# ©゙" doubtnut 

## MATHS

# BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS <br> (HINGLISH) 

## GGSIPU MATHMATICS 2011

Mcq

1. The domain of $\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)$ is
A. 1,4
B. $[1,4$
C. 1,4]
D. [1,4]
2. If $f(x)$ is a polynomial function of the second degree such that, $f(-3)=6, f(0)=6$ and $f(2)=11$, then the graph of the function, $f(x)$ cuts the ordinate $x=1$ at the point
A. 1,8
B. 1,4
C. 1,-2
D. None of these

## Answer:

## - Watch Video Solution

3. Let A and B be two sets, then $\left(A \cup B^{\prime}\right) \cap\left(A^{\prime} \cap B\right)$ is equal to
A. $A^{\prime}$
B. A
C. $\mathrm{B}^{\prime}$
D. None of these

## Answer:

## D Watch Video Solution

4. The mean of 10 observation is 16.3 . By an error one observation id is registered as 32 instead of 23 . Then the correct mean is
A. 15.6
B. 15.4
C. 15.7
D. 15.8

## Answer:

5. Mean deviation of $6,8,12,15,10,9$ through mean is
A. 10
B. 2.33
C. 2
D. None of these

## Answer:

6. The image of the point $(2,1)$ w.r.t the line $x+1=0$ is
A. 2,5
B. 0,5
C. $-4,1$
D. $-2,-3$

## - Watch Video Solution

7. The value of x which satisfies $8^{1+\cos x \cos ^{2} x+\ldots}=64$ in $[-\pi, \pi]$ is
A. $\pm \frac{\pi}{2}, \pm \frac{\pi}{3}$
B. $\pm \frac{\pi}{3}$
C. $\pm \frac{\pi}{2} \pm \frac{\pi}{6}$
D. $\pm \frac{\pi}{6}, \pm \frac{\pi}{3}$

## Answer:

## Watch Video Solution

8. Let $\quad \vec{d}=\lambda(\vec{a} \times \vec{b})+\mu(\vec{b} \times \vec{c})+\nu(\vec{c} \times \vec{a}) \quad$ and $\left[\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\frac{1}{8}$, then $\lambda+\mu+\nu=$
A. d. $a+b+c$
B. $2 \mathrm{~d} . \mathrm{a}+\mathrm{b}+\mathrm{c}$
C. $4 \mathrm{~d} . \mathrm{a}+\mathrm{b}+\mathrm{c}$
D. $8 d . a+b+c$

## Answer:

## - Watch Video Solution

9. The length of the normal to the curve $y=a \cos h\left(\frac{x}{a}\right)$ at any point varies as
A. ordinate
B. abscissa
C. square of the ordinate
D. square of the abscissa

## Answer:

10. The slope of the tangent of the curve $y=\int_{0}^{x} \frac{d x}{1+x^{3}}$ at the point where $x=1$ is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. None of these

## Answer:

## - Watch Video Solution

11. If $f(x)=a \ln |x|+b x^{2}+x$ has extremas at $x=1$ and $x=3$ then:
A. $a-\frac{3}{4}, b=-\frac{1}{8}$
B. $a=\frac{3}{4}, b=-\frac{1}{8}$
C. $a=-\frac{3}{4} b=\frac{1}{8}$
D. None of these

## Answer:

## - Watch Video Solution

12. In the expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{n}, n \in N$ if sum of the coefficients of $x^{5}$ and $x^{10}$ is 0 then $n$ is
A. 25
B. 20
C. 15
D. None of these

## Answer:

13. Let $z_{1}$ and $z_{2}$ be theroots of the equation $z^{2}+a z+b=0 \mathrm{z}$ being compex. Further, assume that the origin $z_{1}$ and $z_{2}$ form an equilatrasl triangle then (A) $a^{2}=4 b$ (B) $a^{2}=b$ (C) $a^{2}=2 b$ (D) ${ }^{\wedge} \mathrm{a}^{\wedge} 2=3 \mathrm{~b}$
A. $a^{2}=b$
B. $a^{2}=2 b$
C. $a^{2}=3 b$
D. $a^{2}=4 b$

## Answer:

## - Watch Video Solution

14. If $f: R \rightarrow R$ is continuous such that
$f(x+y)=f(x) \cdot f(y) \forall x, y \in R$ and $f(1)=2$, then $f(100)=$
A. 100
B. 50
C. 200
D. 0

