

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

GGSIPU MATHMATICS 2013

Mcqs

1. Concentric circle of radii 1,2,3,....,100 cms are drawn. The interior of smallest circle is colored red and the angular regions are colored alternately green and red , so that no two adjacent regions are of same color. The total area of green regions in sq. cm. is equals to :

A. 1000π

B. 5050π

 $\mathsf{C.}\ 4950\pi$

D.
$$5151\pi$$

Watch Video Solution

2. The value of a for which the quadratic equation

$$3x^2 + 2a^2 + 1x + a^2 - 3a + 2 = 0$$

Possesses roots of opposite signs lies in

A.
$$(-\infty, 1)$$

B.
$$(-\infty,0)$$

D.
$$\left(\frac{3}{2},2\right)$$

Answer: C

3. If $2z_1-3z_2+z_3=0$, then $z_1,\,z_2\,\,{
m and}\,\,z_3$ are represented by

A. three of a triangle

B. three collinear points

C. three vertices of a rhombus

D. None of the above

Answer:

- **4.** The term independent of x in the expansion of $\left(1+2x+\frac{2}{x}\right)^3$ is
- A. 35
 - B. 30
 - C. 32
 - D. 31

5. The number of six-digit numbers which have sum of their digits as an odd integer, is

- A. 45000
- B. 450000
- C. 97000
- D. 970000

Answer:

Watch Video Solution

6. Consider triangle AOB in the x-y plane, where $A\equiv (1,0,0), B\equiv (0,2,0) and O\equiv (0,0,0).$ The new position of O,

when triangle is rotated about side AB by 90° can be a. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$

b.
$$\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$$
 c. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$ d. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

C.
$$\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$$
D. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

B. $\left(-\frac{3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$

Answer:

Watch Video Solution

7. How many lines can be drawn which are perpendicular to a given line and pass through a given point lying (i) outside it? (ii) on it?

A. 0

B. 2

D. infinite

Answer:

Watch Video Solution

8. If A and B are two independent events, then which of the following is not equal to any of the remaining?

A.
$$P(A' \cap B') - P(A \cap B)$$

B.
$$PA' + PB', -1$$

$$\mathsf{C}.\,PB-PA'$$

$$D.PB'-PA$$

Answer:

9. If
$$U_n=2\cos n heta$$
 , then $U_1U_n-U_{n-1}$ is equal to -

A.
$$u_{n-2}$$

B. u_{n+1}

C. 0

D. None of these

Answer:

Watch Video Solution

A.
$$2\cos x^{-1}$$

B.
$$2\cos^{-1}x$$

C.
$$\frac{\pi}{4}$$

10. If $\dfrac{1}{\sqrt{2}} < x < 1$, then $\cos^{-1}x + \cos^{-1}\left(\dfrac{x+\sqrt{1-x^2}}{\sqrt{2}}\right) = \dfrac{\pi}{4}$

that

prove

Watch Video Solution

11. The number of values of heta satisfying $4\cos heta + 3\sin heta = 5$ as well as

 $3\cos heta+4\sin heta=5$ is

- A. 1
- B. 2
- C. 0
- D. None of these

Answer:

Watch Video Solution

12. A kite is flying with the string inclined at 75° to the horizon. If the length of the string is 25 m, the height of the kite is

B. 1, 1

A. 2, 2

- D. 2, 6

C. 4, 4

Watch Video Solution

- D. $\left(\frac{25}{2}\right)\left(\sqrt{6}+\sqrt{2}\right)$

A. $\left(rac{25}{2}
ight)\!\left(\sqrt{3}-1^2
ight)$

B. $\left(\frac{25}{2}\right)\left(\sqrt{3}+1^2\right)$

C. $\left(\frac{25}{2}\right)\left(\sqrt{3}+1^2\right)$

- **Answer:**

- 13. The ends of a quadrant of a circle have the coordinates (1, 3) and (3, 1).

- - **Answer:**

14. If the latus rectum of the parabola $2x^2-ky+2=0$ be 2, then the vertex is

A.
$$\left(0, \frac{3}{4}\right)$$

$$\mathrm{B.}\left(0,\frac{1}{2}\right)$$

$$\mathsf{C.}\left(rac{3}{4},0
ight)$$

D.0,0

Answer: B

Watch Video Solution

15. If $f\colon (3,4) o (0,1)$ defined by f(x)=x-[x] where [x] denotes the greatest integer function then f (x) is

A.
$$\frac{1}{x-|x|}$$

B.
$$[x] - x$$

$$\mathsf{C}.x-3$$

$$D.x+3$$

Watch Video Solution

16. If
$$f(x)=\cos^{-1}\Bigl\lceil rac{x-x^{-1}}{x+x^{-1}}
ight
ceil$$
 then $f'(-2)$ is

A.
$$\frac{2}{5}$$

$$\mathsf{B.}\,\frac{-2}{5}$$

c.
$$\frac{-1}{5}$$

D. None of these

Answer:

17. Let f(x) be and even function in R. If f(x) is monotonically increasing in

[2, 6], then

A.
$$f3>f(-5)$$

B.
$$f-2 < f2$$

C.
$$f(-2) > fe2$$

D.
$$f(-3) < f(5)$$

Answer:

Watch Video Solution

18. If $f(x+2)=rac{1}{2}igg\{f(x+1)+rac{4}{f(x)}igg\}$ and f(x>0, for all $x\in R$,then $\lim_{x\, o\,\infty}\;f(x)$ is

B. 2

$$\mathsf{C}.-2$$

Watch Video Solution

19. $\int \frac{3+2\cos x}{\left(2+3\cos x\right)^2} dx$ is equal to

$$\mathsf{A.}\left(\frac{\sin x}{2+3\cos x}\right)+c$$

$$\mathsf{B.}\left(\frac{\sin x}{2+3\sin x}\right)+c$$

C. Both a and b

D. None of the above

Answer:

20. Differential equation of the family of circles touching the line y=2 at

$$(0,2)$$
 is (a)

$$(b)(c)(d)x^{(e)\,2\,(f)}\,(g)+(h)(i)((j)(k)y-2(l))^{\,(m)\,2\,(n)}\,(o)+(p)rac{(q)dy}{r}((s)ds)$$

$$(ww)(\, imes\,)(yy)x^{\,(\,zz\,)\,2\,(\,aaa\,)}\,(bbb) + (ccc)(ddd)((eee)(fff)y - 2(ggg))^{\,(\,hhh\,)\,2}$$

$$-\ 2(vvv)\Big)=0(www)$$

(xxx) (yyy) None of these

A.
$$x^2 + y - 2^2 + \frac{dy}{dx}w = 2 = 0$$

B.
$$x^2+y^2igg(2-2xrac{dx}{dy}-yigg)=0$$
C. $x^2+y-2^2+\Big(rac{dx}{dy}+y-2\Big)(y-2=0)$

D. None of the above

Answer:

21. If
$$a,b,c$$
 are non-zero real numbers and the equation $ax^2+bx+c+i=0$ has purely imaginary roots, then

B.
$$b^2c$$

$$\mathsf{C}.-b^2c$$

D.
$$\frac{1}{2}b^2c$$

22. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , $and \overrightarrow{c}$ are three mutually orthogonal unit vectors, then the triple product $\left[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \overrightarrow{a} + \overrightarrow{b} \overrightarrow{b} + \overrightarrow{c}\right]$ equals 0 b. 1 or -1 c. 1 d. 3

C. -1

D. 3

Answer:

Watch Video Solution

23. $y^2=4x$ is a curve and P, Q and r are three points on it, where P = 1,2, Q = (1/4, 1) and the tangent to the curve at R is parallel to the chord PQ of the curve, then coordinates of R are

A.
$$\left(\frac{5}{8}, \frac{\sqrt{5}}{2}\right)$$

$$\mathsf{B.}\left(\frac{9}{16},\frac{3}{2}\right)$$

$$\mathsf{C.}\left(\frac{5}{8},\ -\frac{\sqrt{5}}{2}\right)$$

$$\mathsf{D.}\left(\frac{9}{16},\frac{-3}{2}\right)$$

Answer: B

24. A batsman can score $0,\,1,\,2,\,3,\,4$ or 6 runs from a ball. The number of different sequences in which he can score exactly 30 runs in an over of six balls

- A. 4
- B. 72
- C. 56
- D. 7

Answer:

Watch Video Solution

25. The number of solutions for the equation $2\sin^{-1}\Bigl(\sqrt{x^2-x+1}\Bigr)+\cos^{-1}\Bigl(\sqrt{x^2-x}\Bigr)=rac{3\pi}{2}$ is

A. 1

B. 2

C. 3

D. infinite

Answer: B

Watch Video Solution

number of solutions of the equation

 $\int_{-2}^{x} \cos x \ dx = 0, 0 < x < \frac{\pi}{2}$ is

A. 0

26. The

B. 1

C. 2

D. 4

Answer:

27. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite of bank is 60° . When he retires 40 m.from the bank, he finds the angle to be 30° . What is the breadth of the river ?

