

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHMATICS 2012

Mcqs

1. If the lines $x-y-1=0,\,4x+3y=k$ and 2x-3y+1=0 are concurrent, then k is

A. 1

B. - 1

C. 25

Watch Video Solution

- **2.** Circles $x^2+y^2=4$ and $x^2+y^2-2x-4y+3=0$
 - **A.** 1
 - B. 2
 - C. 3
 - D. 4

Answer:

3. The centroid of a triangle formed by the points $(0,0),(\cos\theta,\sin\theta)$ and $(\sin\theta,\,-\cos\theta)$ lie on the line y=2x , then θ is

A.
$$an^{-1} 2$$

$$B. an^{-1} \left(\frac{1}{3} \right)$$

$$C. an^{-1} \left(\frac{1}{2} \right)$$

Answer:

D. $\tan^{-1} - 3$

4. The orthocentre of the triangle formed by (8,0) and (4,6) with the origin, is

$$A.\left(4,\frac{8}{3}\right)$$

Watch Video Solution

5. If the angle between the two lines represented by

 $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $an^{-1}(m)$, then m is

equal to

A.
$$\frac{1}{5}$$

B. 1

c. $\frac{7}{5}$

D. 7

Watch Video Solution

6. If $xy-4x+3y-\lambda=0$ represents the asymptotes of xy-4x+3y=0 , then λ is

A. 3

 $\mathsf{B.}-6$

 $\mathsf{C.}\,8$

D.12

Answer:

7. Equation of the chord of the parabola $y^2=8x$ which is bisected at the point $(2,\ -3)$ is

A.
$$4x+3y+1=0$$

B.
$$3x+4y-1=0$$

C.
$$4x - 3y - 1 = 0$$

D.
$$3x - 4y + 1 = 0$$

Answer:

Watch Video Solution

8. If x+y+1 = 0 touches the parabola $y^2=\lambda$ x , then λ is equal to

A. 2

B. 4

C. 6

D. 8

Answer:

9.

Watch Video Solution

The equation $x=rac{e^t+e^{-t}}{2}, y=rac{e^t-e^{-t}}{2}, t\in R,$

represents

- A. an ellipse
- B. a parabola
- C. a hyperbola
- D. a circle

Answer:

10. If e_1 and e_2 are the eccentricities of two conics with $e_1^2+e_2^2=3$, then the conics are

B. parabolas

C. circles

D. hyperbolas

Answer:

Watch Video Solution

11. The sum of the distances of any point on the ellipse

 $3x^2+4y^2=24$ from its foci , is

A.
$$8\sqrt{2}$$

B. 8

 $\mathsf{C.}\ 16\sqrt{2}$

D. $4\sqrt{2}$

Answer:

12. In ΔABC , if a tends to 2c and b tends to 3 c , then $\cos B$

tends to

A. -1

B. $\frac{1}{2}$

C. $\frac{1}{3}$ D. $\frac{2}{3}$

Watch Video Solution

13. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, then which one fo the following is correct?

A.
$$\cos heta = rac{3}{2\sqrt{2}}$$

B.
$$\cos\left(\theta - \frac{\pi}{2}\right) = \frac{1}{2\sqrt{2}}$$

$$\mathsf{C.}\cos\!\left(\theta-\frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$$

D.
$$\cos\left(\theta + \frac{\pi}{4}\right) = -\frac{1}{2\sqrt{2}}$$

Answer:

14.
$$\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$$
 is equal to

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{2}$$

D.
$$\frac{1}{3}$$

15.

$$3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$$

, where
$$\left|x
ight|<1$$
, then: x=

If:

A.
$$\frac{1}{\sqrt{3}}$$

$$\mathsf{B.} - \frac{1}{\sqrt{3}}$$

 $\mathsf{C}.\,\sqrt{3}$

$$\mathsf{D.}-\frac{\sqrt{3}}{2}$$

Answer:

Watch Video Solution

16. The angle of elevation of the sun when the length of the shadow of a pole is $\sqrt{3}$ times the height of the pole is

A.
$$40^{\circ}$$

B.
$$\frac{45^{\circ}}{2}$$

C.
$$60^{\circ}$$

D.
$$30^{\circ}$$

Watch Video Solution

17. The point of contact of the line x-y+2=0 with the parabola $y^2-8x=0$ is

A. 2,4

B. -2, 4

C. 2, -4

D. 2, 2

Answer:

18. The sides of a triangle are $x^2+x+1, 2x+1, and x^2-1$.

Prove that the greatest angle is 120° .

