MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

JEE MAINS

Maths

1. Find the area enclosed by the curves $x^2=y$, y=x+2,

A.
$$4{\left(rac{4}{24}
ight)}^{1/3}$$

$$\mathsf{B.}\,4\!\left(\frac{2}{25}\right)^{1/3}$$

$$\mathsf{C.}\,2\bigg(\frac{4}{25}\bigg)^{1/3}$$

D.
$$2\left(\frac{2}{25}\right)^{1/3}$$

Answer: A

Watch Video Solution

2. Find the mean of 43, 51, 50, 57 and 54.

A.
$$\frac{10}{\sqrt{3}}$$

A.
$$\frac{10}{\sqrt{3}}$$
 B.
$$\frac{10}{\sqrt{2}}$$

c.
$$\frac{10}{3}$$

D.
$$\frac{20}{3}$$

Answer: A

3. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$.

A.
$$\sqrt{3}$$

B.
$$2\sqrt{3}$$

$$\mathsf{C.}\,\,\frac{2\sqrt{3}}{3}$$

D.
$$3\sqrt{2}$$

Answer: B

Watch Video Solution

4. Using integration, find the area of the triangle formed by positive x-axis and tangent and normal to the circle $x^2+y^2=4$ at $(1,\sqrt{3})$.

$$\lambda \cdot \frac{4}{\sqrt{3}}$$

$$3 \cdot \frac{2}{\sqrt{3}}$$

A.
$$\frac{4}{\sqrt{3}}$$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{8}{\sqrt{3}}$
D. $\frac{5}{\sqrt{3}}$

Answer: B

Watch Video Solution

5. if
$$f(x)=egin{cases} \sin x & x<0 \ \cos x-|s-1| & x\geq 0 \end{cases}$$

then g(g) = f(|x|) is non - differentiable for

A.
$$\{5, 10, 15\}$$

B.
$$\{5, 10, 15, 20\}$$

D.
$$\{5, 15\}$$

Answer: A

Watch Video Solution

- **6.** Find area bounded by the curves $x^2 \leq y \leq x+2$
 - A. $\frac{11}{2}$
 - B. $\frac{7}{2}$
 - $\mathsf{C.}\,\frac{9}{2}$
 - D. $\frac{5}{2}$

Answer: C

7. In the expansion at $\left(rac{2}{x} + x^{\log_e x}
ight)^6$ if $T_4 = 20 imes 8^7$ then value of x is

A.
$$8^{\frac{1}{2}}$$

B.
$$8^{2}$$

$$c. 8^{3}$$

$$D.8^4$$

Answer: B

8. If one root fo the quadratic equation
$$ix^2-2(i+1)x+(2-i)=0, i=\sqrt{-1}$$
 is $2-i$, the other root is

A.
$$p^2-4q+12=0$$

C.
$$q^2 - 4q + 12 = 0$$

D.
$$q^2 - 4q - 12 = 0$$

Answer: B

9. If
$$\alpha$$
, β are the roots of $x^2+x+1=0$ then

$$egin{array}{cccc} Y+1 & eta & lpha \ eta & y+lpha & 1 \ lpha & 1 & y+eta \ \end{array}$$

A.
$$y^2 - 1$$

B.
$$y(y^2 - 1)$$

$$\mathsf{C.}\,u^2-y$$

D.	u^3
– .	9

Answer: D

Watch Video Solution

10. One end point of a focal chrod of a parabola $y^2=16x$ is (1,4). The length of focal chord is : (A)24 (B)25 (C)20 (D)=22

11. Find the negation of $p \lor (-p \land q)$

 $\mathsf{A.}-p\,\tilde{}\,q$

B. $\sim p^{\sim} q$

C. p~q

D.
$$p^q$$

Answer: A

Watch Video Solution

- **12.** A curve $f(x)=x^3+ax-b$ pass through p(1,-5) and tangent to f(x) at point p is perpendicular to x-y+5=0 then which of the following point will lie on curve ? A(2,-2) B(2,-1) C(2,1) D(-2,2)
 - A. (2-2)
 - B. (2-1)
 - (0.2, -1)
 - D. (-2, 2)

Answer: D

13. There are two family each having two children. If there are at least two girls among the children, find the probability that all children are girls