## Answer:

## - Watch Video Solution

15. IF the function $f(x)$ defined by

$$
\begin{aligned}
& f(x)=x \sin \frac{1}{x} \text { for } x \neq 0 \\
& =K \text { for } x=0
\end{aligned}
$$

is continuous at $x=0$, then $\mathrm{k}=$
A. continuous but not differentiable at $\mathrm{x}=0$
B. discontinuous but differentiable at $\mathrm{x}=0$
C. differentiable at $\mathrm{x}=0$
D. can not be determined

## Answer:

16. The value of the determinant $\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{array}\right|$ is.....
A. 0
B. 1
C. abc
D. $a-b b-c c-a$

## Answer:

## - Watch Video Solution

17. $\cos 1+\cos 2+\cos 3+\ldots+\cos 180$
A. 0
B. 1
C. -1
D. -2

## Answer:

## - Watch Video Solution

18. IF a,b,c are in G.P and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ then $x, y, z$ are in
A. AP
B. GP
C. HP
D. None of these

## Answer:

19. If A is a square matrix such that $A^{2}=I$, then $A^{-1}$ is equal to (i) I (ii) 0
(iii) A (iv) I+A
A. I
B. 0
C. A
D. I+A

## Answer:

## - Watch Video Solution

20. 5th term from the end in the expansion of $\left(\frac{x^{2}}{2}-\frac{2}{x^{2}}\right)^{12}$ is
A. $-7920 x^{-4}$
B. $7920 x^{8}$
C. $7920 x^{4}$
D. $-7920 x^{4}$

Answer:

## - Watch Video Solution

21. Which of the following is not a logical statement?
A. 8 is less than 6
B. every set is a finite set
C. kashmir is far from here
D. the sun is a star

## Answer:

## - Watch Video Solution

22. $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=$
A. 0
B. $\pi$
C. $\frac{\pi}{2}$
D. None of these

## Answer:

## - Watch Video Solution

23. $\int \frac{d x}{1+e^{-x}}$ is equal to
A. 0
B. $\pi$
C. $\log 2-1$
D. $-\log 2$

## Answer:

24. IF $|a|=8,|b|=3$ and $|a \times b|=12$, then the value of $a . b$ is
A. 6 or -6
B. $\overline{3}$ or $-12 \overline{3}$
C. 8 or -8
D. None of these

## Answer:

## - Watch Video Solution

25. The value of ${ }^{0} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots .+-1^{n^{n}} C_{n}$ is
A. 1
B. 0
C. $2^{n}$
D. $n$

## Answer:

## - Watch Video Solution

26. Coefficients of variation of two distributions are 50 and 60 , and their arithmetic means are 30 and 25 , respectively. Difference of their standard deviations is
A. 1
B. 1.5
C. 2.5
D. 0

## Answer:

## - Watch Video Solution

27. If $I, j, k$ are the usual three perpendicular unit vectors then the value of i. $(j \times k)+j .(i \times k)+k .(i \times j)$ is
A. 0
B. -1
C. 3
D. 1

## Answer:

## - Watch Video Solution

28. Solve $y d x-x d y+\log x d x=0$
A. $y-\log x-1=C x$
B. $x+\log y+1=C x$
C. $y+\log x+1=C x$
D. $y+\log x-1=C x$

## - Watch Video Solution

29. Which of the following differential equations has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution?(A) $\frac{d^{2} y}{d x^{2}}+y=0$ (B) $\frac{d^{2} y}{d x^{2}}-y=0$ (C) $\frac{d^{2} y}{d x^{2}}+1=0$
(D) $\frac{d^{2} y}{d x^{2}}-1=0$
A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+1=0$
D. $\frac{d^{2} y}{d x^{2}}-1=0$

## Answer:

## - Watch Video Solution

30. $\int \frac{d x}{\sin (x-a) \sin (x-b)}$
A. $\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x+b)}{\sin (x+b)}\right|+C$
B. $\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x+b)}{\sin (x+b)}\right|-C$
C. $\frac{1}{\sin (b+a)} \log \left|\frac{\sin (x+b)}{\sin (x+b)}\right|+C$
D. None of these

## Answer:

## - Watch Video Solution

31. $\int \frac{d x}{x^{2} \sqrt{4+x^{2}}}$
A. $\frac{1}{4}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+C$
B. $\frac{1}{x}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+C$
C. $-\frac{1}{4}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+C$
D. $-\frac{1}{2}\left(\frac{\sqrt{4-x^{2}}}{x}\right)+C$