A. 40 m

B. 60 m

C. 20 m

D. 30 m

Answer:

Watch Video Solution

28. Two circles $x^2+y^2-2kx=0$ and $x^2+y^2-4x+8y+16=0$ touch each other externally. Then k is

29. If the line
$$ax+by=2$$
 is a normal to the circle $x^2+y^2-4x-4y=0$ and a tangent to the circle $x^2+y^2=1$, then

$$a=rac{1}{2},b=rac{1}{2}$$
 $a=rac{1+\sqrt{7}}{2}$, $b=rac{1+\sqrt{7}}{2}$ $a=rac{1}{4},b=rac{3}{4}$ $a=1,b=\sqrt{3}$

A.
$$a = \frac{1}{2}, b = \frac{1}{2}$$

B.
$$a = \frac{1 + \sqrt{7}}{2}$$
, $b = \frac{1 - \sqrt{7}}{2}$

C.
$$a = \frac{1}{4}, b = \frac{3}{4}$$

D. a = 1,
$$b=ar{3}$$

Watch Video Solution

30. The graph of the curve $x^2+y^2-2xy-8x-8y+32=0$ falls wholly in the first quadrant (b) second quadrant third quadrant (d) none of these

- A. first quadrant
- B. second quadrant
- C. third quadrant
- D. None of these

Answer:

31. The slope of the tangent to the curve
$$y=\frac{\left(\sqrt{1+x}\right)-\left(\sqrt{1-x}\right)}{\sqrt{1+x}+\left(\sqrt{1-x}\right)} \text{ at } x=\frac{1}{2} \text{ is}$$

- at
$$x=rac{1}{2}$$

tan

A.
$$2-\sqrt{3}$$

B.
$$\sqrt{3}$$

D.
$$\frac{1}{2}$$

Answer:

32. The value of
$$\int_0^{\frac{\pi}{4}} \frac{\sec x}{\left(\sec x + \tan x\right)^2}.\ dx$$
 is

A.
$$1+\sqrt{2}$$

$$\mathsf{B.}-1+\sqrt{2}$$

$$\mathsf{C.}-\sqrt{2}$$

D. None of these

Answer:

Watch Video Solution

33. $\lim_{x \to 0} \left\{ (1+x)^{\frac{2}{x}} \right\}$ (where {x} denotes the fractional part of x) is equal to.

A.
$$e^2-7$$

$$\mathrm{B.}\,e^2-8$$

$$\mathsf{C.}\,e^2-6$$

D. None of these

Answer:

34.
$$\int \frac{1}{x^2(x^4+1)^{3/4}} dx =$$

A.
$$\left(1+rac{1}{x^4}
ight)^{rac{1}{4}}+C$$

B.
$$\left(x^4+1
ight)^{rac{1}{4}}+C$$

c.
$$\left(1 - \frac{1}{r^4}\right)^{\frac{1}{4}} + C$$

$$\mathsf{D.} - \left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} + C$$

35. The solution of the
$$(1+x^2y^2)ydx+(x^2y^2-1)xdy=0$$
 is

differential

equation

A.
$$xy = \frac{\log(x)}{y} + C$$

B.
$$xy = 2 rac{\log(y)}{x} + C$$

C.
$$x^2y^2=2rac{\log(y)}{x}+C$$

D. None of these

Answer:

Watch Video Solution

36. the equation of the chord of contact of the pair of tangents drawn to the ellipse $4x^2+9y^2=36$ from the point (m,n) where $m\dot{n}=m+n,m,n$ being nonzero positive integers, is 2x+9y=18 (b)

2x+2y=1 4x+9y=18 (d) none of these

A.
$$2x + 9y = 18$$

B.
$$2x + 2y = 1$$

$$C.4x + 9y = 18$$

D. None of these

Answer:

37. The equation to the hyperbola of given transverse axis whose vertex

bisects the distance between the centre and focus, is given by

A.
$$3x^2 - y^2 = 3a^2$$

B.
$$x^2 - 3y^2 = a^2$$

C.
$$x^2 - y^2 = 3a^2$$

D. None of these

Answer: A

Watch Video Solution

38. The plane ax-by+cz=d will contains the line

$$\frac{x-a}{a}=rac{y+3d}{b}=rac{z-c}{c}$$
, provided

A.
$$b=[0,3d]$$

$$\mathsf{B.}\,a=[2d]$$

$$\mathsf{C.}\, c = [3d]$$

D.
$$b = [-3d]$$

Watch Video Solution

39. If z is a complex number lying in the first quadrant such that

 $\mathrm{Re}(z)+\mathrm{Im}(z)=3$, then the maximum value of $\left\{\mathrm{Re}(z)
ight\}^2\mathrm{Im}(z)$, is

- A. 1
- B. 2
- C. 3
- D. 4

Answer:

40. If A= $an^{-1}igg(rac{x\sqrt{3}}{2k-x}igg)$ and B= $an^{-1}igg(rac{2x-k}{k\sqrt{3}}igg)$ Then, A-B is equal

to

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{6}$$

D. None of these

Answer:

- **41.** If in a $\triangle ABC$, $\angle B=\frac{2\pi}{3}$, then the cos A + cos C lies in
 - A. $\left[-\sqrt{3},\sqrt{3}
 ight]$
 - B. $\left(-\sqrt{3},\sqrt{3}\right)$
 - $\mathsf{C.}\left(\frac{3}{2},\sqrt{3}\right]$

D.
$$\left[\frac{3}{2},\sqrt{3}\right]$$