A.
$$\frac{1}{9}$$

$$\mathsf{B.}\;\frac{1}{10}$$

C.
$$\frac{1}{11}$$

D.
$$\frac{1}{12}$$

Answer: C

14.

$$\operatorname{If}\!\int\!\! rac{dx}{\left(x^2-2x+10
ight)^2} = A\!\left(an^{-1}\!\left(rac{x-1}{3}
ight) + rac{f(x)}{x^2-2x+10}
ight) + C$$

A.
$$A=rac{1}{54}, f(x)=3(x-1)$$

B.
$$A=rac{1}{54}, f(x)=9(x-1)^2$$

C.
$$A = \frac{1}{27}$$
, $f(x) = 9(x-1)^2$

D.
$$A=rac{1}{81}, f(x)=3(x-1)$$

Answer: A

Watch Video Solution

15. A (3,0,-1), B(2,10,6) and (1,2,1) are the vertices of a triangle. M is the mid point of the line segment joining AC and G is a point on line segment BM dividing $2\!:\!1$ ratio internally find $\cos(\angle GOA)$

A.
$$\frac{2}{\sqrt{5}}$$
B. $\frac{1}{\sqrt{15}}$
C. $\frac{1}{\sqrt{10}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

$$3-y+4z-2=0$$
 is Q. Point R is $(3,\ -1,\ -2)$ find the area of

16. Given a point P(0, -1, -3) and the image of P in the plane

$$\triangle PQR$$

$$\frac{\sqrt{91}}{13}$$

A.
$$2\sin x = \sin y$$

 $\mathsf{B.} \left| \sin x \right| = \sin y$

 $\mathsf{D.}\sin x = 2\sin y$

 $\mathsf{C}.\sin x = |\sin y|$

Answer: C

Watch Video Solution

17. if $\dfrac{2\sqrt{\sin^2 x - 2\sin x + 5}}{4^{\sin^2}y} \leq 1$ then which option is correct.

D. $\sqrt{91}$

Answer: B

18. Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g'(f(x)) equal. f'(c) (b) $\frac{1}{f'(c)}$ (c) f(c) (d) none of these

A. g(x) is not differentiable at x=c

B. for g(x) to be differentiable at c, f'(c) = 0

C. for g(x) to be non-differentiable at $c,f^{\,\prime}(c)=0$

D. none of these

Answer: B

19. if
$$\int_0^{f(x)} 4x^3 dx = g(x)(x-2)$$
 if $f(2)=6$ and $f'(2)=rac{1}{48}$ then find $\lim_{x o 2}g(x)$

Answer: A

Watch Video Solution

20. If $[-\sin\theta]y=0$ and $[\cot\theta]x+y=0$ where [] denotes greatest integar function. Then which of the following is correct

A. Infinite solution is
$$\left(\frac{\pi}{2},\frac{2\pi}{3}\right)$$
 and a unique solution in

$$\left(\pi, \frac{7\pi}{6}\right)$$

B. Unique solution in $\left(\frac{\pi}{2},\frac{2\pi}{3}\right)$ and infinite solutions in $\left(\pi,\frac{7\pi}{6}\right)$

C. Unique solution is
$$\left(\frac{\pi}{2},\frac{2\pi}{3}\right)$$
 and unique solution in $\left(\pi,\frac{7\pi}{6}\right)$

D. Infinite solution in $\left(\frac{\pi}{2},\frac{2\pi}{3}\right)$ and infinite solutions in $\left(\pi,\frac{7\pi}{6}\right)$

Answer: C

21.
$$\lim_{x \to 0} \frac{x + 2\sin x}{\sqrt{x^2 + 2\sin x + 1} - \sqrt{\sin^2 x - x + 1}}$$

- A. 2
- B. 1
- C. 6
- D. -2

Answer: C

- **22.** If $A \cap B \subseteq C$ and $A \cap B \neq \phi$. Then which of the following is incorrect (1) $(A \cup B) \cap C \neq \varphi$ (2) $B \cap C = \varphi$ (3) $A \cap C \neq \varphi$ (4) If $(A - B) \subseteq C$, then A⊆C
 - A. $(A \cup B) \cap C \nearrow \phi$
 - B. $B \cup C = \phi$
 - $C. A \cup C \nearrow \phi$