## Answer:

32. IF $\tan ^{-1} 2, \tan ^{-1} 3$ are two angles of a triangle, then the third angle is
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $75^{\circ}$

## Answer:

## - Watch Video Solution

33. $\lim _{x \rightarrow 0}\left(\frac{16^{x}+9^{x}}{2}\right)^{1 / x}$ is equal to
A. $25 / 2$
B. 12
C. 1
D. $1 / 4$

## Answer:

## - Watch Video Solution

34. Let $a=\min \left\{x^{2}+2 x+3, x \in R\right\}$ and $b=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}$ then the value of $\sum_{r=0}^{n} a^{r} \cdot b^{n-r}$ is :
A. $\frac{2^{n+1}-1}{3.2^{n}}$
B. $\frac{2^{n+1}+1}{3.2^{n}}$
C. $\frac{4^{n+1}-1}{1.2^{n}}$
D. One of these

## Answer:

35. The matrix $A=\left[\begin{array}{lll}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$ is a
A. diagonal matrix
B. symmetric matrix
C. skew- symmetric matrix
D. identity matrix

## Answer:

## - Watch Video Solution

36. A teacher takes three children from her class to a zoo at a time, but she does not take the same three children to the zoo more than once. She finds that she went to the zoo 84 times more than a particular child has gone to the zoo. The number of children n her class is a. 12 b .10 c .60 d. none of these
A. 12
B. 10
C. 60
D. None of these

## Answer:

## - Watch Video Solution

37. If $A(-3,4), B(1,-2), C(5,6)$ and $D(x,-4)$ are the vertices of a quadrilateral such that area of $\triangle A B C=\triangle A C D$ then $x=$
A. 6
B. 9
C. 69
D. 96

## Answer:

38. The area of the parallelogram formed by the points (1,1,1),(-1,5,5),(2,2,5) is
A. 81
B. 9
C. 336
D. 18

## Answer:

## - Watch Video Solution

39. 

$f(x)=\left(\frac{9^{x}}{9^{x}+3}\right)$, thenf $\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+\ldots+\left(\frac{2011}{2012}\right)$
equal to
A. 1005
B. 1005.5
C. 1006
D. 1006.5

## Answer:

## - Watch Video Solution

40. $\sqrt{1-\sin ^{2} 101^{\circ}}$ sec $.101^{\circ}$
A. 0
B. 2
C. -1
D. 2

## Answer:

41. 

$\tan ^{-1}\left(\frac{1}{1+2}\right)+\tan ^{-1}\left(\frac{1}{1+(2)(3)}\right) \tan ^{-1}\left(\frac{1}{1+(3)(4)}\right)+\ldots \tan ^{-1}(-$
A. $\frac{n}{n+1}$
B. $\frac{n+1}{n+2}$
C. $\frac{n+2}{n+1}$
D. $\frac{n}{n+2}$

## Answer:

## - Watch Video Solution

42. IF $A_{3 \times 3}$ and $\operatorname{det} A=3$ then $\operatorname{det}(2 a d j A)$ is equal to

## - Watch Video Solution

43. The probability that a leap year only 52 sundays is
A. $\frac{4}{7}$
B. $\frac{5}{7}$
C. $\frac{6}{7}$
D. $\frac{1}{7}$

## Answer:

## D Watch Video Solution

44. $\int \frac{2^{x}}{\sqrt{1-4^{x}}} d x=\lambda \sin ^{-1} 2^{x}+c$ then $\lambda$ equals to
A. $\log 2$
B. $\frac{1}{2} \log 2$
C. $\frac{1}{2}$
D. $\frac{1}{\log 2}$

## Answer:

45. If $S$ is the cirucmcentre, $G$ the centroid, $O$ the orthocentre of a triangle ABC , then $\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}$ is:
A. SG
B. OS
C. so
D. OG

## Answer:

46. The centre and radius of the sphere $r^{2}-2 r \cdot(3 i+4 j-5 k)+1=0$ are
A. $3 i+4 j-5 k, 1$
B. $-3 i+4 j+5 k, 7$
C. $-3 i-4 j+5 k, 7$
D. $3 i+4 j-5 k, 7$

## Answer:

Watch Video Solution

