



# MATHS

# **BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH**

**JEE MAIN** 

## MATHS

**1.** Find the area enclosed by the curves  $x^2=y$ , y=x+2,

A. 
$$4\left(\frac{4}{24}\right)^{1/3}$$
  
B.  $4\left(\frac{2}{25}\right)^{1/3}$   
C.  $2\left(\frac{4}{25}\right)^{1/3}$   
D.  $2\left(\frac{2}{25}\right)^{1/3}$ 

## Answer: A



**2.** Find the mean of 43, 51, 50, 57 and 54.

A. 
$$\frac{10}{\sqrt{3}}$$
  
B.  $\frac{10}{\sqrt{2}}$   
C.  $\frac{10}{3}$   
D.  $\frac{20}{3}$ 

## Answer: A



3. Show that the height of the cylinder of maximum volume that can be

inscribed in a sphere of radius R is  $\frac{2R}{\sqrt{3}}$  .

A. 
$$\sqrt{3}$$

B.  $2\sqrt{3}$ 

$$\mathsf{C}.\,\frac{2\sqrt{3}}{3}$$

D.  $3\sqrt{2}$ 

#### Answer: B

Watch Video Solution

4. Using integration, find the area of the triangle formed by positive x-axis

and tangent and normal to the circle  $x^2+y^2=4$  at  $ig(1,\sqrt{3}ig).$ 

A. 
$$\frac{4}{\sqrt{3}}$$
  
B. 
$$\frac{2}{\sqrt{3}}$$
  
C. 
$$\frac{8}{\sqrt{3}}$$
  
D. 
$$\frac{5}{\sqrt{3}}$$

#### Answer: B

Watch Video Solution

5. if  $f(x) = \begin{cases} \sin x & x < 0 \\ \cos x - |s-1| & x \ge 0 \end{cases}$ 

then g(g) = f(|x|) is non - differentiable for

A.  $\{5, 10, 15\}$ 

B. {5, 10, 15, 20}

**C**. {10}

D.  $\{5, 15\}$ 

## Answer: A

Watch Video Solution

**6.** Find area bounded by the curves  $x^2 \leq y \leq x+2$ 

A. 
$$\frac{11}{2}$$
  
B.  $\frac{7}{2}$   
C.  $\frac{9}{2}$   
D.  $\frac{5}{2}$ 

## Answer: C



7. In the expansion at 
$$\left(rac{2}{x}+x^{\log_e x}
ight)^6$$
 if  $T_4=20 imes 8^7$  then value of x is

A. 8<sup>1/2</sup> B. 8<sup>2</sup> C. 8<sup>3</sup> D. 8<sup>4</sup>

### Answer: B



8. If one root fo the quadratic equation  $ix^2-2(i+1)x+(2-i)=0, i=\sqrt{-1}$  is 2-i, the other root is

A. 
$$p^2 - 4q + 12 = 0$$
  
B. p^(2)-4q-12=0`  
C.  $q^2 - 4q + 12 = 0$   
D.  $q^2 - 4q - 12 = 0$ 

## Answer: B

Watch Video Solution

9. If 
$$lpha, eta$$
 are the roots of  $x^2 + x + 1 = 0$  then  
 $\begin{vmatrix} Y+1 & eta & lpha \\ eta & y+lpha & 1 \\ lpha & 1 & y+eta \end{vmatrix}$   
A.  $y^2 - 1$   
B.  $y(y^2 - 1)$   
C.  $u^2 - y$   
D.  $y^3$ 

## Answer: D

Watch Video Solution

10. One end point of a focal chrod of a parabola  $y^2=16x$  is (1,4). The

length of focal chord is : (A)24 (B)25 (C)20 (D)=22

Watch Video Solution

11. Find the negation of  $p \lor (-p \land q)$ 

A.  $-p^{\tilde{}}q$ 

B.  $\sim p \tilde{q}$ 

C. p~q

D.  $p^q$ 

Answer: A

Watch Video Solution

12. A curve  $f(x) = x^3 + ax - b$  pass through p(1, -5) and tangent to f(x) at point p is perpendicular to x - y + 5 = 0 then which of the following point will lie on curve ? A(2,-2) B(2,-1) C(2,1) D(-2,2)

- A. (2 2)
- B.(2-1)
- C.2, -1)
- D. (-2, 2)

#### Answer: D

Watch Video Solution

**13.** There are two family each having two children. If there are at least two girls among the children, find the probability that all children are girls

A. 
$$\frac{1}{9}$$

B. 
$$\frac{1}{10}$$
  
C.  $\frac{1}{11}$   
D.  $\frac{1}{12}$ 

## Answer: C



14. If 
$$\int \frac{dx}{\left(x^2 - 2x + 10\right)^2} = A\left(\tan^{-1}\left(\frac{x-1}{3}\right) + \frac{f(x)}{x^2 - 2x + 10}\right) + C$$

,where, C is a constant of integration, then

A. 
$$A = rac{1}{54}, f(x) = 3(x-1)$$
  
B.  $A = rac{1}{54}, f(x) = 9(x-1)^2$   
C.  $A = rac{1}{27}, f(x) = 9(x-1)^2$   
D.  $A = rac{1}{81}, f(x) = 3(x-1)$ 

## Answer: A

Watch Video Solution

**15.** A (3, 0, -1), B(2, 10, 6) and (1, 2, 1) are the vertices of a triangle. M is the mid point of the line segment joining AC and G is a point on line segment BM dividing 2:1 ratio internally find  $\cos(\angle GOA)$ 

A. 
$$\frac{2}{\sqrt{5}}$$
  
B. 
$$\frac{1}{\sqrt{15}}$$
  
C. 
$$\frac{1}{\sqrt{10}}$$
  
D. 
$$\frac{1}{\sqrt{3}}$$

#### Answer: B

Watch Video Solution

16. Given a point P(0, -1, -3) and the image of P in the plane3-y+4z-2=0 is Q. Point R is (3, -1, -2) find the area of riangle PQR

A. 
$$\frac{\sqrt{91}}{13}$$
  
B. 
$$\frac{\sqrt{91}}{2}$$
  
C. 
$$\sqrt{\frac{91}{2}}$$
  
D. 
$$\sqrt{91}$$

### Answer: B

**Watch Video Solution** 

17. if 
$$\frac{2\sqrt{\sin^2 x - 2\sin x + 5}}{4^{\sin^2} y} \le 1$$
 then which option is correct.  
A.  $2\sin x = \sin y$   
B.  $|\sin x| = \sin y$   
C.  $\sin x = |\sin y|$   
D.  $\sin x = 2\sin y$ 

## Answer: C

**18.** Let g(x) be the inverse of an invertible function f(x) which is differentiable at x = c. Then g'(f(x)) equal. f'(c) (b)  $\frac{1}{f'(c)}$  (c) f(c) (d) none of these

A. g(x) is not differentiable at x = c

B. for g(x) to be differentiable at c, f'(c) = 0

C. for g(x) to be non-differentiable at c, f'(c) = 0

D. none of these

#### Answer: B

Watch Video Solution

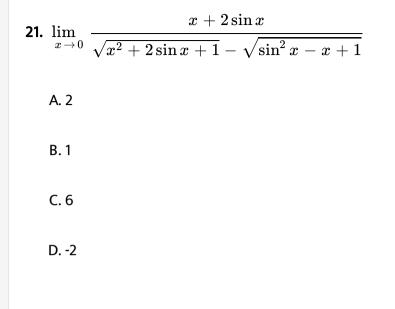
19. if 
$$\int_0^{f(x)} 4x^3 dx = g(x)(x-2)$$
 if  $f(2) = 6$  and  $f'(2) = rac{1}{48}$  then find  $\lim_{x
ightarrow 2} g(x)$ 

B. 17

C. 20

D. 19

#### Answer: A


Watch Video Solution

**20.** If  $[-\sin\theta]y = 0$  and  $[\cot\theta]x + y = 0$  where [] denotes greatest integar function. Then which of the following is correct

A. Infinite solution is 
$$\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$$
 and a unique solution in  $\left(\pi, \frac{7\pi}{6}\right)$   
B. Unique solution in  $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$  and infinite solutions in  $\left(\pi, \frac{7\pi}{6}\right)$   
C. Unique solution is  $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$  and unique solution in  $\left(\pi, \frac{7\pi}{6}\right)$   
D. Infinite solution in  $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$  and infinite solutions in  $\left(\pi, \frac{7\pi}{6}\right)$ 

#### Answer: C

Watch Video Solution



## Answer: C

Watch Video Solution

**22.** If  $A \cap B \subseteq C$  and  $A \cap B \neq \phi$ . Then which of the following is incorrect (1)  $(A \cup B) \cap C \neq \phi$  (2)  $B \cap C = \phi$  (3)  $A \cap C \neq \phi$  (4) If  $(A - B) \subseteq C$ , then  $A \subseteq C$ 

A. 
$$(A \cup B) \cap C$$

 $\mathsf{B}.\,B\cup C=\phi$ 

 $\mathsf{C}.\, A \cup C \checkmark \phi$ 

D. If  $(A - B) \subseteq C$ , then  $A \subseteq C$ 

## Answer: B

Watch Video Solution

23. Let 
$$f(x)=5-\left[x-2
ight]$$

 $g(x)=\left[x+1
ight]+3$ 

If maximum value of f(x) is lpha

& minimum value of f(x) is eta

then 
$$\lim_{x \to (\alpha - \beta)} \frac{(x-3)(x^2 - 5x + 6)}{(x-1)(x^2 - 6x + 8)}$$
 is (A) -1/2 (B)1/2 (C)3/2 (D)-3/2

A. 
$$-\frac{1}{2}$$
  
B.  $\frac{1}{2}$   
C.  $\frac{3}{2}$   
D.  $-\frac{3}{2}$ 

#### Answer: A



24. If 
$$\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} = 0$$
, and  $\theta \in \left(0, \frac{\pi}{3}\right)$ , then  
value of  $\theta$  is  
A.  $\frac{7\pi}{36}$   
B.  $\frac{7\pi}{24}$   
C.  $\frac{\pi}{9}$   
D.  $\frac{\pi}{4}$   
Answer: C  
Watch Video Solution

**25.** A circle touches x – axis at point (3, 0). If it makes an intercept of 8 units on y – axis, then the circle passes through which point A(3,1) B(5,2) C(10,3) D(3,10)

A. (3, 1)

B.(5,2)

C. (10, 3)

D. (3, 10)

#### Answer: D

Watch Video Solution

**26.** The sum of the squares of the length of the chords intercepted on the circle  $x^2+y^2=16$ , by the lines x +y = n ,  $n\in N$ , where N is the set of all natural numbers, is

A. 160

B. 320

C. 105

D. 210

A. 320

B. 105

C. 160

D. 210

Answer: D

Watch Video Solution

**27.** Let *A* and *B* be two non-null events such that  $A \subseteq B$ . Then, which of the following statements is always correct? (1) (P(A/B)=P(B)-P(A) (2) P(A/B)>P(A) (3) P(A/B) $\leq$ P(A) (4) P(A/B)=1

A. 
$$p(A \, / \, B) = p(B) - P(A)$$

 $\mathsf{B}.\, P(A \, / \, B) > P(A)$ 

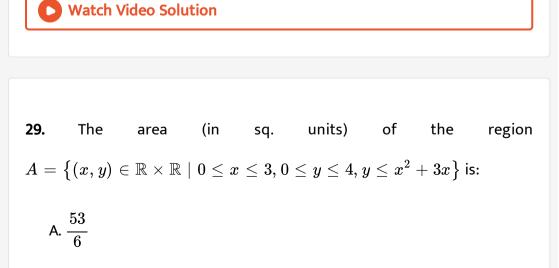
$$\mathsf{C}.\, P(A\,/\,B) \leq P(A)$$

D. P(A / B) = 1

Answer: C



**28.** If  $\alpha$  and  $\beta$  be the roots of the equation  $x^2 - 2x + 2 = 0$ , then the least value of n for which  $\left(\frac{\alpha}{\beta}\right)^n = 1$  is:


A. 2

B. 5

C. 4

D. 3

## Answer: C



B. 8

C. 
$$\frac{59}{6}$$
  
D.  $\frac{26}{3}$ 

#### Answer: C

Watch Video Solution

**30.** Let  $S_1$  is set of minima and  $S_2$  is set of maxima for the curve  $y = 9x^4 + 12x^3 - 36x^2 - 25$  then (A)  $S_1 = \{-2, -1\}, S_2 = \{0\}$  (B)  $S_1\{-2, 1\}, S_2 = \{0\}$  (C)  $S_1 = \{-2, 1\}: S_2 = \{-1\}$  (D)  $S_1 = \{-2, 2\}, S_2 = \{0\}$ 

A.  $S_1 = (-2), S_2 = (0.1)$ B.  $S_1 = (-2, 0), S_2 = (1)$ C.  $S_1 = (-2, 1), S_2 = (0)$ D.  $S_1 = (-1), S_2 = (0, 2)$ 

## Answer: C



**31.** If 
$$\alpha = \cos^{-1}\left(\frac{3}{5}\right), \beta = \tan^{-1}\left(\frac{1}{3}\right)$$
, where  $0 < \alpha, \beta < \frac{\pi}{2}$ , then

$$lpha-eta$$
 is equa to :

A. 
$$\tan^{-1}\left(\frac{p}{5\sqrt{10}}\right)$$
  
B.  $\cos^{-1}\left(\frac{9}{5\sqrt{10}}\right)$   
C.  $\tan^{-1}\left(\frac{9}{13}\right)$   
D.  $\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$ 

#### Answer: B



**32.** let  $2. .^{20} C_0 + 5.^{20} C_1 + 8.^{20} C_2 + ?. + 62.^{20} C_{20}$ . Then sum of this

series is

 $\mathsf{B.}\,2^{25}$ 

 $\mathsf{C}.\,2^{23}$ 

 $\mathsf{D.}\,2^{24}$ 

## Answer: C

**Watch Video Solution** 

**33.** if 
$$|\sqrt{x} - 2| + \sqrt{x}(\sqrt{x} - 4) + 2 = 0$$
 then find the sum of roots of equation (A) 12 (B) 8 (C) 4 (D) 10  
A. 9  
B. 12  
C. 4  
D. 10

## Answer: C

**34.** if the tangents on the ellipse  $4x^2 + y^2 = 8$  at the points (1,2) and (a,b) are perpendicular to each other then  $a^2$  is equal to

A. 
$$\frac{128}{17}$$
  
B.  $\frac{64}{17}$   
C.  $\frac{4}{17}$   
D.  $\frac{2}{17}$ 

## Answer: C

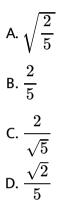
Watch Video Solution

35. The value of the integral  $\int_0^1 x \cot^{-1} (1-x^2+x^4) \; \mathsf{d} \mathsf{x}$  is

A. 
$$rac{\pi}{2}-rac{1}{2}{
m log}_e\,2$$
  
B.  $rac{\pi}{4}-{
m log}_e\,2$ 

C. 
$$rac{\pi}{2} - \log_e 2$$
  
D.  $rac{\pi}{4} - rac{1}{2} \log_e 2$ 

Answer: A


Watch Video Solution

**36.** let P be the plane, which contains the line of intersection of the planes x + y + z - 6 = 0 and 2x + 3y + z + 5 = 0 and it is perpendicular to the xy-plane thent he distance of the point (0,0,256) from P is equal to

- A.  $17/\sqrt{5}$
- B.  $63\sqrt{5}$
- C.  $205\sqrt{5}$
- D.  $11/\sqrt{5}$

Answer: A

**37.** If the lines x + (a - 1)y = 1 and  $2x + 1a^2y = 1$  there  $a \in R - \{0, 1\}$  are perpendicular to each other, Then distance of their point of intersection from the origin is



#### Answer: A

Watch Video Solution

**38.** The point lying on common tangent to the circles  $x^2 + y^2 = 4$  and  $x^2 + y^2 + 6x + 8y - 24 = 0$  is (1) (4,-2) (2) (-6,4) (3) (6,-2) (4) (-4,6)

A. (4,-2)

B. (-6,4)

C. (6,-2)

D. (-4,6)

#### Answer: D

Watch Video Solution

**39.** The mean and median of 10, 22, 26, 29, 34, x, 42, 67, 70, y (in increasing order) are 42 and 35 respectively then the value of  $\frac{y}{x}$  is (A)9/4 (B)7/2 (C)8/3 (D)7/3

A. 9/4

B. 7/2

C.8/3

D. 7/3

#### Answer: A



**40.** If y(x) satisfies the differential equation  $\cos \frac{dy}{dx} - y \sin x = 6x$ . And  $y\left(\frac{\pi}{3}\right) = 0$ . Then value of  $y\left(\frac{\pi}{6}\right)$  is (A)  $\frac{\pi^2}{2\sqrt{3}}$  (B)  $-\frac{\pi^2}{2}$  (C)  $-\frac{\pi^2}{2\sqrt{3}}$  (D)  $-\frac{\pi^2}{4\sqrt{3}}$ A.  $\frac{\pi^2}{2\sqrt{3}}$ 

$$B. - \frac{\pi^2}{2}$$
$$C. - \frac{\pi^2}{2\sqrt{3}}$$
$$D. - \frac{\pi^2}{4\sqrt{3}}$$

## Answer: A

# Watch Video Solution

**41.** The domain of  $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$  (1)  $(-1,0) \cup (1,2) \cup (3,\infty)$  (2)  $(-2, -1) \cup (-1,0) \cup (2,\infty)$  (3)  $(-1,0) \cup (1,2) \cup (2,\infty)$  (4)  $(1,2) \cup (2,\infty)$ 

$$\begin{array}{l} \mathsf{A}.\,(\,-1,\,0)\cup(1,\,2)\cup(3,\,\infty)\\\\ \mathsf{B}.\,(\,-2,\,\,-1)\cup(\,-1,\,0)\cup(2,\,\infty)\\\\ \mathsf{C}.\,(\,-1,\,0)\cup(1,\,2)\cup(2,\,\infty)\\\\\\ \mathsf{D}.\,(1,\,2)\cup(2,\,\infty)\end{array}$$

#### Answer: C



**42.** If the sum of first 3 terms of an A. P. is 33 and their product is 1155. Then the  $11^{th}$  term of the A. P. Is

A. -35

B. 25

C. 36

D. -25

#### Answer: B

**43.** Find the equations of the tangents to the ellipse  $3x^2 + 4^2 = 12$  which

are perpendicular to the line y + 2x = 4.