D. If $(A - B) \subseteq C$, then $A \subseteq C$

Answer: B

Watch Video Solution

23. Let
$$f(x) = 5 - [x-2]$$

$$g(x) = [x+1] + 3$$

If maximum value of f(x) is α

& minimum value of f(x) is β

 $\lim_{x o (lpha - eta)} \; rac{(x-3)ig(x^2 - 5x + 6ig)}{(x-1)(x^2 - 6x + 8)} \; ext{is (A) -1/2 (B)1/2 (C)3/2}$

then

A.
$$-\frac{1}{2}$$

B.
$$\frac{1}{2}$$

C.
$$\frac{3}{2}$$

D.
$$-\frac{3}{2}$$

Answer: A

Watch Video Solution

24. If
$$\begin{vmatrix} 1+\cos^2\theta & \sin^2\theta & 4\cos 6\theta \\ \cos^2\theta & 1+\sin^2\theta & 4\cos 6\theta \\ \cos^2\theta & \sin^2\theta & 1+4\cos 6\theta \end{vmatrix} = 0, \quad \text{and}$$

$$heta \in \left(0, rac{\pi}{3}
ight)$$
, then value of $heta$ is

A.
$$\frac{7\pi}{36}$$

$$\mathsf{B.}\;\frac{7\pi}{24}$$

C.
$$\frac{\pi}{9}$$
 D. $\frac{\pi}{4}$

Answer: C

25. A circle touches x- axis at point (3,0). If it makes an intercept of 8 units on y- axis, then the circle passes through which point A(3,1) B(5,2) C(10,3) D(3,10)

- A. (3, 1)
- B.(5,2)
- C.(10,3)
- D. (3, 10)

Answer: D

Watch Video Solution

26. The sum of the squares of the length of the chords intercepted on the circle $x^2+y^2=16$, by the lines x +y = n ,

 $n \in \mathit{N}$, where N is the set of all natural numbers, is A. 160 B. 320 C. 105 D. 210 A. 320 B. 105

C. 160

D. 210

Answer: D

27. Let A and B be two non-null events such that $A\subseteq B$. Then, which of the following statements is always correct? (1) $(P(A/B)=P(B)-P(A) \ (2) \ P(A/B)>P(A) \ (3) \ P(A/B)\le P(A) \ (4) \ P(A/B)=1$

A.
$$p(A/B) = p(B) - P(A)$$

$$\mathsf{B.}\,P(A/B)>P(A)$$

$$\mathsf{C}.\,P(A/B)\leq P(A)$$

D.
$$P(A/B) = 1$$

Answer: C

Watch Video Solution

28. If lpha and eta be the roots of the equation $x^2-2x+2=0$, then the least value of n for which $\left(\frac{lpha}{eta}\right)^n=1$ is:

B. 5

C. 4

D. 3

Answer: C

$$A = ig\{(x,y) \in \mathbb{R} imes \mathbb{R} \mid 0 \leq x \leq 3, 0 \leq y \leq 4, y \leq x^2 + 3xig\}$$

is:

A.
$$\frac{53}{6}$$

B. 8

$$\cdot \frac{59}{6}$$

D.
$$\frac{26}{3}$$

Answer: C

Watch Video Solution

30. Let S_1 is set of minima and S_2 is set of maxima for the curve

$$y = 9x^4 + 12x^3 - 36x^2 - 25$$

then (A)

(C)

$$S_1 = \{-2, -1\}, S_2 = \{0\}$$
 (B) $S_1\{-2, 1\}, S_2 = \{0\}$

$$S_1 = \set{-2,1} \colon S_2 = \set{-1}$$
 (D) $S_1 = \set{-2,2}, S_2 = \set{0}$

A.
$$S_1=(-2), S_2=(0.1)$$

B.
$$S_1 = (-2,0), S_2 = (1)$$

$$\mathsf{C.}\,S_1=(\,-\,2,1),\,S_2=(0)$$

D.
$$S_1=(\,-1),\,S_2=(0,2)$$

Answer: C

31. If
$$lpha=\cos^{-1}\!\left(rac{3}{5}
ight),eta=\tan^{-1}\!\left(rac{1}{3}
ight)$$
, where $0,$

then $\alpha - \beta$ is equa to :

A.
$$\tan^{-1}\left(\frac{p}{5\sqrt{10}}\right)$$

B.
$$\cos^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$
C. $\tan^{-1}\left(\frac{9}{13}\right)$

D.
$$\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$

Answer: B

32. let $2 \cdot .^{20} C_0 + 5 \cdot .^{20} C_1 + 8 \cdot .^{20} C_2 + ? \cdot . + 62 \cdot .^{20} C_{20}$. Then sum of this series is

- A. 2^{26}
- $\mathsf{B.}\ 2^{25}$
- $C. 2^{23}$
- D. 2^{24}

Answer: C

Watch Video Solution

33. if $|\sqrt{x}-2|+\sqrt{x}\big(\sqrt{x}-4\big)+2=0$ then find the sum of roots of equation (A) 12 (B) 8 (C) 4 (D) 10

A. 9

- B. 12
- C. 4
- D. 10

Answer: C

Watch Video Solution

34. if the tangents on the ellipse $4x^2+y^2=8$ at the points (1,2) and (a,b) are perpendicular to each other then a^2 is equal to

- A. $\frac{128}{17}$
- B. $\frac{64}{17}$
- C. $\frac{4}{17}$
- $\mathsf{D.}\,\frac{2}{17}$

Watch Video Solution

35. The value of the integral $\int_0^1 x \cot^{-1} \left(1 - x^2 + x^4\right) dx$ is

A.
$$rac{\pi}{2}-rac{1}{2}{
m log}_e\,2$$

B.
$$\frac{\pi}{4} - \log_e 2$$

C.
$$\frac{\pi}{2} - \log_e 2$$

D.
$$\frac{\pi}{4} - \frac{1}{2} \log_e 2$$

Answer: A

36. let P be the plane, which contains the line of intersection of the planes x+y+z-6=0 and 2x+3y+z+5=0 and it is perpendicular to the xy-plane thent he distance of the point (0,0,256) from P is equal to

A.
$$17/\sqrt{5}$$

B.
$$63\sqrt{5}$$

C.
$$205\sqrt{5}$$

D.
$$11/\sqrt{5}$$

Answer: A

Watch Video Solution

37. If the lines x+(a-1)y=1 and $2x+1a^2y=1$ there $a\in R-\{0,1\}$ are perpendicular to each other, Then distance of

their point of intersection from the origin is

A.
$$\sqrt{\frac{1}{\xi}}$$

$$\mathsf{B.}\;\frac{2}{5}$$

C.
$$\frac{2}{\sqrt{5}}$$
 D. $\frac{\sqrt{2}}{5}$

Answer: A

Watch Video Solution

 $x^2+y^2=4$ and $x^2+y^2+6x+8y-24=0$ is (1) (4,-2) (2)

38. The point lying on common tangent to the circles

C. (6,-2)

D. (-4,6)

Answer: D

Watch Video Solution

39. The mean and median of 10, 22, 26, 29, 34, x, 42, 67, 70, y (in increasing order) are 42 and 35 respectively then the value of $\frac{y}{x}$ is (A)9/4 (B)7/2 (C)8/3 (D)7/3

A. 9/4

B.7/2

c. 8/3

D.7/3

Answer: A

40. If
$$y(x)$$
 satisfies the differential equation $\cos x \, \frac{dy}{dx} - y \, \sin x$

$$y=6x$$
. And $y\left(rac{\pi}{3}
ight)=0$. Then value of $y\left(rac{\pi}{6}
ight)$ is (A) $\frac{\pi^2}{2\sqrt{3}}$ (B) $-\frac{\pi^2}{2}$

(C)
$$-\frac{\pi^2}{2\sqrt{3}}$$
 (D) $-\frac{\pi^2}{4\sqrt{3}}$

A.
$$\frac{\pi^2}{2\sqrt{3}}$$
B. $-\frac{\pi^2}{2}$

$$\mathsf{C.} - \frac{\pi^2}{2\sqrt{3}}$$

D.
$$-\frac{\pi^2}{4\sqrt{3}}$$

Answer: A

41. The domain of $f(x)=rac{3}{4-x^2}+\log_{10}ig(x^3-xig)$ (1) $(-1,0)\cup(1,2)\cup(3,\infty)$ (2) $(-2,-1)\cup(-1,0)\cup(2,\infty)$