- A. 90°
- B. $135\,^\circ$
- C. 115°
- D. 120°

Answer:

- 19. $\cos 1^{\circ}$. $\cos 2^{\circ}$. $\cos 3^{\circ}$ $\cos 179^{\circ}$
 - A. $\frac{1}{\sqrt{2}}$
 - ${\rm B.}\,0$

C. 1

D.-1

Answer:

Watch Video Solution

20. If $\cot(\alpha+\beta)=0$, then $\sin(\alpha+2\beta)$ =

A. $\sin \alpha$

 $\operatorname{B.cos}\alpha$

 $\mathsf{C}.\sin\beta$

D. $\cos 2\beta$

Answer:

21. The value of $4\sin A\cos^3 A - 4\cos A\sin^3 A$ is equal to

- A. cos 2 A
- B. sin 3 A
- C. sin 2A
- D. sin 4A

Answer:

Watch Video Solution

22. If the solutions for heta of $\cos p heta + \cos q heta = 0, p > q > 0$ are in

A.P, then numerically smallest common differece of A.P is

A.
$$\frac{\pi}{p+q}$$

$$\mathsf{B.}\,\frac{2\pi}{p+q}$$

C.
$$\dfrac{\pi}{2(p+q)}$$

D. $\dfrac{1}{p+q}$

Answer: B

Watch Video Solution

23. The value of k, for which

$$(\cos x + \sin x)^2 + k \sin x \cos x - 1 = 0$$
 is an identity, is

A.
$$-1$$

$$B.-2$$

D. 1

Watch Video Solution

24. If 4 $\cos^{-1}x+\sin^{-1}x=\pi$, then the value of x is

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{\sqrt{2}}$$
 C. $\frac{\sqrt{3}}{2}$

D.
$$\frac{2}{\sqrt{3}}$$

Answer:

25. A problem in mathematics is given to 3 students whose chances of solving it are $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{4}$. What is the probability that the problem is solved?

- A. $\frac{1}{4}$
- $\mathsf{B.}\;\frac{1}{24}$
- $\mathsf{C.}\ \frac{23}{24}$
- D. $\frac{3}{4}$

Answer:

Watch Video Solution

26. In a non leap year the probability of getting 53 Sundays or 53 Tuesdays or 53 Thursdays

- A. $\frac{1}{7}$ B. $\frac{2}{7}$ C. $\frac{3}{7}$
- D. $\frac{4}{7}$

Watch Video Solution

27. The probability for arandomly chosen month to have its 10^{th}

- day as Sunday, is
 - A. $\frac{1}{84}$
 - $\mathsf{B.}\;\frac{10}{12}$ c. $\frac{10}{84}$
 - D. $\frac{1}{7}$

Watch Video Solution

28. If the mean of the numbers

27 + x, 31 + x, 89 + x, 107 + x, 156 + x is 82, then the mean of

130 + x, 126 + x, 68 + x, 50 + x, 1 + x is

A. 79

B. 157

C. 82

D. 75

Answer:

29. If \overline{X} is the mean of a distribution of X, then under usual notation sum $\sum_{i=1}^n f_i(x_2-\bar x)$ is

- A. MD
- B. SD
- C. 0
- D. relative frequency

Answer:

Watch Video Solution

30. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. The probability of drawing two aces is

A.
$$\frac{1}{13}$$

$$\mathsf{B.} \; \frac{1}{13} \times \frac{1}{17}$$

$$\mathsf{C.}\,\frac{1}{52}\times\frac{1}{51}$$

D. $\frac{1}{13} imes \frac{1}{13}$

Answer:

31. If
$$\sec\left(\frac{x+y}{x-y}\right)=a$$
 , prove that $\frac{dy}{dx}=\frac{y}{x}$.

A.
$$\frac{x}{y}$$

B.
$$\frac{y}{x}$$

Watch Video Solution

32. If $x^y=e^{x-y}$, then $\dfrac{dy}{dx}$ is equal to

A.
$$\frac{\log x}{1 + \log x}$$

$$\mathsf{B.}\; \frac{\log x}{1-\log x}$$

$$\mathsf{C.}\; \frac{\log x}{1+\log x^2}$$

D.
$$\frac{y \log x}{x(1 + \log x)}$$

Answer:

A.
$$1 - x^2y + xy_1 - m^2y = 0$$

$$m^2y = 0$$

$$\mathsf{B.}\, 1 - x^2 y_2 - x y_1 + m^2 y = 0$$

$$\mathsf{C.}\, 1 + x^2 y_2 + x y_1 - m^2 y = 0$$

D.
$$(-x^2)y_2 + xy_1 + m^2y = 0$$

Watch Video Solution

34. If $f(x)=\left\{ egin{array}{ll} x+1 & x\leq 1 \\ 3-ax^2 & x>1 \end{array} ight.$ is continuous at x =1, then the value of a is