A. 
$$\frac{5\sqrt{5}}{2}$$
  
B.  $\frac{\sqrt{61}}{2}$   
C.  $\frac{\sqrt{221}}{2}$   
D.  $\frac{\sqrt{157}}{2}$ 

#### Answer: A

Watch Video Solution

**44.** Consider  $f(x) = x\sqrt{kx - x^2}$  for  $x \in [0, 3]$ . Let m be the smallest value of k for which the function is increasing in the given interval and M be the largest value of f(x)f or k = m. Then(m,M)` is

A. 
$$(4, 3\sqrt{2})$$
  
B.  $(4, 3\sqrt{3})$   
C.  $(3, 3\sqrt{3})$   
D.  $(5, 3\sqrt{6})$ 

#### Answer: C



**45.** Let  $S_n$  denote the sum of the first n terms of an A. P. . If  $S_4=16$  and  $S_6=-48$ , then  $S_{10}$  is equal to :

A. - 260

- B. 410
- C. 320
- D. 380

### Answer: C

**46.** If the volume of parallelopiped formed by the vectors  $\hat{i} + \lambda \hat{j} + \hat{k}$ ,  $\hat{j} + \lambda \hat{k}$  and  $\lambda \hat{i} + \hat{k}$  is minimum then  $\lambda$  is equal to (1)  $-\frac{1}{\sqrt{3}}$  (2)  $\frac{1}{\sqrt{3}}$  (3)  $\sqrt{3}$  (4)  $-\sqrt{3}$ 

A. 
$$-rac{1}{\sqrt{3}}$$
  
B.  $rac{1}{\sqrt{3}}$ 

C. 
$$\sqrt{3}$$

D. 
$$-\sqrt{3}$$

#### Answer: A

# Watch Video Solution

**47.** If the line  $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$  intersects the plane 2x + 3y - z + 13 = 0 at a point P and plane 3x + y + 4z = 16 at a point Q then PQ is equal to (A) 14 (B)  $\sqrt{14}$  (C)  $2\sqrt{7}$  (D)  $2\sqrt{14}$ 

**A**. 14

 $\mathsf{B.}\,\sqrt{14}$ 

 $\mathsf{C.}\,2\sqrt{7}$ 

 $\mathrm{D.}\,2\sqrt{14}$ 

## Answer: C

**Watch Video Solution** 

**48.** The derivative of 
$$\tan^{-1}\left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)$$
, with respect to  $\frac{x}{2}$ , where  $x \in \left(0, \frac{\pi}{2}\right)$  is:  
A. 1  
B.  $\frac{1}{2}$   
C.  $\frac{1}{3}$ 

D. 2

Answer: C

**49.** The angle of elevation of the loop of a vertical tower standing on a horizontal plane is observed to be  $45^{\circ}$  from a point A on the plane. Let B be the point 30m vertically above the point A. If the angle of elevation of the top of the tower from B be  $30^{\circ}$ , then the distance (in m) of the foot of the lower from the point A is:

A.  $15(3 + \sqrt{3})$ B.  $15(5 - \sqrt{3})$ C.  $15(3 - \sqrt{3})$ D.  $15(1 + \sqrt{3})$ 

#### Answer: B

Watch Video Solution

50. If the equation  $\cos 2x + lpha \sin x = 2lpha - 7$  has a solution. Then range of lpha is (A) R (B) [1,4] (C) [3,7] (D) [2,6]

## A. R

- B. [1, 4]
- C. [3, 7]
- D.[2, 6]

#### Answer: A

Watch Video Solution

**51.** A plane which bisects the angle between the two given planes 2x - y + 2z - 4 = 0 and x + 2y + 2z - 2 = 0, passes through the point: (A) (1, -4, 1) (B) (1, 4, -1) (C) (2, 4, 1) (D) (2, -4, 1)

A. (1, -4, 1)

B. (1, 4, -1)

C.(2, 4, 1)

D. (2, -4, 1)

Answer: A

**Watch Video Solution** 

52. If distance between the foci of an ellipse is 6 and distance between its directrices is 12, then length of its latus rectum is : (A)4 (B) $3\sqrt{2}$  (C)9 (D)  $2\sqrt{2}$ 



$$\text{If } \hspace{0.1cm} y = \sqrt{\frac{2(\tan\alpha + \cot\alpha)}{1 + \tan^{2}\alpha} + \frac{1}{\sin^{2}\alpha}} \text{when } \hspace{0.1cm} \alpha \in \left(\frac{3\pi}{4}, \pi\right) \text{then find } \hspace{0.1cm} \frac{dy}{d\alpha}$$

ż

A. 4

53.

B. 2

C. 3

D. -4

## Answer: A



**54.** If A(1,1),B(6,5)C, 
$$\left(\frac{3}{2}, 2\right)$$
 are vertices of  $\triangle ABC$ . A point P is such that area of  $\triangle PAB$ ,  $\triangle PAC$ ,  $\triangle PBC$  are equal also  $Q\left(\frac{-7}{6}, \frac{-1}{3}\right)$  then length of PQ is

A. 2

B. 3

C. 4

D. 5

## Answer: D

**1.** A plane electromagnetic wave of frequency 50MHz travels in free space along the positive x-direction. At a particular point is space and time,  $\overrightarrow{E} = 6.3\hat{j}V/m$ . The corresponding magnetic field  $\widehat{B}$ , at that point will be:

A.  $18.9 imes10^{-8}\hat{k}T$ B.  $2.1 imes10^{-8}\hat{k}T$ C.  $6.3 imes10^{-8}\hat{k}T$ D.  $18.9 imes10^{8}\hat{k}T$ 

Watch Video Solution

2. Three charges +Q, q, +Q are placed respectively, at distance, 0, d//2 and

d from the origin, on the x-axis. If the net force experienced by +Q placed

at x=0, is zero, then value of q is :

A. -Q/4

- $\mathsf{B.}+Q\,/\,2$
- $\mathsf{C}.\,Q/4$
- $\mathsf{D.}-Q\,/\,2$

Watch Video Solution

**3.** A copper wire is stretched to make it 0.5 % longer. The percentage change in its electrical resistance if its volume remains unchanged is :

A. 2.0~%

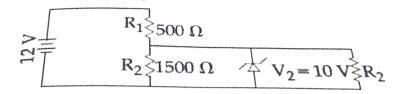
 $\mathrm{B.}\,2.5\,\%$ 

 $\mathsf{C}.\,1.0~\%$ 

D. 0.5~%

**4.** A sample of radioactive material A, that has an activity of  $10mCi(1Ci = 3.7 \times 10^{10} decays/s)$ , has twice the number of nuclei as another sample of a different radioactive material B which has an activity of 20 mCi. The correct choices for half-lives of A and B would then be respectively:

A. 5 days and 10 days


B. 10 days and 40 days

C. 20 days and 5 days

D. 20 days and 10 days



5. In the given circuit the current through Zener Diode is close to :



A. 0.0 mA

B. 6.7 mA

C. 4.0 mA

D. 6.0 mA

# Watch Video Solution

**6.** There are two long co-axial solenoids of same length I. The inner and other coils have redii  $r_1$  and  $r_2$  and number of turns per unti length  $n_1$  and  $n_2$  respectively .The reatio of mutual inductance to the self - inductance of the inner- coil is : (A)  $\frac{n_1}{n_2}$  (B)  $\frac{n_2}{n_1}$ .  $\frac{r_1}{r_2}$  (C)  $\frac{n_2}{n_1}$ .  $\frac{r_2^2}{r_1^2}$  (D)  $\frac{n_2}{n_1}$ 

A.  $\frac{n_1}{n_2}$ B.  $\frac{n_2}{n_1}$ .  $\frac{r_1}{r_2}$ C.  $\frac{n_2}{n_1}$ .  $\frac{r_2^2}{r_1^2}$ D.  $\frac{n_2}{n_1}$ 



7. If the deBroglie wavelenght of an electron is equal to 10^-3 times the wavelenght of a photon of frequency  $6 imes10^{14}$ Hz ,then the calculate speed of electrone. Speed of light  $=3 imes10^8m/s$ 

Planck's constant  $\,= 6.63 imes 10^{-34}$  J s

Mass of electron  $\,=9.1 imes10^{-31}$  kg

A.  $1.1 imes 10^6 m \, / \, s$ 

B.  $1.7 imes 10^6 m\,/\,s$ 

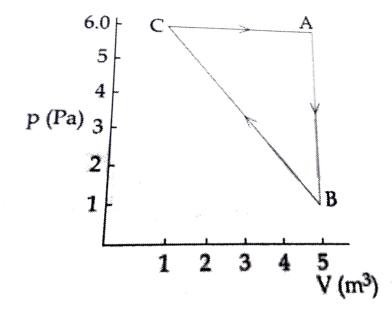
C.  $1.8 imes 10^6m/s$ 

8. एक प्रगामी आवर्ती तरंग को समीकरण y(x, y) =  $10^{-3} \sin(50t + 2x)$  से निरूपित किया जाता है, जहाँ x तथा y मीटर में तथा 1 सेकण्ड में हैं। निम्न में से तरंग के लिए कौनसा कथन सत्य है|

- A the wave is propagating along the negative x-axis with sped  $25ms^{-1}$
- B. the wave is propagating along the postitive x-axis with speed  $100 m s^{-1}$
- C. the wave is propagating along the postive x-axis with speed  $25ms^{-1}$
- D. the wave is propagating along the nagative x-axis with speed

 $100 m s^{-1}$ 

**9.** AN ideal battery of 4 V and resistance R are connected in series in the primary circuit of a notentiometer of length 1 m and the value of R, to give a differeence of 56mV across 10 cm of notentiometer wire , is :


A.  $490\Omega$ 

 $\mathrm{B.}\,480\Omega$ 

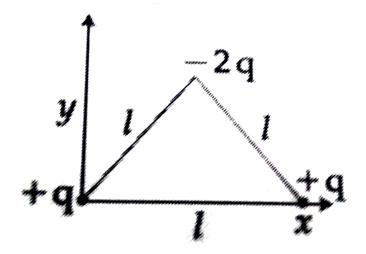
 $\mathsf{C.}\,396\Omega$ 

D.  $495\Omega$ 

10. for the given cyclic process CAB as shown for a gas , the work done is :



### A. 30J


B. 10J

- C. 1J
- D. 5J

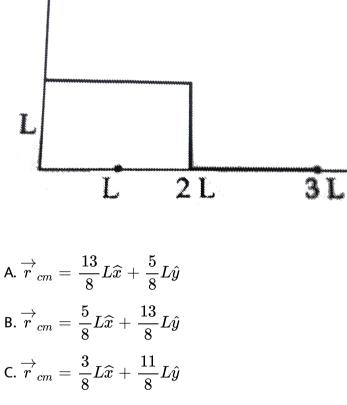


11. Determine the electric dipole moment of the system of three charges ,

placed on the verices of an equilateral triangle , as shown in the fogure :

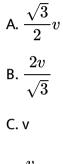


A. 
$$\sqrt{3}qlrac{\hat{j}-\hat{i}}{\sqrt{2}}$$
  
B.  $(ql)rac{\hat{i}+\hat{j}}{\sqrt{2}}$ 


C.  $2ql\hat{j}$ 

D.  $-\sqrt{3}ql\hat{j}$ 

12. the position vector of the centre of mass It


 $\rightarrow$ 

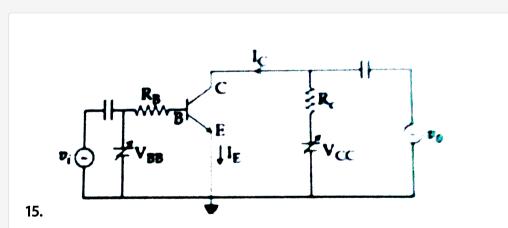
r cm of an asymmetric uniform bar of negligible area of cross - section as shown in figure is :



D. 
$$\overrightarrow{r}_{cm}=rac{11}{8}L\widehat{x}+rac{3}{8}L\widehat{y}$$

**13.** A person standing on an open ground hears the sound of a jet aeroplane, coming from north at an angle  $60^{\circ}$  with ground level ,But he finds the aeroplane right vertically above his position, if V is the speed of sound , speed of the plane is :




D. 
$$\frac{v}{2}$$

# Watch Video Solution

14. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K.The men time between two successive collosions is  $6 \times 10^{-8}$  s. If the pressure to 500K, the mean time between two successive collisions will be close to :

A.  $2 imes 10^{-7}s$ B.  $4 imes 10^{-8}s$ C.  $0.5 imes 10^{-8}s$ D.  $3 imes 10^{-6}s$ 

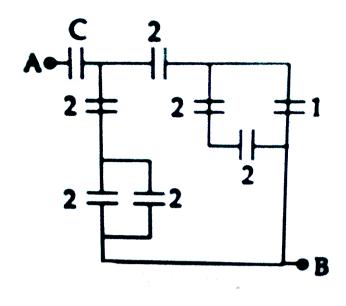
#### Answer: A



In the figure, given that  $V_{BB}$  supply can vary from 0 to  $5.0V, V_{\mathbb{C}} = 5V, \beta_{dc} = 200, R_B = 100K\omega, R_C = 1K\omega$  and  $V_{BE} = 1.0V$ , The minimum base current and the input voltage at which the transistor will go to saturation, will be, respectively:

A.  $25\mu A$  and 3.5V

B.  $20\mu A$  and 3.5V


C.  $25\mu A$  and 2.8V

D.  $20\mu A$  and 2.8V

#### Answer: A

Watch Video Solution

**16.** In the circuit shown, find C if the effective capacitance of the whole, circuit is to be  $0.5\mu F$ . All values in the circuit are in  $\mu F$ .



A. 
$$\frac{7}{11}\mu F$$
  
B.  $\frac{6}{5}\mu F$ 

 $\mathsf{C.}\,4\mu F$ 

D. 
$$\frac{7}{10}\mu F$$

# Answer: A

**17.** A 10 m long horizontal wire extends from North east ro South East. It is falling with a speed of  $5.0ms^{-1}$ , at right angles to the horizontal component of the earth's magnetic field, of  $0.3 \times 10^{-4} Wb/m^2$ . The value of the induced emf in wire is :

A.  $1.5 imes 10^{-3} V$ B.  $1.1 imes 10^{-3} V$ C.  $2.5 imes 10^{-3} V$ D.  $0.3 imes 10^{-3} V$ 

#### Answer: A

Watch Video Solution

**18.** To double the covering range of a TV transmittion tower, its height should be multiplied by :

A. 
$$\frac{1}{\sqrt{2}}$$

B. 2

C. 4

D.  $\sqrt{2}$ 

#### Answer: A

Watch Video Solution

# MATHEMATICS

**1.** Let a vector  $\overrightarrow{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k} \ (\alpha, \beta \in R), \overrightarrow{a}$  lies in the plane of the vectors,  $\overrightarrow{b} = \hat{i} + \hat{j}$  and  $\overrightarrow{c} = \hat{i} - \hat{j} + 4\hat{k}$ . If  $\overrightarrow{a}$  bisects the angle between  $\overrightarrow{b}$  and  $\overrightarrow{c}$ , then :

A. (a)  $\overrightarrow{a} \cdot \overrightarrow{i} + 3 = 0$ B. (b)  $\overrightarrow{a} \cdot \hat{i} + 1 = 0$ C. (c)  $\overrightarrow{a} \cdot \hat{k} + 2 = 0$ D. (d)  $\overrightarrow{a} \cdot \hat{k} + 4 = 0$ 

# Answer: C



2.

If 
$$y = \sqrt{\frac{2(\tan \alpha + \cot \alpha)}{1 + \tan^2 \alpha} + \frac{1}{\sin^2 \alpha}}$$
 when  $\alpha \in \left(\frac{3\pi}{4}, \pi\right)$  then find  $\frac{dy}{d\alpha}$   
A. (a)  $\frac{4}{3}$  (b) 4 (c)  $- 4$  (d)  $-\frac{1}{4}$   
B.  
C.  
D.

Answer: B



**3.** Total number of six-digit number in which all and only odd digits appear is a.  $\frac{5}{2}(6!)$  b. 6! c.  $\frac{1}{2}(6!)$  d. none of these

A. 6!

B. 
$$\frac{1}{2}(6!)$$
  
C.  $5^{6}$   
D.  $\frac{5}{2}(6!)$ 

Answer: D



4. If sum of 5 consecutive terms of an A.P. is 25 & product of these terms

is 2520. If one of the terms is -1/2 then the value of greatest term is.

A. 27

B. 7

C. 16

D. 
$$\frac{21}{2}$$

# Answer: C

5. If y=mx+4 is common tangent to parabolas  $y^2 = 4x$  and  $x^2 = 2by$ . Then value of b is

A. (a)128

B. (b)-128

C. (c) - 64

D. (d) - 32

### Answer: B



6. If  $\alpha$  and  $\beta$  are the roots of equation  $(k+1)\tan^2 x - \sqrt{2}\lambda \tan(x) = 1-k$  and  $\tan^2(\alpha+\beta) = 50$ . Find the value of  $\lambda$ 

A.  $10\sqrt{2}$ 

 $\mathsf{B.}\,5\sqrt{2}$ 

**C**. 10

D. 5

### Answer: C

Watch Video Solution

7. If the system of linear equations

has a non zero solutions, then a, b, c are in

A. 
$$rac{1}{a}, rac{1}{b}, rac{1}{c}$$
 are in A.P.

B. a, b, c are in A.P.

C. a,b,c are G.P.

D. a + b + c = 0

# Answer: A



8. Find the greatest value of k for which  $49^k + 1$  is a factor of  $1 + 49 + 49^2 \dots (49)^{125}$ 

A. (a)65

B. (b)60

C. (c)32

D. (d)63

Answer: D



9. Let P be a plane passing through the points (2,1,0) (4,1,1) and (5,0,1) and

R be any point (2,1,6). Then the image of R in the plane P is :

A. (4,3,2)

B. (6,5,2)

C. (3,4,-2)

D. (6,5,-2)

Watch Video Solution

10. If f(x) is continuous and differentiable in  $x \in [-7,0]$  and  $f'(x) \le 2 \, orall x \in [-7,0]$ , also f(-7)=-3 then range of f(-1)+f(0)

A. 1.  $(\,-\infty,\,11)$ 

B. 2. [-6, 20]

C. 3.  $(-\infty, 20]$ 

D. 4. [-3, 11]

#### Answer: C

11. If f(a + b + 1 - x) = f(x), for all x where a and b are fixed positive

real numbers, the  $rac{1}{a+b} \int_a^b x(f(x)+f(x+1))\, {
m d} {
m x}$  is equal to :

A. 
$$\int_{a-1}^{b-1} f(x+1) dx$$
  
B.  $\int_{a-1}^{b-1} f(x) dx$   
C.  $\int_{a+1}^{b+1} f(x+1) dx$   
D.  $\int_{a}^{b} f(1+x) dx$ 

Watch Video Solution

12. Let y=f(x) is a solution of differential equation  $e^y \left( rac{dy}{dx} - 1 
ight) = e^x$  and

f(0)=0 then f(1) is equal to

**13.** If z=x+iy and real part  $\left(\frac{z-1}{2z+i}\right) = 1$  then locus of z is

A. 1. circle whose diameter is  $\frac{\sqrt{5}}{2}$ B. 2. straight line whose slope is  $\frac{3}{2}$ C. 3. straight line whose slope is  $-\frac{2}{3}$ D. 4. circle whose centre is at  $\left(-\frac{1}{2}, -\frac{3}{2}\right)$ .

#### Answer: A

Watch Video Solution

14. The area that is enclosed in the circle  $x^2+y^2=2$  which is not common enclosed by  $y=x\&y^2=x$  is

A. 1. 
$$rac{1}{3}(12\pi-1)$$
  
B. 2.  $rac{1}{6}(24\pi-1)$   
C. 3.  $rac{1}{6}(12\pi-1)$   
D. 4.  $rac{1}{3}(6\pi-1)$ 

# Answer: C



15. If distance between the foci of an ellipse is 6 and distance between its directrices is 12, then length of its latus rectum is : (A)4 (B) $3\sqrt{2}$  (C)9 (D)  $2\sqrt{2}$ 

- A.  $3\sqrt{2}$
- B.  $\sqrt{3}$
- C.  $2\sqrt{3}$

D. 
$$\frac{3}{\sqrt{2}}$$

### Answer: A

Watch Video Solution

16.  $(p 
ightarrow q) \wedge (q 
ightarrow - p)$  is equivalent to

A. 1. q

B. 2. ~q

С. З. р

D. 4. ~p

### Answer: D

**Watch Video Solution** 

17. If 
$$g(x) = x^2 + x - 1$$
 and  $g(f(x)) = 4x^2 - 10x + 5$  then find  
 $f\left(\frac{5}{4}\right)$   
A. 1.  $\frac{3}{2}$   
B. 2.  $-\frac{3}{2}$   
C. 3.  $\frac{1}{2}$   
D. 4.  $-\frac{1}{2}$ 

Answer: D

18. Let lpha be a root of the equation  $x^2+x+1=0$  and the matrix

$$A = rac{1}{\sqrt{3}} egin{bmatrix} 1 & 1 & 1 \ 1 & lpha & lpha^2 \ 1 & lpha^2 & lpha^4 \end{bmatrix}$$

then the matrix  $A^{31}$  is equal to :

# A. $I_3$

 $\mathsf{B}.\,A^2$ 

# $\mathsf{C}.\,A$

 $\mathsf{D.}\,A^3$ 

Answer: D

19. Let 
$$x^k+y^k, (a,k>0) ext{ and } rac{dy}{dx}+\left(rac{y}{x}
ight)^{rac{1}{3}}=0$$
 then k is :

A.  $\log_e 2$ 

 $\mathsf{B.}\,2e$ 

 $\mathsf{C.1} + \log_e 2$ 

 $\mathsf{D.}\,2 + \log_e 2$ 

Answer: C

Watch Video Solution

Watch Video Solution

**20.** 
$$\lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{-x/2} - 3^{1-x}}$$
 is equal to \_\_\_\_\_

**21.** Let A(1, 0), B(6, 2) and  $C\left(\frac{3}{2}, 6\right)$  be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point  $\left(-\frac{7}{6}, -\frac{1}{3}\right)$ , is \_\_\_\_\_. 22. If f(x)=|2-|x-3|| is non differentiable in  $X \in S$ . Then value of  $\sum_{x \in S} \left( f(f(x)) 
ight)$  is

Watch Video Solution

23. If variance of first n natural number is 10 and variance of first m even

natural number is 16 then the value of m+n is

**24.** If sum of all the coefficient of even powers in 
$$(1 - x + x^2 - x^3....x^{2n})(1 + x + x^2.... + x^{2n})$$
 is 61 then n is equal to

**25.** If  $\theta_1$  and  $\theta_2$  be respectively the smallest and the largest values of  $\theta$  in  $(0, 2\pi) - (\pi)$  which satisfy the equation,  $2\cot^2\theta - \frac{5}{\sin\theta} + 4 = 0$ , then  $\int_{\theta_1}^{\theta_2} \cos^2 3\theta d\theta$  is equal to : A.  $\frac{\pi}{3}$ B.  $\frac{\pi}{9}$ C.  $\frac{\pi}{3} + \frac{1}{6}$ D.  $\frac{2\pi}{3}$ 

Watch Video Solution

**26.** Let y(x) is solution of differential equation  $(y^2 - x) \frac{dy}{dx} = 1$  and y(0) = 1,

then find the value of x where curve cuts the x-axis

A. 1. − *e* 

B. 2. 2-e

C. 3. 2

 $\mathsf{D.4.2}+e$ 

Answer: B

Watch Video Solution

27. The value of c in the Lagrange's mean value theorem for the function

$$f(x)=x^3-4x^2+8x+1$$
1, when  $x\in[0,1]$  is :

A. (a) 
$$\frac{\sqrt{7-2}}{3}$$
  
B. (b)  $\frac{4-\sqrt{5}}{3}$   
C. (c)  $\frac{4-\sqrt{7}}{3}$   
D. (d)  $\frac{2}{3}$ 

**28.** Let 3 + 4 + 8 + 9 + 13 + 14 + 18 +......40 terms = S. If S = (102)m then m =

A. (a)5

B. (b)20

C. (c)25

D. (d)10

Answer: B

Watch Video Solution

**29.** The area bounded by  $4x^2 \leq y \leq 8x + 12$  is -

A. 1. 
$$\frac{125}{3}$$
  
B. 2.  $\frac{124}{3}$   
C. 3.  $\frac{128}{3}$   
D. 4.  $\frac{127}{3}$ 

### Answer: C



**30.** Pair of tangents are drawn from origin to the circle  $x^2 + y^2 - 8x - 4y + 16 = 0$  then square of length of chord of contact is

A. 
$$1.\frac{64}{5}$$
  
B.  $2.\frac{52}{5}$   
C.  $3.\frac{56}{5}$   
D.  $4.\frac{32}{5}$ 

#### Answer: A



**31.** There are 5 machines. Probability of a machine being faulted is  $\frac{1}{4}$ . Probability of atmost two machines is faulted, is  $\left(\frac{3}{4}\right)^3 k$ , then value of k

A. 1. 
$$\frac{17}{2}$$
  
B. 2.  $\frac{17}{8}$   
C. 3. 4  
D. 4.  $\frac{17}{4}$ 

Answer: B

Watch Video Solution

**32.** Let A, B, C and D be four non-empty sets. The contrapositive statement of "If  $A \subseteq B$  and  $B \subseteq D$ , then  $A \subseteq C$ " is :

- A. 1.If  $A \swarrow C$  , then  $A \swarrow B$  or  $B \swarrow D$
- B. 2.If  $A \not\subseteq C$  , then  $A \not\subseteq B$  and  $B \not\subseteq D$

C. 3.If  $A\subseteq C$  , then  $B\subset A$  or  $D\subset B$ 

D. 4.If  $A \swarrow C$ , then  $A \subset B$  and  $B \subseteq D$ 

is

**33.** Let f(x) be a polynomial of degree 5 such that  $x = \pm 1$  are its critical points. If  $\lim_{x \to 0} \left(2 + \frac{f(x)}{x^3}\right) = 4$ , then which one of the following is true?

A. 1. x = 1 is a point of minima and x = -1 is a point of maxima of f

B. 2. f is an odd function

C. 3. f(1) - 4f(-1) = 4

D. 4. x = 1 is a point of maxima and x = -1 is a point of minimum of f

### Answer: D



**34.** If  $.^{36} C_{r+1} imes \left(k^2 - 3
ight) = 6 imes .^{35} C_r$  , then number of ordered pairs (r,

k) are (where  $k \in I$ ).

A. 1. 4

B. 2. 6

C. 3. 2

D. 4. 3

Answer: A

**35.** If 
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vectors such that  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$  and  
 $\lambda = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$  and  $d = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ ,  
then  $\left(\lambda, \overrightarrow{d}\right)$  is  
A.  $\left(-\frac{3}{2}, 3\overrightarrow{c} \times \overrightarrow{b}\right)$   
B.  $\left(\frac{3}{2}, 3\overrightarrow{a} \times \overrightarrow{c}\right)$   
C.  $\left(\frac{3}{2}, 3\overrightarrow{b} \times \overrightarrow{c}\right)$   
D.  $\left(-\frac{3}{2}, 3\overrightarrow{a} \times \overrightarrow{b}\right)$ 

## Answer: D



**36.** If 
$$z = \frac{3 + i \sin \theta}{4 - i \cos \theta}$$
 is purely real and  $\theta \in \left(\frac{\pi}{2}, \pi\right)$ , then  $\arg(\sin \theta + i \cos \theta)$  is -

A. 
$$\pi - \tan^{-1} \cdot \left(\frac{3}{4}\right)$$
  
B.  $\pi - \tan^{-1} \left(\frac{4}{3}\right)$   
C.  $\tan^{-1} \left(\frac{4}{3}\right)$   
D.  $-\tan^{-1} \left(\frac{3}{4}\right)$ 

## Answer: B



37. 
$$3x + 4y = 12\sqrt{2}$$
 is the tangent to the ellipse  $rac{x^2}{a^2} + rac{y^2}{9} = 1$  then the

distance between focii of ellipse is-

A. 1.  $2\sqrt{7}$ 

B. 2. 4

C. 3.  $2\sqrt{5}$ 

D. 4.  $2\sqrt{2}$ 

Answer: A

Watch Video Solution

**38.** The value of 
$$lpha$$
 for which  $4lpha \int_{-1}^{2} e^{-lpha \|x\|} dx = 5$  is :

A. 1.  $\log_e 2$ 

B. 2. 
$$\log_e\left(\frac{3}{2}\right)$$
  
C. 3.  $\log_e\left(\frac{4}{3}\right)$   
D. 4.  $\log_e\sqrt{2}$ 

## Answer: A

**39.** Let  $\alpha$  and  $\beta$  are the roots of  $x^{2}-x-1=0$  such that  $P_{k} = \alpha^{k} + \beta^{k}, k \ge 1$  then which one is incorrect? A.  $(p_{1} + p_{2} + p_{3} + p_{4} + p_{5}) = 26$ B.  $p_{3} = p_{5} - p_{4}$ C.  $p_{5} = 11$ D.  $p_{5} = p_{2}$ .  $P_{3}$ 

Answer: D

Watch Video Solution

**40.** Let  $A = [a_{ij}], B = [b_{ij}]$  are two 3 × 3 matrices such that  $b_{ij} = \lambda^{i+j-2}a_{ij}$  & |B| = 81. Find |A| if  $\lambda$  = 3.

A. 1/81

B.1/9

C. 3

D. 1/3

Answer: B

Watch Video Solution

**41.** From any point P on the line x = 2y perpendicular is drawn on y = x. Let

foot of perpendicular is Q. Find the locus of mid point of PQ.