(3)
$$(-1,0)\cup(1,2)\cup(2,\infty)$$
 (4) $(1,2)\cup(2,\infty)$

A. $(-1,0)\cup(1,2)\cup(3,\infty)$

B. $(-2,-1)\cup(-1,0)\cup(2,\infty)$

C. $(-1,0)\cup(1,2)\cup(2,\infty)$

D. $(1,2)\cup(2,\infty)$

Answer: C

Watch Video Solution

42. If the sum of first 3 terms of an A. P. is 33 and their product is 1155. Then the 11^{th} term of the A. P. Is

- A. -35
- B. 25
- C. 36
- D. -25

Answer: B

- 43. Find the equations of the tangents to the ellipse
- $3x^2+4^2=12$ which are perpendicular to the line y+2x=4.
 - A. $\frac{5\sqrt{5}}{2}$
 - B. $\frac{\sqrt{61}}{2}$
 - $\mathsf{C.}\,\frac{\sqrt{221}}{2}$

Answer: A

Watch Video Solution

44. Consider $f(x)=x\sqrt{kx-x^2}$ for $x\varepsilon[0,3]$. Let m be the smallest value of k for which the function is increasing in the given interval and M be the largest value of f(x)f or k=m. Then(m,M) is

A.
$$(4, 3\sqrt{2})$$

B.
$$(4, 3\sqrt{3})$$

C.
$$(3, 3\sqrt{3})$$

D.
$$(5, 3\sqrt{6})$$

Answer: C

45. Let S_n denote the sum of the first n terms of an $A.\,P.$. If $S_4=16$ and $S_6=\,-\,48$, then S_{10} is equal to :

$$A. - 260$$

$$B. - 410$$

$$C. -320$$

$$D. -380$$

Answer: C

Watch Video Solution

46. If the volume of parallelopiped formed by the vectors $\hat{i} + \lambda \hat{j} + \hat{k}$, $\hat{j} + \lambda \hat{k}$ and $\lambda \hat{i} + \hat{k}$ is minimum then λ is equal to (1) $-\frac{1}{\sqrt{3}}$ (2) $\frac{1}{\sqrt{3}}$ (3) $\sqrt{3}$ (4) $-\sqrt{3}$

A.
$$-\frac{1}{\sqrt{3}}$$
B. $\frac{1}{\sqrt{3}}$

D.
$$-\sqrt{3}$$

Answer: A

C. $\sqrt{3}$

47. If the line
$$\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$$
 intersects the plane

$$2x+3y-z+13=0$$
 at a point P and plane $3x+y+4z=16$ at a point Q then PQ is equal to (A) 14 (B) $\sqrt{14}$ (C) $2\sqrt{7}$ (D) $2\sqrt{14}$

B.
$$\sqrt{14}$$

C.
$$2\sqrt{7}$$

$$\mathrm{D.}\ 2\sqrt{14}$$

Answer: C

Watch Video Solution

48. The derivative of $\tan^{-1}\!\left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)$, with respect to $\frac{x}{2}$, where $x\in\left(0,\frac{\pi}{2}\right)$ is:

A. 1

B. $\frac{1}{2}$

 $\mathsf{C.}\,\frac{1}{3}$

D. 2

Answer: C

49. The angle of elevation of the loop of a vertical tower standing on a horizontal plane is observed to be 45° from a point A on the plane. Let B be the point 30m vertically above the point A. If the angle of elevation of the top of the tower from B be 30° , then the distance (in m) of the foot of the lower from the point A is:

A.
$$15 ig(3 + \sqrt{3}ig)$$

B.
$$15(5-\sqrt{3})$$

C.
$$15(3-\sqrt{3})$$

D.
$$15 \left(1+\sqrt{3}\right)$$

Answer: B

50. If the equation $\cos 2x + \alpha \sin x = 2\alpha - 7$ has a solution.

Then range of α is (A) R (B) [1,4] (C) [3,7] (D) [2,6]

A. R

B. [1, 4]

C. [3, 7]

D. [2, 6]

Answer: A

Watch Video Solution

51. A plane which bisects the angle between the two given planes 2x-y+2z-4=0 and x+2y+2z-2=0, passes through

the point: (A) $(1,\,-4,\,1)$ (B) $(1,\,4,\,-1)$ (C) $(2,\,4,\,1)$ (D

(2, -4, 1)

A.
$$(1, -4, 1)$$

B.
$$(1, 4, -1)$$

D.
$$(2, -4, 1)$$

Answer: A

Watch Video Solution

Physics

1. A plane electromagnetic wave of frequency 50MHz travels in free space along the positive x-direction. At a particular point is space and time, $\overrightarrow{E}=6.3\hat{j}V/m$. The corresponding magnetic field \widehat{B} , at that point will be:

A.
$$18.9 imes10^{-8} \hat{k}T$$

B.
$$2.1 imes10^{-8} \hat{k}T$$

C.
$$6.3 imes10^{-8} \hat{k}T$$

D.
$$18.9 imes 10^8 \hat{k}T$$

Answer:

- **2.** Three charges +Q, q, +Q are placed respectively, at distance, 0, d//2 and d from the origin, on the x-axis. If the net force experienced by +Q placed at x=0, is zero, then value of q is :
 - $\mathsf{A.}-Q\,/\,4$
 - $\mathsf{B.} + Q \, / \, 2$
 - $\mathsf{C}.\,Q/4$

$$\mathsf{D.} - Q \, / \, 2$$

Answer:

Watch Video Solution

- **3.** A copper wire is stretched to make it $0.5\,\%$ longer. The percentage change in its electrical resistance if its volume remains unchanged is:
 - A. 2.0%
 - B.2.5%
 - c. 1.0 %
 - D.0.5%

Answer:

4. A sample of radioactive material A, that has an activity of $10mCi \left(1Ci = 3.7 \times 10^{10} decays/s\right)$, has twice the number of nuclei as another sample of a different radioactive material B which has an activity of 20 mCi. The correct choices for half-lives of A and B would then be respectively:

- A. 5 days and 10 days
- B. 10 days and 40 days
- C. 20 days and 5 days
- D. 20 days and 10 days

Answer:

5. In the given circuit the current through Zener Diode is close to:

- A. 0.0 mA
- B. 6.7 mA
- C. 4.0 mA
- D. 6.0 mA

Answer:

Watch Video Solution

6. There are two long co-axial solenoids of same length I. The inner and other coils have redii r_1 and r_2 and number of turns

per unti length n_1 and n_2 respectively .The reatio of mutual inductance to the self - inductance of the inner- coil is : (A) $\frac{n_1}{n_2}$ (B)

$$rac{n_2}{n_1}$$
 . $rac{r_1}{r_2}$ (C) $rac{n_2}{n_1}$. $rac{r_2^2}{r_1^2}$ (D) $rac{n_2}{n_1}$

A.
$$\frac{n_1}{n_2}$$

$$\mathsf{B.}\; \frac{n_2}{n_1}.\; \frac{r_1}{r_2}$$

C.
$$rac{n_2}{n_1}$$
 . $rac{r_2^2}{r_1^2}$

D.
$$\frac{n_2}{n_1}$$

Answer:

Watch Video Solution

7. If the deBroglie wavelenght of an electron is equal to 10^-3 times the wavelenght of a photon of frequency 6×10^{14} Hz ,then the calculate speed of electrone. Speed of light $=3\times10^8m/s$

Planck's constant $\,=6.63 imes10^{-34}$ J s

Mass of electron $\,=9.1 imes10^{-31}\,\mathrm{kg}$

A. $1.1 imes10^6 m\,/\,s$

B. $1.7 imes10^6m/s$

C. $1.8 imes10^6m/s$

D. $1.45 imes10^6m/s$

Answer:

Watch Video Solution

8. एक प्रगामी आवर्ती तरंग को समीकरण y(x, y) = $10^{-3} \sin(50t + 2x)$ से निरूपित किया जाता है, जहाँ x तथा y मीटर में तथा 1 सेकण्ड में हैं। निम्न में से तरंग के लिए कौनसा कथन सत्य है|

A. the wave is propagating along the negative x-axis with sped

$$25ms^{\,-1}$$

B. the wave is propagating along the postitive x-axis with speed $100 m s^{\,-1}$

C. the wave is propagating along the postive x-axis with speed $25ms^{-1}$

D. the wave is propagating along the nagative x-axis with speed $100 m s^{\,-1}$

Answer:

9. AN ideal battery of 4 V and resistance R are connected in series in the primary circuit of a notentiometer of length 1 m and the

value of R, to give a differeence of 56mV across 10 cm of notentiometer wire , is :

A. 490Ω

B. 480Ω

 $\mathsf{C.}\,396\Omega$

D. 495Ω

Answer:

10. for the given cyclic process CAB as shown for a gas , the work done is :

A. 30J

B. 10J

C. 1J

D. 5J

Answer:

11. Determine the electric dipole moment of the system of three charges , placed on the verices of an equilateral triangle , as shown in the fogure :

A.
$$\sqrt{3}ql\frac{\jmath-\imath}{\sqrt{2}}$$

B.
$$(ql) \frac{i+j}{\sqrt{2}}$$

C.
$$2ql\hat{j}$$

$$\mathrm{D.} - \sqrt{3}ql\hat{j}$$

Answer:

watch video Solution

12. the position vector of the centre of mass It

$$\rightarrow$$

r cm of an asymmetric uniform bar of negligible area of cross - section as shown in figure is :

A.
$$\overrightarrow{r}_{cm}=rac{13}{8}L\widehat{x}+rac{5}{8}L\hat{y}$$

B.
$$\overrightarrow{r}_{cm}=rac{5}{8}L\widehat{x}+rac{13}{8}L\hat{y}$$

C.
$$\overrightarrow{r}_{cm}=rac{3}{8}L\widehat{x}+rac{11}{8}L\hat{y}$$

D.
$$\overrightarrow{r}_{cm}=rac{11}{8}L\widehat{x}+rac{3}{8}L\hat{y}$$

Answer:

Watch Video Solution

13. A person standing on an open ground hears the sound of a jet aeroplane , coming from north at an angle 60° with ground level ,But he finds the aeroplane right vertically above his position , if V is the speed of sound , speed of the plane is :

A.
$$\frac{\sqrt{3}}{2}v$$

B.
$$\frac{2v}{\sqrt{3}}$$

C. v

D.
$$\frac{v}{2}$$

Answer:

14. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K.The men time between two successive collosions is 6×10^{-8} s. If the pressure to 500K, the mean time between two successive collisions will be close to :

A.
$$2 imes 10^{-7} s$$

B.
$$4 imes 10^{-8} s$$

C.
$$0.5 imes10^{-8}s$$

D.
$$3 imes 10^{-6} s$$

Answer: A

In the figure, given that V_{BB} supply can vary from 0 to $5.0V,\,V_{\mathbb C}=5V,\,\beta_{dc}=200,\,R_B=100K\omega,\,R_C=1K\omega$ and $V_{BE}=1.0V$, The minimum base current and the input voltage at which the transistor will go to saturation, will be, respectively:

- A. $25\mu A$ and 3.5V
- B. $20\mu A$ and 3.5V
- $\mathsf{C.}\ 25\mu A$ and 2.8V
- D. $20\mu A$ and 2.8V

Answer: A

16. In the circuit shown, find C if the effective capacitance of the whole, circuit is to be $0.5\mu F$. All values in the circuit are in μF .

A.
$$\frac{7}{11}\mu F$$

B.
$$\frac{6}{5}\mu F$$

C.
$$4\mu F$$

D.
$$\frac{7}{10} \mu F$$

Answer: A

Watch Video Solution

17. A 10 m long horizontal wire extends from North east ro South East. It is falling with a speed of $5.0ms^{-1}$, at right angles to the horizontal component of the earth's magnetic field, of $0.3 \times 10^{-4} Wb/m^2$. The value of the induced emf in wire is :

A.
$$1.5 imes 10^{-3} V$$

B.
$$1.1 imes 10^{-3} V$$

C.
$$2.5 imes10^{-3}V$$

D.
$$0.3 imes 10^{-3} V$$

Answer: A

18. To double the covering range of a TV transmittion tower, its height should be multiplied by :

A.
$$\frac{1}{\sqrt{2}}$$

B. 2

C. 4

D. $\sqrt{2}$

Answer: A

