of these

Answer:

Watch Video Solution

3. Let A and B be two sets, then $(A \cup B') \cap (A' \cap B)$ is equal to

A. A'

5. Mean deviation of 6,8,12,15,10,9 through mean is A. 10 B. 2.33 C. 2 D. None of these **Answer:** Watch Video Solution 6. The image of the point (2,1) w.r.t the line x+1=0 is A. 2,5 B. 0,5 C. -4, 1D. -2, -3

Watch Video Solution

7. The value of x which satisfies $8^{1+\cos x\cos^2 x+\cdots}$ = 64 in $[-\pi,\pi]$ is

$$A.\pm\frac{\pi}{2},\ \pm\frac{\pi}{3}$$

$$\mathsf{B.}\pm\frac{\pi}{3}$$

$$\mathsf{C.}\pm\frac{\pi}{2}\pm\frac{\pi}{6}$$

$$D.\pm\frac{\pi}{6},\pm\frac{\pi}{3}$$

Answer:

8. Let
$$\overrightarrow{d} = \lambda \left(\overrightarrow{a} \times \overrightarrow{b}\right) + \mu \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \nu \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
 and $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] = \frac{1}{8}$, then $\lambda + \mu + \nu =$

- A. d.a+b+c
- B. 2d.a+b+c
- C. 4d.a+b+c
- D. 8d.a+b+c

Watch Video Solution

- **9.** The length of the normal to the curve $y = a \cos h \left(\frac{x}{a} \right)$ at any point varies as
 - A. ordinate
 - B. abscissa
 - C. square of the ordinate
 - D. square of the abscissa

10. The slope of the tangent of the curve
$$y=\int_0^x \frac{dx}{1+x^3}$$
 at the point where $x=1$ is

A.
$$\frac{1}{4}$$

$$\operatorname{B.}\frac{1}{2}$$

D. None of these

Answer:

11. If
$$f(x)=a\ln \lvert x \rvert +bx^2+x$$
 has extremas at $x=1$ and $x=3$ then:

A.
$$a - \frac{3}{4}, b = -\frac{1}{8}$$

B.
$$a = \frac{3}{4}, b = -\frac{1}{8}$$

C.
$$a = -\frac{3}{4}b = \frac{1}{8}$$

D. None of these

Answer:

Watch Video Solution

- **12.** In the expansion of $\left(x^3-rac{1}{x^2}
 ight)^n, n\in N$ if sum of the coefficients of x^5 and x^{10} is 0 then n is
 - - A. 25
 - B. 20
 - C. 15
 - D. None of these

Answer:

13. Let z_1 and z_2 be theroots of the equation $z^2+az+b=0$ z being compex. Further, assume that the origin z_1 and z_2 form an equilatrasl triangle then (A) $a^2=4b$ (B) $a^2=b$ (C) $a^2=2b$ (D) `a^2=3b

A.
$$a^2 = b$$

$$\mathsf{B.}\,a^2=2b$$

$$\mathsf{C}.\,a^2=3b$$

D.
$$a^2=4b$$

Answer:

Watch Video Solution

14. If $f\!:\!R o R$ is continuous such that

$$f(x+y)=f(x).\ f(y)\, orall x,\,y\in R \ ext{and}\ f(1)=2, ext{ then } f(100)=$$

B. 50

D. 0

Answer:

Watch Video Solution

15. IF the function f(x) defined by

$$f(x)=x\sinrac{1}{x}$$
 for $x
eq 0$

$$= K \text{ for } x = 0$$

is continuous at x=0 , then $\mathsf{k} extsf{=}$

A. continuous but not differentiable at x=0

B. discontinuous but differentiable at x=0

C. differentiable at x=0

D. can not be determined

16. The value of the determinant
$$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix}$$
 is.....

- A. 0
- B. 1
- C. abc
- D. a bb cc a

Watch Video Solution

17. $\cos 1 + \cos 2 + \cos 3 + \dots + \cos 180$

A. 0

B. 1

	•
L.	-

D. -2

Answer:

Watch Video Solution

18. IF a,b,c are in G.P and $a^{rac{1}{x}}=b^{rac{1}{y}}=c^{rac{1}{z}}$ then x,y,z are in

A. AP

B. GP

C. HP

D. None of these

Answer:

19. If A is a square matrix such that $A^2=I$, then A^{-1} is equal to (i) I (ii) 0

(iii) A (iv) I+A

A. I

B. 0

C. A

D. I+A

Answer:

Watch Video Solution

20. 5th term from the end in the expansion of $\left(\frac{x^2}{2} - \frac{2}{x^2}\right)^{12}$ is

A.
$$-7920x^{-4}$$

B.
$$7920x^{8}$$

C.
$$7920x^4$$

Watch Video Solution

- 21. Which of the following is not a logical statement?
 - A. 8 is less than 6
 - B. every set is a finite set
 - C. kashmir is far from here
 - D. the sun is a star

Answer:

- A. 0
- B. π
- C. $\frac{\pi}{2}$ D. None of these

Watch Video Solution

- **23.** $\int \frac{dx}{1+e^{-x}}$ is equal to
 - A. 0
 - $B. \pi$
 - C. log 2 -1
 - D. log 2

Answer:

24. IF |a|=8, |b|=3 and $|a\times b|=12$, then the value of a.b is

A. 6 or -6

B. $\bar{3}$ or $-12\bar{3}$

C. 8 or -8

D. None of these

Answer:

25. The value of 0C_0 $-{}^n$ C_1 $+{}^n$ C_2 - \dots + - $1^{n^n}C_n$ is

A. 1

B. 0

 $\mathsf{C.}\,2^n$

D.	n

Watch Video Solution

26. Coefficients of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25, respectively. Difference of their standard deviations is

A. 1

B. 1.5

C. 2.5

D. 0

Answer:

27. If l,j,k are the usual three perpendicular unit vectors then the value of i.(j x k)+j.(i x k)+k.(i x j) is

A. 0

1. U

B. -1

C. 3

D. 1

- **28.** Solve $ydx xdy + \log xdx = 0$
- A. $y \log x 1 = Cx$
 - $\mathtt{B.}\,x + \log y + 1 = Cx$
 - $\mathsf{C.}\, y + \log x + 1 = Cx$
 - $\mathsf{D}.\,y + \log x 1 = Cx$

Watch Video Solution

29. Which of the following differential equations has $y=c_1e^x+c_2e^{-x}$ as

the general solution?(A) $\dfrac{d^2y}{dx^2}+y=0$ (B) $\dfrac{d^2y}{dx^2}-y=0$ (C) $\dfrac{d^2y}{dx^2}+1=0$

(D)
$$\frac{d^2y}{dx^2} - 1 = 0$$

A.
$$\dfrac{d^2y}{dx^2}+y=0$$

$$B. \frac{d^2y}{dx^2} - y = 0$$

$$\mathsf{C.}\,\frac{d^2y}{dx^2}+1=0$$

D.
$$\frac{d^2y}{dx^2} - 1 = 0$$

Answer:

- 31. $\int \frac{dx}{x^2 + \sqrt{4 + x^2}}$ A. $rac{1}{4}igg(rac{\sqrt{4-x^2}}{x}igg)+C$

A. $\frac{1}{\sin(b-a)}\log\left|\frac{\sin(x+b)}{\sin(x+b)}\right| + C$

B. $\frac{1}{\sin(b-a)}\log\left|\frac{\sin(x+b)}{\sin(x+b)}\right| - C$

C. $\frac{1}{\sin(b+a)} \log \left| \frac{\sin(x+b)}{\sin(x+b)} \right| + C$

D. None of these

Watch Video Solution

 $\mathsf{B.}\,\frac{1}{x}\bigg(\frac{\sqrt{4-x^2}}{x}\bigg) + C$

 $\mathsf{C.} - \frac{1}{4} \bigg(\frac{\sqrt{4-x^2}}{x} \bigg) + C$

 $\mathrm{D.} - \frac{1}{2} \bigg(\frac{\sqrt{4-x^2}}{x} \bigg) + C$

32. IF $an^{-1} 2, an^{-1} 3$ are two angles of a triangle , then the third angle

is

A. 30°

B. 45°

C. 60°

D. 75°

Answer:

Watch Video Solution

33. $\lim_{x o 0} \left(\frac{16^x + 9^x}{2} \right)^{1/x}$ is equal to

A. 25/2

B. 12

C. 1

D.1/4

Answer:

Watch Video Solution

34. Let $a=\min\left\{x^2+2x+3,x\in R\right\}$ and $b=\lim_{\theta\to 0}\frac{1-\cos\theta}{\theta^2}$ then the value of $\sum_{r=0}^n a^r\cdot b^{n-r}$ is :

A.
$$\frac{2^{n+1}-1}{3 \cdot 2^n}$$

B.
$$\frac{2^{n+1}+1}{3 \cdot 2^n}$$

c.
$$\frac{4^{n+1}-1}{1 \cdot 2^n}$$

D. One of these

Answer:

35. The matrix
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is a

- A. diagonal matrix
- B. symmetric matrix
- C. skew-symmetric matrix
- D. identity matrix

Watch Video Solution

36. A teacher takes three children from her class to a zoo at a time, but she does not take the same three children to the zoo more than once. She finds that she went to the zoo 84 times more than a particular child has gone to the zoo. The number of children n her class is a. 12 b. 10 c. 60 d. none of these

A. 12

B. 10

C. 60

D. None of these

Answer:

Watch Video Solution

37. If $A(\,-3,4),\,B(1,\,-2),\,C(5,6)$ and $D(x,\,-4)$ are the vertices of a quadrilateral such that area of $\Delta ABC = \Delta ACD$ then x=

A. 6

B. 9

C. 69

D. 96

Answer:

38. The area of the parallelogram formed by the points (1,1,1),(-1,5,5),(2,2,5)

is

A. 81

B. 9

C. 336

D. 18

Answer:

Watch Video Solution

39. IF
$$f(x)=\left(\frac{9^x}{9^x+3}\right), then f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+...+\left(\frac{2011}{2012}\right) \quad \text{is}$$
 equal to

A. 1005

B. 1005.5 C. 1006 D. 1006.5 **Answer:** Watch Video Solution **40.** $\sqrt{1-\sin^2 101^\circ}$ sec $.101^\circ$ A. 0 B. 2 C. -1 D. 2

Answer:

41.

- $an^{-1}\left(\frac{1}{1+2}\right) + an^{-1}\left(\frac{1}{1+(2)(3)}\right) an^{-1}\left(\frac{1}{1+(3)(4)}\right) + ... an^{-1}\left(\frac{1}{1+(3)(4)}\right)$

A. $\frac{n}{n+1}$

B. $\frac{n+1}{n+2}$

 $\mathsf{C.}\;\frac{n+2}{n+1}$

D. $\frac{n}{n+2}$

Watch Video Solution

Watch Video Solution

42. IF $A_{3\times 3}$ and $\det A=3$ then $\det(2adjA)$ is equal to

43. The probability that a leap year only 52 sundays is

D.
$$\frac{1}{\log 2}$$

Watch Video Solution

44. $\int \!\! rac{2^x}{\sqrt{1-4^x}} dx = \lambda \sin^{-1} 2^x + c$ then λ equals to

A. $\frac{4}{7}$

 $\mathsf{B.}\,\frac{5}{7}$

 $\mathsf{C.}\,\frac{6}{7}$

D. $\frac{1}{7}$

Answer:

A. log 2

 $\mathsf{B.}\ \frac{1}{2}\log 2$

c. $\frac{1}{2}$

Watch Video Solution

45. If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle

ABC, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}$ is:

A. SG

B. OS

C. SO

D. OG

Answer:

Watch Video Solution

46. The centre and radius of the sphere $r^2-2r\cdot(3i+4j-5k)+1=0$ are

A. 3i+4j-5k,1

B. -3i + 4j + 5k, 7

$$\mathsf{C.} - 3i - 4j + 5k, 7$$

D.
$$3i+4j-5k,7$$