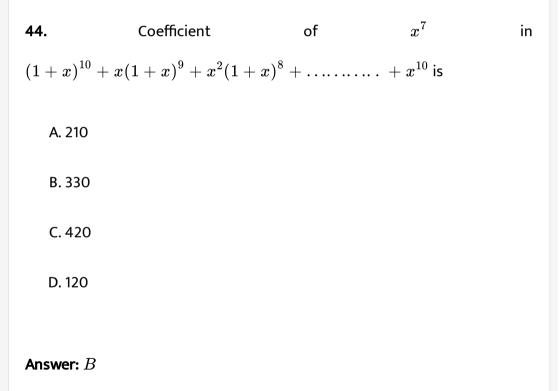
A. 5x - 7y = 0 B. 2x - 3y = 0

C. 3x - 2y = 0

D. 7x - 5y = 0

Answer: A

42. Let  $a_1, a_2, a_3, ...$  be a G. P. such that  $a_1 < 0, a_1 + a_2 = 4$  and  $a_3 + a_4 = 16$ . If  $\sum_{i=1}^9 a_i = 4\lambda$ , then  $\lambda$  is equal to : A.  $\frac{511}{3}$ B. 171 C. -513D. -171


#### Answer: D

**43.** if 
$$y\sqrt{1-x^2} = k - x\sqrt{1-y^2}$$
 and  $y\left(\frac{1}{2}\right) = -\frac{1}{4}$ , then  $\frac{dy}{dx}$  at  $x = \frac{1}{2}$   
A.  $\frac{\sqrt{5}}{2}$   
B.  $-\frac{\sqrt{5}}{2}$   
C.  $\frac{2}{\sqrt{5}}$ 

$$\mathsf{D.}-\frac{\sqrt{5}}{4}$$

Answer: B





**45.** If  $Q\left(rac{5}{3},rac{7}{3},17,3
ight)$  is foot of perpendicular drawn from P(1,0,3) on

a line L and if line L is passing through (lpha,7,1), then value of lpha is



46. If system of equation

x + y + z = 6

x + 2y + 3z = 10

 $3x + 2y + \lambda z = \mu$  has more than two solutions. Find  $(\mu - \lambda)$ 

Watch Video Solution

47. If the mean and variance of eight numbers 3, 7, 9, 12, 13, 20, x and y be

10 and 25 respectively, then x.y is equal to \_\_\_\_\_.

**48.** Let  $X = \{x : 1 \text{ le } x \text{ le } 50, x \text{ in } N\} A = \{x: x \text{ is multiple of } 2\} B = \{x: x \text{ is multiple of } 7\}$  Then find number of elements in the smallest subset of X which contain elements of both A and B

# Watch Video Solution

**49.** If F(x) is defined in 
$$x \in \left(-rac{1}{3}, rac{1}{3}
ight)$$

 $f(x) = \{((1/x)\log_e((1+3x)/(1-2x)), x = 0), (k,x=0):\}$ 

zfind k such that f(x) is continuous

Watch Video Solution

**50.** Let ABC is a triangle whose vertices are A(1, -1), B(0, 2), C(x', y')

and area of  $\ riangle ABC$  is 5 and C(x', y') lie on  $3x+y\!\!-4\lambda=0$ , then

A. - 3

C. 4

D. 3

## Answer: D

# **Watch Video Solution**

51. Let 
$$P(A) = rac{1}{3}$$
 ,  $P(B) = rac{1}{6}$  where A and B are independent events then

A. 
$$P(A/B) = \frac{2}{3}$$
  
B.  $P(A/B') = \frac{1}{3}$   
C.  $P(A'/B') = \frac{1}{3}$   
D.  $P(A/A \cup B) = \frac{1}{4}$ 

#### Answer: B

52. Let 
$$f(x) = \left\{ \left( \sin(\tan^{-1}x) + \sin(\cot^{-1}x) \right)^2 - 1, \text{ where } |x| > 1 \right\}$$
  
and  $\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left( \sin^{-1}f(x) \right).$  If  $y(\sqrt{3}) = \frac{\pi}{6}$  then  $y(-\sqrt{3})$   
A.  $-\frac{\pi}{6}$   
B.  $\frac{2\pi}{3}$   
C.  $\frac{\pi}{3}$   
D.  $\frac{5\pi}{6}$ 

## Answer: A

53. 
$$f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$$
 find the inverse of the function  
A. 
$$\frac{1}{4} \left( \log_g e \right) \log_e \left( \frac{1+x}{1-x} \right)$$
B. 
$$\frac{1}{4} \left( \log_g e \right) \log_e \left( \frac{1-x}{1+x} \right)$$
C. 
$$\frac{1}{4} \log_e \left( \frac{1-x}{1+x} \right)$$
D. 
$$\frac{1}{4} \log_8 \left( \frac{1+x}{1-x} \right)$$

## Answer: D

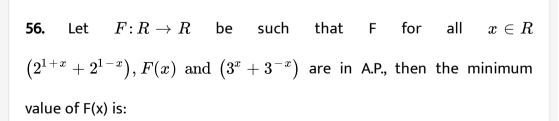


| <b>54.</b> The system of equation                               |
|-----------------------------------------------------------------|
| $3x+4y+5z=\mu$                                                  |
| x+2y+3z=1                                                       |
| $4x+4y+4z=\delta$ is inconsistent, then ( $\delta,\mu$ ) can be |
|                                                                 |
| A. (4,3)                                                        |
| B. (4,6)                                                        |
|                                                                 |
| C. (3,4)                                                        |
| D. (1,0)                                                        |
|                                                                 |

## Answer: 3

**55.** If  $y^2 = ax$  and  $x^2 = ay$  intersect at A & B. Area bounded by both curves is bisected by line x = b(given a > b > 0). Area of triangle formed by line AB, x = b and x-axis is  $\frac{1}{2}$ . Then

A. 
$$x^6 - 12x^3 - 4 = 0$$


B. 
$$x^6 - 6x^3 + 4 = 0$$

C. 
$$x^6 - 12x^3 + 4 = 0$$

D. 
$$x^6 + 6x^3 - 4 = 0$$

Watch Video Solution

#### Answer: c



| D. U |
|------|
|------|

C. 2

D. 3

#### Answer: D

Watch Video Solution

57. Consider a function  $f(x) = \ln \left( rac{x^2 + lpha}{7x} 
ight)$  . If for the given function,

Rolle's theorem is applicable in [3,4] at a point C then find  $f^{\prime\,\prime}(C)$ 

A. 
$$\frac{1}{12}$$
  
B.  $-\frac{1}{12}$   
C.  $\frac{\sqrt{3}}{7}$   
D.  $-\frac{1}{24}$ 

#### Answer: A

58. Let 
$$f(x)=x\cos^{-1}(|-\sin|x|)$$
 ,  $x\in \Big(-rac{\pi}{2},rac{\pi}{2}\Big)$ 

A. FIGURE is decreasing iin  $\left(-\frac{\pi}{2}, 0\right)$  and increasing in  $\left(0, \frac{\pi}{2}\right)$ B. FIGURE' is increasing in  $\left(-\frac{\pi}{2}, 0\right)$  and decreasing in  $\left(0, \frac{\pi}{2}\right)$ 

C. FIGURE is not diFIGUREFIGUREerentiable at x=0

D. FIGURE'(0)= $-\frac{\pi}{2}$ 

#### Answer: A

Watch Video Solution

**59.** Let the line y = mx and the ellipse  $2x^2 + y^2 = 1$  intersect at a point P in the first quadrant. If the normal to this ellipse at P meets the coordinate axes at  $\left(-\frac{1}{3\sqrt{2}}, 0\right)$  and  $(0, \beta)$ , then  $\beta$  is equal to A.  $\frac{2\sqrt{2}}{3}$ B.  $\frac{2}{\sqrt{2}}$ 

C. 
$$\frac{\sqrt{2}}{3}$$
  
D.  $\frac{2}{3}$ 

## Answer: C



**60.** The shortest distance between the lines 
$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
  
and  $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$  is  
A.3  
B.  $3\sqrt{30}$   
C.  $\frac{7}{2}\sqrt{30}$   
D.  $2\sqrt{30}$ 

~

 $\sim$ 

61. Which of the following is tautology

A. 
$$P \land (p \lor Q)$$
  
B.  $P \lor (P \land Q)$   
C.  $Q \rightarrow (P \land (P \rightarrow Q))$   
D.  $(P \land (P \rightarrow Q)) \rightarrow Q$ 

#### Answer: D

**Watch Video Solution** 

**62.** Let P be a point on  $x^2 = 4y$ . The segment joining A(0, -1) and P is divided by point Q in the ratio 1:2, then locus of point Q is

A. 
$$4x^2 - 3y = 2$$
  
B.  $9x^2 - 3y = 2$   
C.  $x^2 - 3y = 2$   
D.  $9x^2 - 12y = 8$ 

## Answer: D



**63.** Mean and standard deviations of 10 observations are 20 and 2 respectively. If p  $(p \neq 0)$  is multiplied to each observation and then q  $(q \neq 0)$  is subtracted then new mean and standard deviation becomes half of original value. Then find q

A. 10

 $\mathsf{B.}-10$ 

C. - 20

D. 5

Answer: C

**64.** If volume of parallelopiped whose there coterminous edges are  $\vec{u} = \hat{i} + \hat{j} + \lambda \hat{k}, \vec{v} = 2\hat{i} + \hat{j} + \hat{k}, \vec{w} = \hat{i} + \hat{j} + 3\hat{k}$ , is 1 cubic unit then cosine of angle between  $\vec{u}$  and  $\vec{v}$  is

A. 
$$\frac{7}{6\sqrt{6}}$$
  
B. 
$$\frac{5}{7}$$
  
C. 
$$\frac{7}{6\sqrt{3}}$$
  
D. 
$$\frac{5}{3\sqrt{3}}$$

#### Answer: c

Watch Video Solution

# 65. Let $\int \frac{\cos x dx}{(\sin^3 x) (1 + \sin^6 x)^{\frac{2}{3}}} = f(x) (1 + \sin^6 x)^{\frac{1}{\lambda}} + C$ then find the value of $\lambda f(\frac{\pi}{3})$ A. $\frac{9}{8}$ B. -2

$$C.-\frac{9}{8}$$

 $\mathsf{D.}\,2$ 

#### Answer: B

Watch Video Solution

**66.** Roots of the equation  $x^2 + bx + 45 = 0, b \in R$  lie on the curve |z + 1|

= 2sqrt(10), where z is a complex number then

A. 
$$b^2 + b = 12$$
  
B.  $b^2 + b = 72$   
C.  $b^2 - b = 30$ 

# $\mathsf{D}.\,b^2-b=42$

#### Answer: c

67. If 
$$y(x)$$
 is a solution of differential equation  
 $\sqrt{1-x^2}\frac{dy}{dx} + \sqrt{1-y^2} = 0$  such that  $y\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}$ , then  
A.  $-\frac{\sqrt{3}}{2}$   
B.  $-\frac{1}{\sqrt{2}}$   
C.  $\frac{\sqrt{3}}{2}$   
D.  $\frac{1}{\sqrt{2}}$ 

## Answer: D

**Watch Video Solution** 

68. 
$$\lim_{x o 0} \left( rac{3x^2+2}{7x^2+2} 
ight)^{rac{1}{x^2}}$$
 is equal to

A. 
$$e^2$$

**B**. *e* 

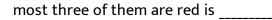
C. 
$$\frac{1}{e^2}$$
  
D.  $\frac{1}{e}$ 

1

#### Answer: C



**69.** If maximum value of  $.^{19} C_p isa, .^{20} C_q isb, .^{21} C_r isc$ , then relation between a, b, c is


A. 
$$\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$$
  
B.  $\frac{a}{11} = \frac{b}{22} = \frac{c}{21}$   
C.  $\frac{a}{10} = \frac{b}{11} = \frac{c}{21}$   
D.  $\frac{a}{10} = \frac{b}{11} = \frac{c}{42}$ 

#### Answer: A



70. An urn contains 5 red marbels, 4 black marbels and 3 white marbles.

Then the number of ways in which 4 marbles can be drawn so that at





71. Find the sum, 
$$\sum_{k=1}^{20} \left(1+2+3+....+k
ight)$$

Watch Video Solution

72. A is a 3 imes 3 matrix whose elements are from the set  $\{-1, 0, 1\}$ . Find the number of matrices A such that  $tr(A imes A^T) = 3$ . Where tr(A) is the trace of A.

Watch Video Solution

**73.** If normal at P on the curve  $y^2 - 3x^2 + y + 10 = 0$  passes through the point  $\left(0, \frac{3}{2}\right)$  ,then slope of tangent at P is n. The value of |n| is equal to

**74.** The equation  $2x^2 + (a-10)x + rac{33}{2} = 2a$  has real roots. Find least

positive value of a.

Watch Video Solution

**75.** Value of 
$$\cos^3\left(\frac{\pi}{8}\right)\cos^3\left(\frac{3\pi}{8}\right) + \sin^3\left(\frac{\pi}{8}\right)\sin^3\left(\frac{3\pi}{8}\right)$$
 is

A. 
$$\frac{1}{\sqrt{2}}$$
  
B.  $\frac{1}{4}$   
C.  $\frac{1}{8\sqrt{2}}$   
D.  $\frac{1}{2}$ 

Answer: C

**76.** The negation of ' $\sqrt{5}$  is an integer or 5 is an irrational number' is

A.  $\sqrt{5}$  is not an interger and 5 is not irrational.

B.  $\sqrt{5}$  is an interger and 5 irrational.

C.  $\sqrt{5}$  is not an integer or 5 is not irrational.

D.  $\sqrt{5}$  is irrational or 5 is an interger.

### Answer: A

77. Find the integration 
$$\int \frac{dx}{(x-3)^{rac{6}{7}}(x+4)^{rac{8}{7}}}$$

A. 
$$\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}} + C$$
  
B.  $-\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}} + C$   
C.  $\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{\frac{3}{7}} + C$   
D.  $-\frac{1}{13}\left(\frac{x-3}{x+4}\right)^{\frac{-13}{7}} + C$ 

## Answer: A



**78.** A sphere of 10cm radius has a uniform thickness of ice around it. Ice is melting at rate  $50cm^3 / \min$  when thickness is 5cm then rate of change of thickness

A. 
$$\frac{5}{6\pi}$$
  
B. 
$$\frac{1}{36\pi}$$
  
C. 
$$\frac{1}{18\pi}$$
  
D. 
$$\frac{1}{54\pi}$$

## Answer: C

**79.** Let C be the centroid of the triangle with vertices (3, -1) (1, 3) and (2, 4). Let P be the point of intersection of the lines x + 3y - 1 = 0 and 3x - y + 1 = 0. Then the line passing through the points C and P also passes through the point :

A. (-9, -6) B. (7, 6) C. (9, 7)

D. (-9, -7)

## Watch Video Solution

**80.** In a bag there are 20 cards 10 names A and another 10 names B. Cards are drawn randomly one by one with replacement then find probability that second A comes before third B

A. 
$$\frac{15}{16}$$

B. 
$$\frac{11}{16}$$
  
C.  $\frac{9}{16}$   
D.  $\frac{13}{16}$ 

## Answer: B



$$\begin{array}{l} \textbf{81.} & \textsf{F(x)} & = \\ \left\{ \left( \frac{\sin(a+2)x + \sin x}{x}, x < 0 \right), (b,x=0), \left( \frac{\left( x + 3x^2 \right)^{\frac{1}{3}} - x^{\frac{1}{3}}}{x^{\frac{4}{3}}} \right), x > 0 \end{array} \right. \end{array}$$

Function is continuous at x = 0, find a + 2b.

$$\mathsf{A}.-1$$

**B**. 0

## **C**. 1

 $\mathsf{D.}-2$ 

#### Answer: B

82. If 
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$$
,  $B = adj(A)$  and  $C = 3A$  then  $\frac{|adj(B)|}{|C|}$  is  
A. 2  
B. 16  
C. 8  
D. 72  
Answer: C  
Watch Video Solution

**83.** If number of 5 digit numbers which can be formed without repeating any digit while tenth place of all of the numbers must be 2 is 336 k find value of k

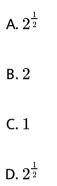
| A. 7        |  |
|-------------|--|
| <b>B.</b> 8 |  |
| C. 6        |  |
| D. 4        |  |

### Answer: B

Watch Video Solution

84. If plane  $x + 4y - 2z = 1, x + 7y - 5z = \beta, x + 5y + \alpha z = 5$ intersects in a line  $(R \times R \times R)$  then  $\alpha + \beta$  is equal to

 $\mathsf{A.}\,2$ 


**B**. 10

**C**. 0

 $\mathsf{D.}-10$ 

#### Answer: B

## 85. about to only mathematics



## Answer: A

86. If 
$$\left|\frac{z-i}{z+2i}\right|=1,$$
  $|z|=\frac{5}{2}$  then the value of  $|z+3i|$   
A.  $\frac{15}{4}$   
B.  $2\sqrt{3}$   
C.  $\frac{7}{2}$ 

D.  $\sqrt{10}$ 

#### Answer: C

## Watch Video Solution

87. Let the observations  $x_i(1 \le I \le 10)$  satisfy the equations,  $\Sigma_{i=1}^{10}(x_i - 5) = 10$  and  $\Sigma_{i=1}^{10}(x_i - 5)^2 = 40$ . If  $\mu$  and  $\lambda$  are the mean and the variance of the observations,  $x_1 - 3, x_2 - 3, \ldots, -3$ , then the ordered pair  $(\mu, \lambda)$  is equal to :

A. (3, 3)

- B. (6, 3)
- C.(6, 6)
- D. (3, 6)

#### Answer: A

**88.** If  $f'(x)= an^{-1}(\sec x+ an x), x\in \left(-rac{\pi}{2},rac{\pi}{2}
ight)$  and f(0)=0 then the value of f(1) is

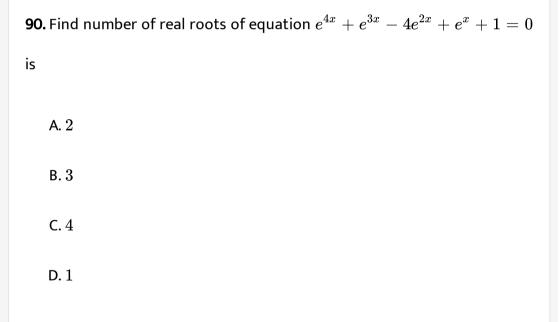
A. 
$$\frac{1}{4}$$
  
B.  $\frac{\pi - 1}{4}$   
C.  $\frac{\pi + 1}{4}$   
D.  $\frac{\pi + 2}{4}$ 

#### Answer: D

## Watch Video Solution

89. If  $e_1$  and  $e_2$  are eccentricities of  $\frac{x^2}{18} + \frac{y^2}{4} = 1$  and  $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively and if the point  $(e_1, e_2)$  lies on ellipse  $15x^2 + 3y^2 = k$ . Then the value of k

A. 15


**B**. 14

**C**. 16

 $\mathsf{D}.\,17$ 

Answer: 16

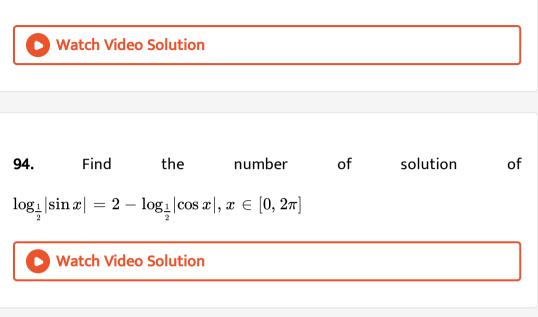
Watch Video Solution



#### Answer: 4

91. If 
$$f(x)=a+bx+cx^2$$
 where  $a,b,c\in R$  then  $\int_o^1 f(x)dx$ 

$$\begin{aligned} &\mathsf{A}.\,\frac{1}{3} \bigg\{ f(0) + f(1) + 2f\bigg(\frac{1}{2}\bigg) \bigg\} \\ &\mathsf{B}.\,\frac{1}{6} \bigg\{ f(0) + f(1) + 4f\bigg(\frac{1}{2}\bigg) \bigg\} \\ &\mathsf{C}.\,\frac{1}{6} \bigg\{ f(0) + f(1) - 4f\bigg(\frac{1}{2}\bigg) \bigg\} \\ &\mathsf{D}.\,\frac{1}{6} \bigg\{ f(0) - f(1) - 4f\bigg(\frac{1}{2}\bigg) \bigg\} \end{aligned}$$


## Answer: 2

**Watch Video Solution** 

**92.** If 
$$\overrightarrow{P} = (a+1)\hat{i} + a\hat{j} + a\hat{k}$$
  
 $\overrightarrow{Q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}$   
 $\overrightarrow{R} = a\hat{i} + a\hat{j} + (a+1)\hat{k}$   
 $\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{R}$  are coplanar vectors and  $3\left(\overrightarrow{P}, \overrightarrow{Q}\right)^2 - \lambda \left|\overrightarrow{R} \times \overrightarrow{Q}\right|^2 = 0$  then

value of lambda is

**93.** Find the coefficient of  $x^4$  in  $\left(1+x+x^2
ight)^{10}$ 



**95.** If for  $x \ge 0, y = (x)$  is the solution of the differential equation,

$$(x+1)dy=\Big((x+1)^2+y-3\Big)dx,y(2)=0,$$

then y(3) is equal to ....

## Watch Video Solution

96. The projection of the line segment joining the points (1, -1, 3) and (2, -4, 11) on the line joining the points (-1, 2, 3) and (3, -2, 10),

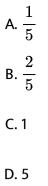
# Watch Video Solution

97. If 
$$7x + 6y - 2z = 0$$
,  $3x + 4y + 2z = 0$ ,  $x - 2y - 6z = 0$  then which

option is correct

A. infinitely many solutions (x,y,z) satisfying y=2z

B. no solution


C. only the trivial solution

D. infinitely many solutions (x,y,z) satisfying x=2z

#### Answer: D

Watch Video Solution

**98.** if f(x) and g(x) are continuous functions, fog is identity function, g'(b) = 5 and g(b) = a then f'(a) is



**Watch Video Solution** 

99. Let 
$$x=2\sin heta-\sin2 heta$$
 and  $y=2\cos heta-\cos2 heta$  find  $rac{d^2y}{dx^2}$  at  $heta=\pi$ 

$$A. -\frac{3}{8}$$
$$B. \frac{3}{2}$$
$$C. -\frac{3}{4}$$
$$D. \frac{3}{4}$$

## Answer: A

100. If 
$$\frac{dx}{dy} = \frac{xy}{x^2 + y^2}$$
,  $y(1) = 1$  and  $y(x) = e$  then  $x =$   
A.  $\frac{e}{\sqrt{2}}$   
B.  $\frac{1}{2}\sqrt{3}e$   
C.  $\sqrt{2}e$   
D.  $\sqrt{3}e$ 

#### Answer: D

## Watch Video Solution

**101.** If minimum value of term free from  $\times$  for  $\left(\frac{x}{\sin\theta} + \frac{1}{(x\cos\theta)^{16}}\right)^{16}$  is L\_1 in  $\left[\frac{\pi}{8}, \frac{\pi}{4}\right]$  and  $L_2$  in  $\left[\frac{\pi}{16}, \frac{\pi}{8}\right]$ , then  $\frac{L_2}{L_1}$ 

A. 16:1

B.1:8

C. 1:16

D.8:1

Answer: A



102. Let 
$$x = \sum_{n=0}^{\infty} (-1)^n (\tan \theta)^{2n}$$
 and  $y = \sum_{n=0}^{\infty} (\cos \theta)^{2n}$  qhere  
 $\theta \in \left(0, \frac{\pi}{4}\right)$ , then  
A.  $x(1+y) = 1$   
B.  $x(1-y) = 1$   
C.  $y(1-x)=1$   
D.  $y(1+x)=1$ 

103. 
$$\iint \left( \frac{d(\theta)}{(\cos^2 \theta)(\sec(2\theta) + \tan(2\theta))} \right) = \lambda \tan \theta + 2\log f(x) + c, \text{ then}$$

ordered pair  $(\lambda, f(x))$  is

A. (-1, 1 - an heta)

 $\mathsf{B.}\left(1,1-\tan\theta\right)$ 

 $\mathsf{C.}\,(\,-1,1+\tan\theta)$ 

 $\mathsf{D}.\left(1,1+\tan\theta\right)$ 

#### Answer: C

Watch Video Solution

104. Let probability distribution is  $egin{bmatrix} x_i &:& 1&2&3&4&5\\ p_i &:& k^2&2k&k&2k&5k^2 \end{bmatrix}$  then value of p(x>2) is

A. 
$$\frac{1}{6}$$
  
B.  $\frac{7}{12}$   
C.  $\frac{1}{36}$ 

D. 
$$\frac{23}{36}$$

Answer: D

# **Watch Video Solution**

105. If 
$$f(x) = \begin{vmatrix} x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}$$
 and  $a - 2b + c = 1$  then  
A. f(50)=1  
B. f(-50)=501  
C. f(50)=-501  
D. f(-50)=-1

Answer: A

106. z is a complex number such that |Re(z)|+|Im(z)|=4 then |z|

can't be

A. 
$$\sqrt{\frac{17}{2}}$$
  
B.  $\sqrt{10}$ 

$$C.\sqrt{8}$$

D. 
$$\sqrt{7}$$

## Answer: D

Watch Video Solution

107. Let  $a_n$  be the  $n^{th}$  term, of a G.P of postive terms. If  $\Sigma_{n=1}^{100}a_{2n+1}=200$ 

and

 $\Sigma_{n=1}^{100}a_{2n}=100, \ \ ext{then}\Sigma_{n=1}^{200}a_{n}$ 

A. 150

B. 225

C. 300

D. 175

Answer: A

# **Watch Video Solution**

**108.** If 
$$\lim_{x \to 0} x \left[ \frac{4}{x} \right] = A$$
, then the value of x at which  $f(x) = [x^2] \sin \pi x$ 

is discontinuous , (where [.] denotes greatest integer function)

A. 
$$\sqrt{A+1}$$
  
B.  $\sqrt{A+5}$   
C.  $\sqrt{A}$ 

D. 
$$\sqrt{A+21}$$

### Answer: A

**109.** Let one end of focal chord of parabola  $y^2 = 8x$  is (1/2, -2), then equation of tangent at other end of this focal chord is

A. x+2y+8=0

B. x-2y+8 =0

C. 2x-y-24=0

D. 2x+y-24=0

Answer: B

Watch Video Solution

**110.** If 10 different balls are to be placed in 4 distinct boxes at random, then the parobability that two of these boxes contain exactly 2 and 3 balls is :

A. 
$$\frac{945}{2^{11}}$$
  
B.  $\frac{945}{2^{10}}$ 

C. 
$$\frac{965}{2^{11}}$$
  
D.  $\frac{965}{2^{10}}$ 

## Watch Video Solution

111. If  $p 
ightarrow (p \wedge extsf{-}q)$  is false. Truth value of p & q will be

A. F,F

B. T,F

C. F,T

D. T,T

Answer: D

Watch Video Solution

112. Let  $A=\{x\!:\!|x|<2\}$  and  $B=\{x\!:\!|x-2|\geq 3\}$  then

A. 
$$B-A=R-(\,-2,5)$$

B. 
$$A - B = [-1, 2)$$

C. 
$$A \cap B = R - (2.5)$$

D. 
$$A \cap B = (-2, -1)$$

Watch Video Solution

113. Let x + 6y = 8 is tangent to standard ellipse where minor axis is  $\frac{4}{\sqrt{3}}$ , then eccentricity of ellipse is

A. 
$$\frac{1}{2}\sqrt{\frac{11}{3}}$$
  
B.  $\sqrt{\frac{5}{6}}$   
C.  $\frac{1}{3}\sqrt{\frac{11}{3}}$   
D.  $\frac{1}{2}\sqrt{\frac{5}{3}}$ 

Answer: A

114. Let a function f: [0,5] 
ightarrow R be continuous , f(1) =3 and F be definded

as 
$$:F(x)=\int_1^x t^2g(t)dt, ext{ where } g(t)=\int_1^t f(u)du.$$

Then for the function F, the point x=1 is

A. a point of local minima,

B. not a critical point.

C. a point of indflection.

D. a point of local maxima

### Answer: A

## Watch Video Solution

115. Let both root of equation  $ax^2-2bx+5=0$  are lpha and root of equation  $x^2-2bx-10=0$  are lpha and eta . Find the value of  $lpha^2+eta^2$ 

| A. 24 |
|-------|
|-------|

B. 28

C. 26

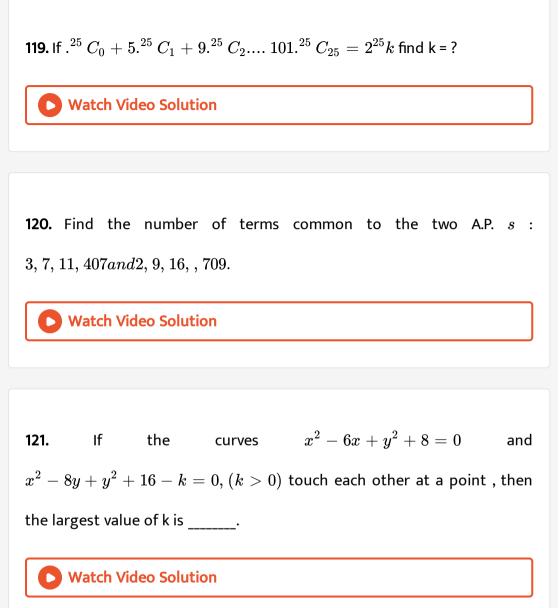
D. 25

## Answer: D

**116.** If 
$$f(x) = \left\{x, 0 < x < \frac{1}{2}, \frac{1}{2}, x = \frac{1}{2}, 1 - x, \frac{1}{2} < x < 1\right\}$$
 and  
 $g(x) = \left(x - \frac{1}{2}\right)^2$  then find the area bounded by f(x) and g(x) from  
 $x = \frac{1}{2}$  to  $x = \frac{\sqrt{3}}{2}$   
A.  $\frac{1}{3} + \frac{\sqrt{3}}{4}$   
B.  $\frac{1}{2} + \left(\frac{\sqrt{3}}{4}\right)$   
C.  $\frac{\sqrt{3}}{4} - \frac{1}{3}$   
D.  $\frac{1}{2} - \frac{\sqrt{3}}{4}$ 

## Answer: C




117. If the distance between the plane 23x-10y-2z+48 =0 and the plane

containing the lines

$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z+1}{3} \quad \text{and} \quad \frac{x+3}{2} = \frac{y+2}{6} = \frac{z-1}{\lambda} (\lambda \in R) \quad \text{is}$$
equal to  $\frac{k}{\sqrt{633}}$ , then k is equal to \_\_\_\_\_.

Watch Video Solution

**118.** Let  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  be three vectors such that  $\left|\overrightarrow{a}\right| = \sqrt{3}$ ,  $\left|\overrightarrow{b}\right| = 5$ ,  $\overrightarrow{b} \cdot \overrightarrow{c} = 10$  and the angle between  $\overrightarrow{b}$  and  $\overrightarrow{c}$  is  $\frac{\pi}{3}$ , if  $\overrightarrow{a}$  is perpendicular to the vector  $\overrightarrow{b} \times \overrightarrow{c}$ , then  $\left|\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right|$  is equal to





**1.** Let the set of all function  $f: [0, 1] \to R$ , which are continuous on [0, 1]and differentiable on (0, 1). Then for every f in S, there exists a c  $\in (0, 1)$  depending on f, such that :

$$\begin{split} &\mathsf{A}. \left|f(c) - f(1)\right| < (1-c)|f'(c)| \\ &\mathsf{B}. \, \frac{f(1) - f(c)}{1-c} = f'(c) \\ &\mathsf{C}. \left|f(c) - f(1)\right| < |f'(c)| \\ &\mathsf{D}. \left|f(c) + f(1)\right| < (1+c)|f'(c)| \end{split}$$

Watch Video Solution

2. If a hyperbola has vertices  $(\pm 6, 0)$  and P(10, 16) lies on it, then the equation of normal at P is

A. 3x + 4y = 94

B. x + 2y = 42

C. 2x + 5y = 100

D. x + 3y = 58

Answer: C

**Watch Video Solution** 

**3.** It the 
$$10^{th}$$
 term of an A. P. is  $\frac{1}{20}$  and its  $20^{th}$  term is  $\frac{1}{10}$ , then the sum of its first 200 terms is :

## A. 50

B.  $100\frac{1}{2}$ 

C. 100

D. 
$$50\frac{1}{4}$$

#### Answer: B

**4.** Let A=[[2,2],[9,4]] and I=[[1,0],[0,1]] then value of 10 A^(-1)` is-

A. 6I-AB. A-4IC. A-6I

 $\mathsf{D.}\,4I-A$ 

### Answer: C

Watch Video Solution

5. Let 
$$lpha=rac{-1+i\sqrt{3}}{2}$$
 and  $a=(1+lpha)\sum_{k=0}^{100}lpha^{2k},b=\sum_{k=0}^{100}lpha^{3k}$  . If a and b

are roots of quadratic equation then quadratic equation is

A. 
$$X^2 - 102X + 101 = 0$$
  
B.  $X^2 + 102X + 101 = 0$   
C.  $X^2 + 101 + 100 = 0$   
D.  $X^2 = 101X + 100 = 0$ 



6.  $\lambda x + 2y + 2z = 5, 2\lambda x + 3y + 5z = 8, 4x + \lambda y + 6z = 10$  for the

system of equation check the correct option.

A. no solution when  $\lambda=8$ 

B. no solution when  $\lambda=2$ 

C. a unique solution when  $\lambda=-8$ 

D. infinitley many solutions when  $\lambda=2$ 

#### Answer: B



7. Let  $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$  and  $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$  be two vectors. If  $\overrightarrow{c}$  is a vector such that  $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{a}$  and  $\overrightarrow{c} \cdot \overrightarrow{a} = 0$ , theat  $\overrightarrow{c} \cdot \overrightarrow{b}$  is

equal to:

A. 
$$\frac{1}{2}$$
  
B.  $-\frac{3}{2}$   
C.  $-1$   
D.  $-\frac{1}{2}$ 

**Watch Video Solution** 

8. Let 
$$f(x)=rac{x[x]}{x^2+1}\colon (1,3) o R$$
 then range of f(x) is (where [ . ]

denotes greatest integer function

A. 
$$\left(\frac{3}{5}, \frac{4}{5}\right)$$
  
B.  $\left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$   
C.  $\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right]$   
D.  $\left(\frac{2}{5}, \frac{4}{5}\right]$ 

## Answer: C



9. 
$$\lim_{x \to 0} \frac{\int_0^x t \sin(10t) dt}{x}$$
 is equal to  
A.  $-\frac{1}{5}$   
B.  $-\frac{1}{10}$   
C. 0  
D.  $\frac{1}{10}$ 

## Answer: C



10. Normal at (2,2) to curve  $x^2+2xy\!\!-\!3y^2=0$  is L. Then perpendicular

distance from origin to line L is

A.  $2\sqrt{2}$ 

B. 2

 $\mathsf{C.}\,4\sqrt{2}$ 

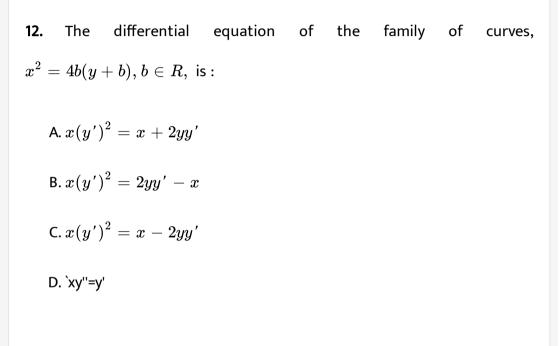
D.  $\sqrt{2}$ 

#### Answer: A



**11.** Let A and B two events such that the probability that exactly one of them occurs is  $\frac{2}{5}$  and the probability that A or B occurs is  $\frac{1}{2}$ , then probability of both of them occur together is :

A.0.02


B.0.10

 $C.\,0.01$ 

 $\mathsf{D}.\,0.20$ 

#### Answer: B





#### Answer: A



13. Let P be the set of points (x,y) such that  $x^2 \leq y \leq -2x+3$ . Then

area of region bounded by points in set P is

A. 
$$\frac{29}{3}$$
  
B.  $\frac{34}{3}$   
C.  $\frac{32}{3}$   
D.  $\frac{31}{3}$ 

### Answer: C

# Watch Video Solution

**14.** Image of (1, 2, 3) w.r.t a plane is  $\left(-\frac{7}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$  then which of

the following points lie on the plane

A. 
$$(-1, -1, 1)$$

B. (1, -1, 1)

C.(1, 1, 1)

D. 
$$(-1, -1, -1)$$

15. Mean and variance of 20 observation are 10 and 4. It was found, that in

place of 11, 9 was taken by mistake find correct variance.

A. 4.02

B. 3.99

C. 3.98

D. 4.01

#### Answer: B

Watch Video Solution

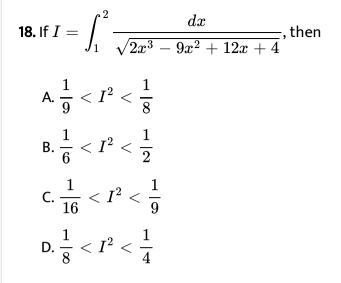
16. Let coefficient of  $x^4$  and  $x^2$  in the expansion of  $(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6$  is  $\alpha$  and  $\beta$  then  $\alpha - \beta$  is equal to A.  $\alpha - \beta = -132$ B.  $\alpha + \beta = 60$   $\mathsf{C.}\,\alpha-\beta=60$ 

 $\mathsf{D.}\,\alpha+\beta=\,-\,30$ 

Answer: A

**Watch Video Solution** 

17. Solution set of 
$$3^x(3^x\!-\!1)+2=|3^x\!-\!1|+|3^x\!-\!2|$$
 contains


A. is an empty set

B. is a singleton.

C. contains at least four elements.

D. contains exactly two elements .

Answer: B



Watch Video Solution

19. Let f(x) is a three degree polynomial for which f'(-1) = 0, f''(1) = 0, f(-1) = 10, f(1) = 6 then local minima of f(x) exist at

20. 
$$If\sqrt{2}\frac{\sin\alpha}{\sqrt{1+\cos 2\alpha}} = \frac{1}{7} \text{ and } \sqrt{\frac{1-\cos 2\beta}{2}} = \frac{1}{\sqrt{10}}$$
  
 $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$  then  $\tan(\alpha + 2\beta)$  is equal to \_\_\_\_\_

# Watch Video Solution

**21.** Let the line y = mx intersects the curve  $y^2 = x$  at P and tangent to

 $y^2=x$  at P intersects x-axis at Q. If area ( riangle OPQ) = 4, find m(m>0).

# Watch Video Solution

### Others

1. if 
$$y\sqrt{1-x^2} = k - x\sqrt{1-y^2}$$
 and  $y\left(\frac{1}{2}\right) = -\frac{1}{4}$ , then  $\frac{dy}{dx}$  at  $x = \frac{1}{2}$   
A. (A)  $\frac{\sqrt{5}}{2}$   
B. (B)  $-\frac{\sqrt{5}}{4}$   
C. (C)  $\frac{2}{\sqrt{5}}$ 

D. (D) 
$$-\frac{\sqrt{5}}{2}$$

## Answer: D



2. Let X = 
$$\{x : 1 \leq x \leq 50, x \in N\}$$

 $A = \{x : x \text{ is multiple of } 2\}$ 

 $B = \{x : x \text{ is multiple of } 7\}$ 

Then find number of elements in the smallest subset of X which contain

elements of both  $\boldsymbol{A}$  and  $\boldsymbol{B}$ 

## Watch Video Solution

3. If  $Q\left(rac{5}{3}, rac{7}{3}, rac{17}{3}
ight)$  is foot of perpendicular drawn from P(1,0,3) on a

line L and if line L is passing through (lpha,7,1), then value of lpha is

**4.** If F(x) is defined in  $x \in \left(-\frac{1}{3}, \frac{1}{3}\right)$ f(x) =  $\begin{cases} \left(\frac{1}{x}\right)\log_e\left(\frac{1+3x}{1-2x}\right) & x \neq 0\\ k & x = 0 \end{cases}$  find k such that f(x) is continuous

## Watch Video Solution

5. If system of equation x + y + z = 6 ,x + 2y + 3z = 10, 3x + 2y +  $\lambda$ z =  $\mu$  has

more than two solutions. Find  $\left(\mu - \lambda^2
ight)$ 

Watch Video Solution

6. If mean and variance of 2, 3, 16, 20, 13, 7, x, y are 10 and 25 respectively

then find xy



7. Let 
$$\int \frac{\cos x dx}{\left(\sin^3 x\right) \left(1+\sin^6 x\right)^{\frac{2}{3}}} = f(x) \left(1+\sin^6 x\right)^{\frac{1}{\lambda}} + C$$
 then find the value of  $\lambda f\left(\frac{\pi}{3}\right)$ 

| A. 4 |  |
|------|--|
| B2   |  |
| C. 8 |  |
|      |  |

## Answer: B

D. -4

Watch Video Solution

8. If 
$$y(x)$$
 is a solution of differential equation  
 $\sqrt{1-x^2}\frac{dy}{dx} + \sqrt{1-y^2} = 0$  such that  $y\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}$ , then  
A. (A)  $y\left(\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}}$   
B. (B)  $y\left(\frac{1}{\sqrt{2}}\right) = \frac{\sqrt{3}}{2}$   
C. (C)  $y\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$   
D. (D)  $y\left(\frac{1}{2}\right) = \frac{1}{2}$ 

### Answer: C

9. 
$$\lim_{x \to 0} \left( \frac{3x^2 + 2}{7x^2 + 2} \right)^{\frac{1}{x^2}}$$
 is equal to  
A. (A)  $e^{-2}$   
B. (B)  $e^2$   
C. (C)  $e^{\frac{2}{7}}$   
D. (D)  $e^{\frac{3}{7}}$ 

Watch Video Solution

10. Which of the following is tautology

A. 
$$(p \land (p 
ightarrow q)) 
ightarrow q$$

$$\mathsf{B}.\,(q \to p \land (p \to q)$$

 $\mathsf{C}.\, p \lor (p \land q)$ 

D.  $p \land (p \lor q)$ 

Answer: A

Watch Video Solution

11. A is a 3 imes 3 matrix whose elements are from the set  $\{-1, 0, 1\}$ . Find the number of matrices A such that  $tr(A imes A^T) = 3$ . Where tr(A) is the trace of A.

A. 572

B. 612

C. 672

D. 682

Answer: C

**12.** The mean and the standard deviation (s,d) oFIGURE 10 observe are 20 and 2 respectively are 20 and 2 respectively. Each oFIGURE these 10 observations is multiplied by p and then reduced bu q. where  $p \neq 0$  and  $q \neq 0$ . IFIGURE the mean and new s.d. become oFIGURE their orginial values then q is equal to

A. -10

B. -20

C. -5

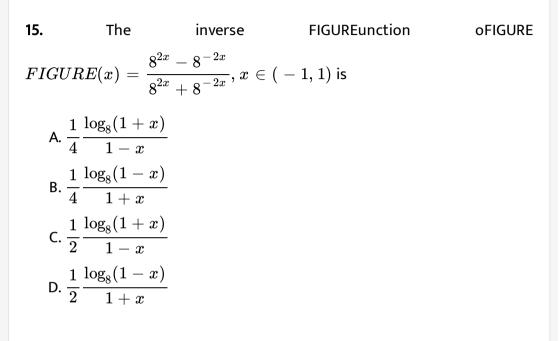
D. 10

#### Answer: B

## Watch Video Solution

**13.** IFIGURE a,b and,c are the greatest values oFIGURE  $(19)C_p$ ,  $^{20}Cq$  and

 $\hat{\phantom{a}}(21)C_r$  respectively then:


A. 
$$\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$$
  
B.  $\frac{a}{22} = \frac{b}{11} = \frac{c}{42}$   
C.  $\frac{a}{22} = \frac{b}{42} = \frac{c}{11}$   
D.  $\frac{a}{21} = \frac{b}{11} = \frac{c}{22}$ 



14. Let A and b be two independent events such that P(A) =  $\frac{1}{3}$  and  $P(B) = \frac{1}{6}$ . Then which oFIGURE the FIGURE ollowing is TRUE?

A. 
$$P\left(\frac{A}{B}\right) = \frac{1}{6}$$
  
B.  $P\left(\frac{A}{B}'\right) = \frac{1}{3}$   
C.  $P\left(\frac{A}{B}'\right) = \frac{2}{3}$   
D.  $P\left(\frac{A}{B}\right) = \frac{5}{6}$ 

Answer: B



Watch Video Solution

16. Roots of the equation  $x^2+bx+45=0, b\in R$  lie on the curve `|z + 1|

= 2sqrt(10)', where z is a complex number then

A.  $b^2+b=12$ 

B. 
$$b^2 - b = 30$$
  
C.  $b^2 - b = 36$   
D.  $b^2 + b = 30$ 

#### Answer: B

**Watch Video Solution** 

17. Consider a function  $f(x) = \ln\left(rac{x^2+lpha}{7x}
ight)$  . If for the given function,

Rolle's theorem is applicable in [3,4] at a point C then find  $f^{\,\prime\,\prime}(C)$ 

A. 43842

B. 1/12

C. 43836

D. -1/6

Answer: A

18. Let  $f(x)=x\cos^{-1}(|-\sin|x|)$  ,  $x\in \Big(-rac{\pi}{2},rac{\pi}{2}\Big)$ 

A. 
$$f(0)=-rac{\pi}{2}$$

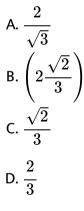
- B. f'(x) is not defined at x = 0
- C. f'(x) is increasing in  $\left(-\frac{\pi}{2}, 0\right)$  and f'(x) is decreasing in  $\left(0, \frac{\pi}{2}\right)$ D. f'(x) is decreasing in  $\left(-\frac{\pi}{2}, 0\right)$  and f'(x) is increasing in  $\left(0, \frac{\pi}{2}\right)$

#### Answer: D

Watch Video Solution

**19.** Let P be a point on  $x^2 = 4y$ . The segment joining A(0, -1) and P is divided by point Q in the ratio 1:2, then locus of point Q is

A. 
$$9x^2 = 3y + 2$$
  
B.  $9x^2 = 12y + 8$   
C.  $9y^2 = 12x + 8$ 


0

D. 
$$9y^2 = 3x + 2$$

#### Answer: B

# Watch Video Solution

**20.** Let the line y = mx and the ellipse  $2x^2 + y^2 = 1$  intersect at a point P in the first quadrant. If the normal to this ellipse at P meets the co-ordinate axes at  $\left(-\frac{1}{3\sqrt{2}}, 0\right)$  and  $(0, \beta)$ , then  $\beta$  is equal to



Answer: C

**21.** If  $y^2 = ax$  and  $x^2 = ay$  intersect at A & B. Area bounded by both curves is bisected by line x = b(given a > b > 0). Area of triangle formed by line AB, x = b and x-axis is  $\frac{1}{2}$ . Then

A. 
$$a^6 - 12a^3 - 4 = 0$$

 $\mathsf{B}.\,a^6 + 12a^3 - 4 = 0$ 

C. 
$$a^6 - 12a^3 + 4 = 0$$

D. 
$$a^6 + 12a^3 + 4 = 0$$

#### Answer: C

Watch Video Solution

**22.** Let ABC is a triangle whose vertices are  $A(1,-1), B(0,2), C(x^{\,\prime},y^{\,\prime})$ 

and area of  $\ riangle ABC$  is 5 and C(x', y') lie on  $3x+y\!\!-\!4\lambda=0$ , then

A. 
$$\lambda=3$$

 ${\tt B}.\,\lambda=\,-\,3$ 

 $\mathsf{C.}\,\lambda=4$ 

D.  $\lambda=2$ 

Answer: A

**Watch Video Solution** 

23. The system of equation

 $3x + 4y + 5z = \mu$ 

x + 2y + 3z = 1

 $4x+4y+4z=\delta$  is inconsistent, then ( $\delta,\mu$ ) can be

A. (4,6)

B. (3,4)

C. (4,3)

D. (1,0)

Answer: C



Watch Video Solution

**24.** The shortest distance between the lines  $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and  $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$  is A.  $3\sqrt{30}$ B.  $2\sqrt{30}$ C.  $\sqrt{30}$ D.  $4\sqrt{30}$ Answer: A

**25.** If volume of parallelopiped whose there coterminous edges are  $\vec{u} = \hat{i} + \hat{j} + \lambda \hat{k}, \vec{v} = 2\hat{i} + \hat{j} + \hat{k}, \vec{w} = \hat{i} + \hat{j} + 3\hat{k}$ , is 1 cubic unit then cosine of angle between  $\vec{u}$  and  $\vec{v}$  is

A. 
$$\frac{7}{3\sqrt{10}}$$

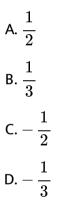
B. 
$$\frac{7}{6\sqrt{3}}$$
  
C.  $\frac{5}{3\sqrt{3}}$   
D.  $\frac{5}{7}$ 

#### Answer: B

Watch Video Solution

**26.** Find the sum, 
$$\sum_{k=1}^{20} \left(1+2+3+....+k
ight)$$

# Watch Video Solution


27. If normal at P on the curve  $y^2 - 3x^2 + y + 10 = 0$  passes through the point  $\left(0, \frac{3}{2}\right)$  ,then slope of tangent at P is n. The value of |n| is equal to

**28.** The equation  $2x^2 + (a-10)x + rac{33}{2} = 2a$  has real roots. Find least

positive value of a.

Watch Video Solution

**29.** Let  $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ ,  $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$  and  $\overrightarrow{c}$  is nonzero vector and  $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{a}$ ,  $\overrightarrow{a} \cdot \overrightarrow{c} = 0$ . Find  $\overrightarrow{b} \cdot \overrightarrow{c}$ .



Answer: C

**30.** If  $\alpha$  and  $\beta$  be the coefficients of  $x^4$  and  $x^2$  respectively in the expansion of  $\left(x\sqrt{x^2-1}\right)^6 + x - \sqrt{x^2-1}^6$  then :

A. 48

B. 60

C. -132

D. -60

### Answer: C

Watch Video Solution

**31.** Differential equation of  $x^2 = 4b(y+b)$ , where b is a parameter, is

A. 
$$x \left( rac{dy}{dx} 
ight)^2 = 2y \left( rac{dy}{dx} 
ight) + x^2$$
  
B.  $x \left( rac{dy}{dx} 
ight)^2 = 2y \left( rac{dy}{dx} 
ight) + x$   
C.  $x \left( rac{dy}{dx} 
ight)^2 = y \left( rac{dy}{dx} 
ight) + x^2$ 

D. 
$$x \left( rac{dy}{dx} 
ight)^2 = 2y \left( rac{dy}{dx} 
ight) + 2x^2$$

### Answer: B

# Watch Video Solution

**32.** Image of (1, 2, 3) w.r.t a plane is  $\left(-\frac{7}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$  then which of the following points lie on the plane (A) (-1,1,-1) (B) (-1,-1,1) (C) (-1,-1,1) (D) (1,1,-1)

- A. (-1, 1, -1)B. (-1, -1, -1)
- $\mathsf{C.}\,(\,-1,\,\,-1,\,1)$
- D. (1, 1, -1)

#### Answer: D

| <b>33.</b> $\lim_{x \to 0} \frac{\int_0^x t \sin(10t) dt}{x}$ is equal to (A) 1 (B) 10 (C) 5 (D) 0 |
|----------------------------------------------------------------------------------------------------|
| A. 1                                                                                               |
| B. 10                                                                                              |
| C. 5                                                                                               |
| D. 0                                                                                               |
|                                                                                                    |
| Answer: D                                                                                          |

**34.** Let P be the set of points (x, y) such that  $x^2 \le y \le -2x + 3$ . Then area of region bounded by points in set P is

A. 
$$\frac{16}{3}$$
  
B.  $\frac{32}{3}$   
C.  $\frac{29}{3}$   
D.  $\frac{20}{3}$ 

# Answer: B



35. Let 
$$f(x)=rac{x[x]}{x^2+1}$$
 :  $(1,3)
ightarrow R$  then range of f(x) is (where [ . ]

denotes greatest integer function)

$$\begin{aligned} &\mathsf{A.}\left(0,\frac{1}{2}\right) \cup \left(\frac{3}{5},\frac{7}{5}\right] \\ &\mathsf{B.}\left(\frac{2}{5},\frac{1}{2}\right) \cup \left(\frac{3}{5},\frac{4}{5}\right] \\ &\mathsf{C.}\left(\frac{2}{5},1\right) \cup \left(1,\frac{4}{5}\right] \\ &\mathsf{D.}\left(0,\frac{1}{3}\right) \cup \left(\frac{2}{5},\frac{4}{5}\right] \end{aligned}$$

#### Answer: B



**36.** Let 
$$A = \begin{bmatrix} 2 & 2 \\ 9 & 4 \end{bmatrix}$$
 and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  then value of  $10A^{-1}$  is-

A. 4I - AB. 6I - AC. A - 4ID. A - 6I

### Answer: D

Watch Video Solution

**37.** Solution set of  $3^x(3^x\!-\!1) + 2 = |3^x\!-\!1| + |3^x\!-\!2|$  contains

A. singleton set

B. two elements

C. at least four elements

D. infinite elements

### Answer: A

**38.** Mean and variance of 20 observation are 10 and 4. It was found, that in place of 11, 9 was taken by mistake find correct variance.

A. 3.99

 $\mathsf{B.}\,3.98$ 

C. 4.01

 $\mathsf{D.}\,4.02$ 

Answer: A

**Watch Video Solution** 

39. The system of linear equartions

 $\lambda x + 2y + 2z = 5$ 

 $2\lambda x+3y+5z=8$ 

 $4x+\lambda y+6z=10$  has:

A. Infinite solutions when  $\lambda=8$ 

B. Infinite solutions when  $\lambda=2$ 

C. no solutions when  $\lambda=8$ 

D. no solutions when  $\lambda=2$ 

#### Answer: D

Watch Video Solution

**40.** For an A.P. 
$$T_{10} = \frac{1}{20}$$
,  $T_{20} = \frac{1}{10}$ . Find sum of first 200 term. (A)  $201\frac{1}{2}$   
(B)  $101\frac{1}{2}$  (C)  $301\frac{1}{2}$  (D)  $100\frac{1}{2}$   
A.  $201\frac{1}{2}$   
B.  $101\frac{1}{2}$   
C.  $301\frac{1}{2}$   
D.  $100\frac{1}{2}$ 

Answer: D

41. Let 
$$lpha=rac{-1+i\sqrt{3}}{2}$$
 and  $a=(1+lpha)\sum_{k=0}^{100}lpha^{2k},b=\sum_{k=0}^{100}lpha^{3k}$  . If a and

b are roots of quadratic equation then quadratic equation is

A. 
$$x^2 - 102x + 101 = 0$$
  
B.  $x^2 - 101x + 100 = 0$   
C.  $x^2 + 101x + 100 = 0$   
D.  $x^2 + 102x + 100 = 0$ 

#### Answer: A

Watch Video Solution

**42.** Let f(x) is a three degree polynomial for which f'(-1) = 0, f''(1) = 0, f(-1) = 10, f(1) = 6 then local minima of f(x) exist at

A. x = 3B. x = 2C. x = 1D. x = -1

#### Answer: A

Watch Video Solution

**43.** Let A and B are two events such that P(exactly one) =  $\frac{2}{5}$ ,  $P(A \cup B) = \frac{1}{2}$  then  $P(A \cap B) =$ 

A.  $\frac{1}{10}$ B.  $\frac{2}{9}$ C.  $\frac{1}{8}$ D.  $\frac{1}{12}$ 

Answer: A

**44.** If 
$$I = \int_{1}^{2} \frac{dx}{\sqrt{2x^{3} - 9x^{2} + 12x + 4}}$$
, then  
A.  $\frac{1}{9} < I^{2} < \frac{1}{8}$   
B.  $\frac{1}{3} < I^{2} < \frac{1}{2}$   
C.  $\frac{1}{9} < I < \frac{1}{8}$   
D.  $\frac{1}{3} < I < \frac{1}{2}$ 

### Answer: A

**Watch Video Solution** 

**45.** Normal at (2, 2) to curve  $x^2 + 2xy - 3y^2 = 0$  is L. Then perpendicular distance from origin to line L is (A )4  $\sqrt{2}$  (B) 2 (C) 2 $\sqrt{2}$  (D) 4

A. 
$$4\sqrt{2}$$

 $\mathsf{B.}\,2$ 

 $C. 2\sqrt{2}$ 

D. 4

#### Answer: C

Watch Video Solution

46. If a hyperbola has vertices (± 6, 0) and P(10, 16) lies on it, then the equation of normal at P is (A) 2x + 5y = 100 (B) 2x + 5y = 10 (C) 2x -5y = 100
(D) 5x +2y = 100
A. 2x + 5y = 100

B. 2x + 5y = 10

C. 2x – 5y = 100

D. 5x + 2y = 100

Answer: A

47. If y = mx + c is a tangent to the circle  $(x-3)^2 + y^2 = 1$  and also the perpendicular to the tangent to the circle  $x^2 + y^2 = 1$  at  $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ , then

then

A. 
$$c^2 + 6c + 7 = 0$$
  
B.  $c^2 - 6c + 7 = 0$   
C.  $c^2 + 6c - 7 = 0$   
D.  $c^2 - 6c - 7 = 0$ 

#### Answer: A

**48.** Let 
$$\frac{\sqrt{2}\sin\alpha}{\sqrt{1+\cos 2\alpha}} = \frac{1}{7}$$
 and  $\sqrt{\frac{1-\cos 2\beta}{2}} = \frac{1}{\sqrt{10}}$  where  $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$ . Then  $\tan(\alpha + 2\beta)$  is equal to **Vatch Video Solution**

**49.** The number of words of four letters that can be formed from the letters of the word EXAMINATION is a. 1464 b. 2454 c. 1678 d. none of these



 $y^2 = x$  at P intersects x-axis at Q. If area ( riangle OPQ) = 4, find m(m>0).

Watch Video Solution

51. 
$$\sum_{n=1}^7 rac{n(n+1)(2n+1)}{4}$$
 is equal to

Watch Video Solution

**52.** Use differentials to approximate  $\sqrt{25.\ 2}$  .

53. Findthenumberofsolutionof
$$log_{\frac{1}{2}}|sin x| = 2 - log_{\frac{1}{2}}|cos x|, x \in [0, 2\pi]$$
A. 2B. 4C. 6D. 8

#### Answer: D

Watch Video Solution

54. If  $e_1$  and  $e_2$  are eccentricities of  $\frac{x^2}{18} + \frac{y^2}{4} = 1$  and  $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively and if the point  $(e_1, e_2)$  lies on ellipse  $15x^2 + 3y^2 = k$ . Then tha value of k B. 15

C. 16

D. 17

# Answer: C

**Watch Video Solution** 

**55.** Find the integration 
$$\int \frac{dx}{(x-3)^{rac{6}{7}}(x+4)^{rac{8}{7}}}$$

A. 
$$\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}$$
 + c  
B.  $7\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}$  + c  
C.  $7\left(\frac{x-3}{x+4}\right)^{\frac{6}{7}}$  + c  
D.  $7\left(\frac{x+4}{x-3}\right)^{\frac{6}{7}}$  + c

### Answer: A

56. If 
$$\left|\frac{z-i}{z+2i}\right| = 1$$
,  $|z| = \frac{5}{2}$  then the value of  $|z+3i|$   
A.  $\frac{7}{2}$   
B.  $\sqrt{10}$   
C.  $\sqrt{5}$   
D. sqrt3`

## Answer: A

**Watch Video Solution** 

57. If 
$$\overrightarrow{P} = (a+1)\hat{i} + a\hat{j} + a\hat{k}$$
  $\overrightarrow{Q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}$   
 $\overrightarrow{R} = a\hat{i} + a\hat{j} + (a+1)\hat{k}$   $\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{R}$  are coplanar vectors and  
 $3\left(\overrightarrow{P}, \overrightarrow{Q}\right)^2 - \lambda \left|\overrightarrow{R} \times \overrightarrow{Q}\right|^2 = 0$  then value of  $\lambda$  is

58. If points A (2, 4, 0), B(3, 1, 8), C(3, 1, -3), D(7, -3, 4) are four points then

projection of line segment AB on line CD.

# Watch Video Solution

**59.** If 
$$f(x) = \left\{x, 0 < x < \frac{1}{2}, \frac{1}{2}, x = \frac{1}{2}, 1 - x, \frac{1}{2} < x < 1\right\}$$
 and  $g(x) = \left(x - \frac{1}{2}\right)^2$  then find the area bounded by f(x) and g(x) from  $x = \frac{1}{2}$  to  $x = \frac{\sqrt{3}}{2}$   
A.  $\frac{\sqrt{3}}{4} - \frac{1}{3}$   
B.  $\frac{\sqrt{3}}{4} + \frac{1}{3}$ 

C.  $2\sqrt{3}$ 

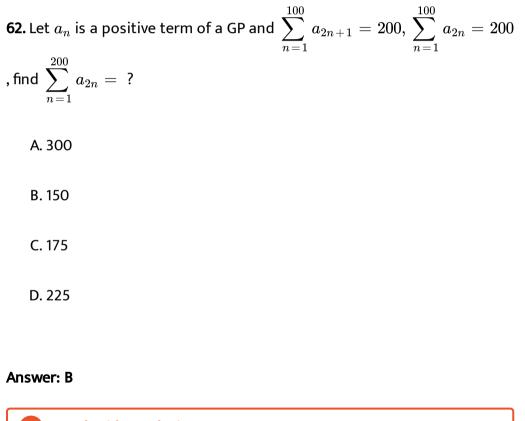
D.  $3\sqrt{3}$ 

# Answer: A

**60.** If z is a complex number satisfying |Re(z)| + |Im(z) = 4, then |z|`

cannot be

A.  $\sqrt{7}$ B.  $\sqrt{10}$ C.  $\sqrt{\frac{17}{2}}$ D.  $\sqrt{8}$ 


### Answer: A

61. If 
$$f(x) = \begin{vmatrix} x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}$$
 and  $a - 2b + c = 1$  then  
A.  $f(-50) = 501$   
B.  $f(-50) = -1$   
C.  $f(50) = 1$ 

D. 
$$f(50) = -501$$

### Answer: C





63. If 
$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$
,  $y(1) = 1$  and  $y(x) = e$  then  $x =$   
A.  $\left(\frac{\sqrt{3}}{2}\right)e$   
B.  $\sqrt{3}e$   
C.  $\sqrt{2}e$   
D.  $\frac{e}{\sqrt{2}}$ 

#### Answer: B

**Watch Video Solution** 

**64.** A random variable X has the following probablitly distribution :

A. 
$$\frac{7}{12}$$
  
B.  $\frac{1}{36}$ 

C. 
$$\frac{1}{6}$$
  
D.  $\frac{23}{36}$ 

### Answer: D

Watch Video Solution

**65.** if 
$$\int \frac{d heta}{\cos^2 heta(\tan 2 heta + \sec 2 heta)} =$$

 $\lambda an heta + 2 \log_e \lvert f( heta) 
vert + C$  where C is a constant of intergration , then

the ordered pair  $(\lambda, f(\theta))$  is equal to :

A.  $(1, 1 + \tan \theta)$ 

 $\mathsf{B.}\left(1,1-\tan\theta\right)$ 

 $\mathsf{C}.\,(\,-1,1+\tan\theta)$ 

 $\mathsf{D}.\,(\,-1,1-\tan\theta)$ 

### Answer: C

**66.** If  $p 
ightarrow (\ensuremath{\,{}^{\circ}} p \lor q)$  is false, the truth values of p and q are , respectively

A. (a) TT

B. (b) TF

C. (c) FT

D. (d) FF

# Answer: A

Watch Video Solution

**67.** If f(x) = [x] - [x/4],  $x \in R$ , where [x] denotes the greatest integer function, then :

(1)  $\lim f(x) (x \rightarrow 4)$  exists but  $\lim f(x) (x \rightarrow 4+)$  does not exist.

(2) Both lim f(x) (x  $\rightarrow$  4-) and lim f(x) (x  $\rightarrow$  4+) exist but are not equal.

(3)  $\lim f(x) (x \rightarrow 4+)$  exists but  $\lim f(x) (x \rightarrow 4-)$  does not exist.

(4) f is continuous at x = 4.



**68.** Let one end of focal chord of parabola  $y^2 = 8x$  is  $\left(\frac{1}{2}, -2\right)$ , then

equation of tangent at other end of this focal chord is

Watch Video Solution

69. Let x + 6y = 8 is tangent to standard ellipse where minor axis is  $\frac{4}{\sqrt{3}}$ 

, then eccentricity of ellipse is

A. (a) 
$$\sqrt{\frac{5}{6}}$$
  
B. (b)  $\sqrt{\frac{11}{12}}$   
C. (c)  $\left(\frac{1}{3}\right)\sqrt{\frac{11}{3}}$   
D. (d)  $\left(\frac{1}{4}\right)\sqrt{\frac{11}{12}}$ 

#### Answer: B

70. if f(x) and g(x) are continuous functions, fog is identity function, g'(b) = 5 and g(b) = a then f'(a) is

A. (a) 
$$\frac{2}{5}$$
  
B. (b)  $\frac{1}{5}$   
C. (c)  $\frac{3}{5}$ 

D. (d)5

Answer: B

Watch Video Solution

71. The following system of linear equations

7x+6y-2z =0

3x+4y+2z =0

x-2y-6xz=0 has

A. (a)no. solution

B. (b)only trivial solution

C. (c)Infinite non trivial solution for x=2z

D. (d)Infinite non trivial solution for y=2z

### Answer: C

Watch Video Solution

72. Let  $x=2\sin heta-\sin2 heta$  and  $y=2\cos heta-\cos2 heta$  find  $rac{d^2y}{dx^2}$  at  $heta=\pi$ 

A. (a) 
$$\frac{3}{8}$$
  
B. (b)  $\frac{3}{2}$   
C. (c)  $\frac{5}{8}$   
D. (d)  $\frac{7}{8}$ 

### Answer: A

73.  $f(x)\colon [0,5] o R,$   $F(x)=\int_0^x x^2g(x),$  f(1) = 3 g(x) =  $\int_1^x f(t)dt$  then correct choice is

A. F(x) has local minimum at x=1

B. F(x) has local maximum at x = 1

C. F(x) has point of inflection at x = 1

D. F(x) has no critical point

#### Answer: A

Watch Video Solution

74. Let both root of equation  $ax^2-2bx+5=0$  are lpha and root of equation  $x^2-2bx-10=0$  are lpha and eta . Find the value of  $lpha^2+eta^2$ 

A. (a)20

B. (b)25

C. (c)15

D. (d)30

# Answer: B

# Watch Video Solution

75. Let 
$$A=\{x\!:\!|x|<2\}$$
 and  $B=\{x\!:\!|x-2|\geq 3\}$  then

A. (1)
$$A \cap B = (\,-2,\,-1]$$

B. (2)
$$A\cup B=R-(2,5)$$

C. (3)
$$A - B = [-1, 2)$$

D. (4)
$$B-A=R-(\,-2,5)$$

### Answer: D

76. Let 
$$x = \sum_{n=0}^{\infty} (-1)^n (\tan \theta)^{2n}$$
 and  $y = \sum_{n=0}^{\infty} (\cos \theta)^{2n}$  qhere  $heta \in \left(0, rac{\pi}{4}\right)$ , then

A. (1)x(y+1)=1

B. (2)y(1-x) = 1

C. (3)y(x-1)=1

D. (4)y(1+x) = 1

### Answer: B

Watch Video Solution

77. If the distance between the plane 23x-10y-2z+48 =0 and the plane

# containing the lines

$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z+1}{3} \text{ and } \frac{x+3}{2} = \frac{y+2}{6} = \frac{z-1}{\lambda} (\lambda \in R) \text{ is equal to } \frac{k}{\sqrt{633}} \text{ , then k is equal to } \underline{\qquad}.$$

| D | 2   |
|---|-----|
|   | . 2 |

C. 3

D. 4

### Answer: C

Watch Video Solution

78. If 
$$.^{25} C_0 + 5.^{25} C_1 + 9.^{25} C_2 .... 101.^{25} C_{25} = 2^{25} k$$
 find k = ?

Watch Video Solution

**79.** Let circles 
$$(x-0)^2 + (y-4)^2 = k$$
 and  $(x-3)^2 + (y-0)^2 = 1$ 

touches each other then find the maximum value of 'k'

**80.** Let  $\left|\overrightarrow{a}\right| = 3$ ,  $\left|\overrightarrow{b}\right| = 5$ ,  $\overrightarrow{b}$ .  $\overrightarrow{c} = 10$ , angle between  $\overrightarrow{b}$  and  $\overrightarrow{c}$  equal to  $\frac{\pi}{3}$ . If  $\overrightarrow{a}$  is perpendicular  $\overrightarrow{b} \times \overrightarrow{c}$  then find the value of  $\left|\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right|$ 

Watch Video Solution

81. Number of common terms in both sequence 3, 7, 11,..., 407 and 2, 9,

16,....,905 is

82. If minimum value of term free from 
$$x$$
 for  $\left(\frac{x}{\sin\theta} + \frac{1}{x\cos\theta}\right)^{16}$  is  $L_1$   
in  $\left[\frac{\pi}{8}, \frac{\pi}{4}\right]$  and  $L_2$  in  $\left[\frac{\pi}{16}, \frac{\pi}{8}\right]$ , then  $\frac{L_2}{L_1}$   
Watch Video Solution

**83.** Find the length and the foot of perpendicular from the point (1, 3/2, 2) to the plane 2x - 2y + 4z + 5 = 0.

# Watch Video Solution

84. 
$$f(x) = -\left(rac{3}{4}
ight)x^2 - 8x^3 - rac{42}{5}x^2 + 105$$
. Calculate local maxima

and local minima.

Watch Video Solution

**85.** 
$$(x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + y^2x + y^3) + \dots + n$$

terms =

# Watch Video Solution

86. If 
$$\lim_{x o 1} \left( rac{x + x^2 + x^3 + .... + x^n - n}{x - 1} 
ight) = 820$$
, then find n.

87. Find the rank of the word MOTHER if all words with letters of MOTHER

are written in alphabetical order

**88.** If  $ax^2 + bx + 6 = 0$  does not have distinct real roots, then find the

least value of 3a + b.

Watch Video Solution

89. If 
$$y = y(x)$$
 and  $\frac{2 + \sin x}{y + 1} \left(\frac{dy}{dx}\right) = -\cos x, y(0) = 1$ , then  $y\left(\frac{\pi}{2}\right) =$ 

**90.** The sum of three consecutive positive terms of a geometric progression is S and their product is 27.Find the minimum value of S.



**91.** Let  $a^3 + b^2 = 4$ . In the expansion of  $\left(ax^{\frac{1}{9}} + bx^{-\frac{1}{6}}\right)^{10}$ , the term independent of x is 10k. Find the maximum value of k.

Watch Video Solution

**92.** Let a,b,c are the A.M. between two numbers such that a + b + c = 15

and p,q,r be the H.M. between same numbers such that  $rac{1}{p}+rac{1}{q}+rac{1}{r}=rac{5}{3},$  then the numbers are

A. -1,-9

B. -3,-3

C. 3,3

### Answer: D



93. 
$$\int_0^2 ||x-1|-x|dx$$

Watch Video Solution

**94.** Solve the equation 
$$\sin^{-1} 6x + \sin^{-1} 6\sqrt{3}x = \frac{-\pi}{2}$$
.

Watch Video Solution

**95.** Box-1 contains 30 cards marked from 1 to 30 and Box-2 contains 20 cards marked from 31 to 50. A box is selected and a card is drawn. If the number on the card is non-prime then what is the probability that it came from Box 1.

A. 4/17

B. 6/17

C. 7/17

D. 8/17

Answer: D

Watch Video Solution

96. The contrapositive of "If i reach the station on time then i will get the

train" is-

Watch Video Solution

97. Let lpha and eta be the roots of the equation  $5x^2+6x-2=0.$  If  $S_n=lpha^n+eta^n, n=1,2,3....$  then

A.  $5S_6+6S_5=2S_4$ 

 $B.6S_4 + 2S_5 = 5S_6$ 

 ${\sf C}.\,6S_2+5S_6=6S_4$ 

D.  $6S_2 + 5S_4 = 2S_6$ 

Watch Video Solution

98. 
$$\displaystyle rac{z-lpha}{z+lpha}$$
 is purely imaginary and  $|z|=82$  then  $|lpha|$  is:

Watch Video Solution

99.  $ar{a},ar{b},ar{c}$  are three unit vectors such that  $ig|ar{a}-ar{b}ig|^2+ig|ar{a}-ar{c}ig|^2=8$  ,then

$$\left|ar{a}+2ar{b}
ight|^2+\left|ar{a}+2ar{c}
ight|^2=$$

100. If the line 3x + 4y = k is tangent to the circle  $x^2 + y^2 - 2x - 4y + 4 = 0$ , then number of integral values of k is Watch Video Solution

**101.** P(2, 1, 2), Q(1, 2, 1) are two points on a plane which is parallel to the line 2x = 3y, z = 1. Find the equation of the plane.

Watch Video Solution

102. 
$$f(x) = \begin{cases} ae^x + be^{-x} & -1 \le x \le 1 \\ cx^2 & 1 \le x \le 3 \\ 2ax + c & 3 \le x \le 4 \end{cases}$$
, f'(0)+f'(2)=e then the value of

a is:

## Watch Video Solution

103. The sum of the series  $(2.^{1} P_{0} - 3.^{2} P_{1} + 4^{3} P_{2} - 5.^{4} P_{3} + \dots .51$ terms) + $(1! - 2! + 3! - \dots + 51$  terms)= A. 1 + 52!

 $B.1 + 51 \times 51!$ 

C.2! + 51!

D.1 - 52!

### Answer: A

Watch Video Solution

104. Let  $f(x) = (3x - 7)x^{rac{2}{3}}$ . The interval in which f(x) is increasing.

A. 
$$\left(0, \frac{14}{15}\right)$$
  
B.  $\left(-\infty, 0\right) \cup \left(\frac{14}{15}, \infty\right)$   
C.  $\left(-\infty, \frac{14}{15}\right)$   
D.  $\left(0, \infty\right)$ 

Answer: B

105. If 
$$\lim_{x o 0} rac{|1-x+|x||}{|\lambda-x+[x]|} = L$$
 find L, where  $\lambda\in R-\{0,1\}$  and [.] denotes G.I.F.



**106.** A point P on the parabola $y^2 = 12x$ . A foot of perpendicular from point P is drawn to the axis of parabola is point N. A line passing through mid-point of PN is drawn parallel to the axis interescts the parabola at point Q. The y intercept of the line NQ is 4. Then-

A. 
$$PN = 4$$
  
B.  $PN = 3$   
C.  $MQ = \frac{3}{4}$   
D.  $MQ = \frac{9}{4}$ 

#### Answer: D

**107.** Evaluate 
$$\lim_{x \to 0} \frac{8}{x^8} \bigg\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \bigg\}.$$

# Watch Video Solution

108. If  $\alpha$  and  $\beta$  are roots of  $x^2 + px + 2 = 0$  and  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$  are the roots of  $2x^2 + 2qx + 1 = 0$ . Find the value of  $\left(\alpha - \frac{1}{\alpha}\right)\left(\beta - \frac{1}{\beta}\right)\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$ A.  $\frac{9}{4}(9 - p^2)$ B.  $\frac{9}{4}(9 + q^2)$ C.  $\frac{9}{4}(9 + p^2)$ D.  $\frac{9}{4}(9 - q^2)$ 

#### Answer: A

109. The mean and variance of 5, 7, 12, 10, 15, 14, a, b are 10 and 13.5 respectively then value of |a - b| =

A. 5 B. 6 C. 7 D. 8

## Answer: C

Watch Video Solution

110. For equation  $\left[x
ight]^2+2[x+2]-7=0, x\in R$  number of solution of equation is/are

A. Four integer solution

**B.** Infinite solution

C. No solution

D. two solution

### Answer: B

# Watch Video Solution

111. If  $a_1, a_2, a_3, \ldots a_n$  are in Arithmetic Progression, whose common difference is an integer such that  $a_1 = 1, a_n = 300$  and  $n \in [15, 50]$  then  $(S_{n-4}, a_{n-4})$  is

A. (2491, 247)

B. (2490, 248)

C. (2590, 249)

D. (248, 2490)

#### Answer: B

112. If  $\lim_{t\to x} \frac{x^2 f^2(t) - t^2 f^2(x)}{t-x} = 0$  and f(1) = e then solution of f(x) = 1 is A.  $\frac{1}{e}$ B.  $\frac{1}{2e}$ C. eD. 2e

### Answer: A

Watch Video Solution

113. about to only mathematics

A.  $2^{1-\frac{1}{\sqrt{2}}}$ B.  $2^{1+\frac{1}{\sqrt{2}}}$ C.  $2^{1+\sqrt{2}}$ D.  $2^{1-\sqrt{2}}$ 

### Answer: A



114. Center of a circle S passing through the intersection points of circles  $x^2 + y^2 - 6x = 0\&x^2 + y^2 - 4y = 0$  lies on the line 2x - 3y + 12 = 0 then circle S passes through

A. (-3, 1)B. (-4, -2)C. (1, 2)D. (0, 0)

Answer: D

115. 
$$\int_{rac{\pi}{6}}^{rac{\pi}{3}} an^3 x \sin^2 3x (2 \sec^2 x \sin^2 3x + 3 \tan x . \sin 6x) dx$$

A. 
$$-\frac{1}{36}$$
  
B.  $-\frac{1}{72}$   
C.  $-\frac{1}{18}$   
D.  $\frac{1}{36}$ 

### Answer: C



**116.** If the angle of elevation of a cloud from a point 200 m above a lake is  $30^{\circ}$  and the angle of depression of its reflection in the lake is  $60^{\circ}$ , then the height of the cloud above the lake, is (a) 200 m (b) 500 m (c) 30 m (d) 400 m

A. 400 m

B.  $400\sqrt{2}$  m

C.  $400\sqrt{3}$  m

D. 200 m

# Answer: A



117. The contrapositive of statement:

If f(x) is continuous at x=a then f(x) is differentiable at x=a

A. If f(x) is continuous at x=a then f(x) is not continuous at x=a

B. If f(x) is not differentiable at x=a then f(x) is not continuous at

#### x=a

C. If f(x) is differentiable at x=a then f(x) is continuous at x=a

D. If f(x) is differentiable at x=a then f(x) is not continuous

#### Answer: B

**118.** If equation of directrix of an ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is x=4, then normal to the ellipse at point  $(1, \beta), (\beta > 0)$  passes through the point (where eccentricity of the ellipse is  $\frac{1}{2}$ )

A. 
$$\left(1, \frac{3}{2}\right)$$
  
B.  $\left(-1, \frac{3}{2}\right)$   
C.  $(-1, -3)$   
D.  $(3, -1)$ 

#### Answer: A

Watch Video Solution

**119.** If points A and B lie on x-axis and points C and D lie on the curve  $y = x^2 - 1$  below the x-axis then maximum area of rectangle ABCD is

A. 
$$\frac{4\sqrt{3}}{3}$$
  
B. 
$$\frac{4\sqrt{3}}{9}$$

C. 
$$\frac{4\sqrt{3}}{27}$$
  
D.  $\frac{8\sqrt{3}}{9}$ 

### Answer: B

Watch Video Solution

120. PQ is a diameter of circle  $x^2+y^2=4$  . If perpendicular distances of P and Q from line x+y=2 are lpha and eta respectively then maximum

value of  $\alpha\beta$  is

121. If 
$$\displaystyle rac{dy}{dx} - \displaystyle rac{y-3x}{\ln(y-3x)} = 3$$
 then  
A.  $\displaystyle rac{\ln(y-3x)}{2} = x+c$   
B.  $\displaystyle rac{\ln^2(y-3x)}{2} = x+c$   
C.  $\displaystyle \displaystyle rac{\ln(y-3x)}{2} = x^2 + c$ 

D. 
$$rac{\ln^2(y-3x)}{2}=x^2+c$$

### Answer: B



**122.** Find the distance of the point (1, -2, 3) from the plane x - y + z = 5 measured parallel to the line  $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ .

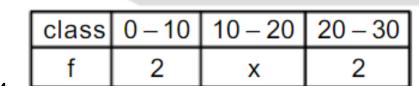
- A. 7
- $\mathsf{B}.\,\frac{1}{7}$
- C. 1

D. 5

#### Answer: D

123. Suppose  $x_1, x_2, \ldots x_{50}$  are 50 sets each having 10 elements and  $Y_1, Y_2, \ldots Y_n$  are n sets each having 5 elements. Let  $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = Z$  and each element of Z belong to exactly 25 of  $X_i$  and exactly 6 of  $Y_i$  then value of n is

A. 20


B. 22

C. 24

D. 26

### Answer: C

Watch Video Solution



124.

If variance of variable is 50 then x=

| A. 5 |  |
|------|--|
| B. 6 |  |
| C. 4 |  |
| D. 3 |  |

### Answer: C

Watch Video Solution

125. Let A is  $3 \times 3$  matrix such that  $Ax_1 = B_1, Ax_2 = B_2, Ax_3 = B_3$ 

where

$$x_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, x_2 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, x_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
, br> $B_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, B_2 = \begin{bmatrix} 0\\2\\0 \end{bmatrix}, B_3 = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$  then find  $|A|$ .

A. 0

B. 1

C. 2

# Answer: C



126. 
$$\int (e^{2x}+2e^x-e^{-x}-1)e^{e^x+e^{-x}}dx=g(x)e^{e^x+e^{-x}}$$
 , then find  $g(0).$