A. -1

B. 2

 $\mathsf{C.}-3$

D. 1

Watch Video Solution

35. $\lim_{x o \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cot x}$ is equalt o

A. log a

B. log 2

C. a

D. log x

Answer:

36. If
$$f''(0)=k, k
eq 0$$
, then the value of $\lim_{x o 0} rac{2f(x)-3f(2x)+f(4x)}{x^2}$ is

B. 2k

C. 3k

D. 4k

Answer:

Watch Video Solution

37. If g is the inversefunction of f and f'(x) = $\frac{1}{1+x^n}$ then g'(x) is equal to

A. $1 + gx^n$

$$B.1-gx$$

$$\mathsf{C.}\,1+gx$$

$$\mathsf{D.}\,1-gx^n$$

Watch Video Solution

38. The curves $4x^2+9y^2=72$ and $x^2-y^2=5at(3,2)$ touch each other (b) cut orthogonally intersect at 45^0 (d) intersect at 60^0

A. touch each other

B. cut orthogonally

C. interest at 45°

D. interest at 60°

Watch Video Solution

39. The velocity in m/s of a particle is proportional to the cube of the time. If the velocity after 2 s is 4m/s, then v is equal to

- A. t^3
- B. $\frac{t^3}{2}$
- C. $\frac{t^3}{3}$
- D. $\frac{t^3}{4}$

Answer:

40. The minimum value of $x\left(\log\right)_{e}x$ is equal to e (b) 1/e (c)

$$-1/e$$
 (d) $2e$ (e) e

A. e

B. $\frac{1}{e}$

 $C.-\frac{1}{e}$

D. $\frac{2}{e}$

Answer:

Watch Video Solution

41. A particle moves along the x-axis so that its position is given $x=2t^3-3t^2$ at a time t second. What is the time interval duringwhich particle will be on the negative half of the axis?

$$\text{A.} \ 0 < t < \frac{2}{3}$$

$$\mathsf{C.}\,0 < t < \frac{3}{2}$$

D.
$$rac{1}{2} < t < 1$$

$80t - 16t^2$. The time required to reach the maximum height is

42. A stone thrown vertically upwards satisfies the equations s =

A. 2 s

B. 4s

C. 3 s

D. 2.5 s

Watch Video Solution

43. If f(x+y) = f(x), f(y), f(3) = 3, f'(0) = 11. Then f'(3) is equal to

A. 11. e^{33}

B. 33

C. 11

 $\mathsf{D.}\,g^{33}$

Answer:

Watch Video Solution

44. If y = x tan y , then $\frac{dy}{dx}$ is equal to

A.
$$rac{x an y}{x + x^2 - y^2}$$

B.
$$\frac{y}{x-x^2-y^2}$$

$$\mathsf{C.}\;\frac{\tan y}{y-x}$$

D.
$$\frac{\tan x}{x-y^2}$$

45. The product of the lengths of subtangent and subnormal at any point x,y of a curve is

A.
$$x^2$$

B.
$$y^2$$

C. a constant

D. x

Watch Video Solution

46. The equation to the tangent to $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at (a,b)

A.
$$\frac{x}{a} + \frac{y}{b} = 2$$

B.
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\mathsf{C.}\,\frac{x}{b} + \frac{y}{a} = 2$$

$$\mathsf{D}.\,ax+by=2$$

Answer:

A.
$$\frac{\pi}{60}$$

$$\mathsf{B.}\,\frac{\pi}{20}$$

$$\operatorname{C.}\frac{\pi}{40}$$

D.
$$\frac{\pi}{80}$$

48.
$$\int e^{a \log x} + e^{x \log a} dx$$
 is equal to

A.
$$\frac{x^{a+1}}{a+1} + C$$

$$\mathsf{B.}\,\frac{x^{a+1}}{a+1}+\frac{a^x}{\log a}+C$$

$$\mathsf{C.}\, x^{a+1} + a^x + c$$

D.
$$rac{x^{a+1}}{a-1}+rac{\log a}{a^x}+C$$

Watch Video Solution

49.
$$\int_0^a \frac{dx}{x+\sqrt{a^2-x^2}}$$

- A. $\frac{a^2}{4}$
- $\operatorname{B.}\frac{\pi}{2}$
- C. $\frac{\pi}{4}$

D. π

Answer:

50. If
$$\int_{-1}^4 f(x) dx = 4$$
 and $\int_{2}^4 (3 - f(x)) dx = 7$, then $\int_{-1}^2 f(x) dx =$

$$A.-2$$

B. 3

C. 5

D. 8

Answer:

