

India's Number 1 Education App

MATHS

NTA MOCK TESTS ENGLISH

JEE MOCK TEST 7

Mathematics

1. If
$$u=x^2+y^2$$
 and $x=s+3t, y=2s-t,$ then $\frac{d^2u}{ds^2}$ is equal to

A. 12

B. 32

C. 36

D. 10

Answer: D

Watch Video Solution

2. If N is the number of positive integral solutions of the equation

 $x_1x_2x_3x_4=770$, then the value of N is

- A. 250
- B. 252
- C. 254
- D. 256

Answer: D

3. If one root of the equation $x^2+px+q=0$ is the square of the other then

A.
$$p^3 + q^2 - q(3p+1) = 0$$

B.
$$p^3 + q^2 + q(1+3p) = 0$$

$$\mathsf{C.}\, p^3 + q^2 + q(3p-1) = 0$$

D.
$$p^3 + q^2 + q(1-3p) = 0$$

Answer: D

4. If
$$s_n = \sum_{r=0}^n \frac{1}{r^n C_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{r^n C_r}$, then $\frac{t_n}{s_n}$ is equal to

A.
$$n - 1$$

B.
$$\frac{1}{2}n - 1$$

C.
$$\frac{1}{2}n$$
D. $\frac{2n-1}{2}$

Answer: C

Watch Video Solution

$rac{1+\sin x-\cos x+\ln(1-x)}{x\cdot an^2 x}$ using LHospitals Rule $x \rightarrow 0$

A.
$$-\frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{3}$$

$$\mathsf{C.}\,\frac{1}{2}$$

D.
$$\frac{1}{4}$$

Answer: A

6. The range of value of α such that $(0, \alpha)$ lies on or inside the triangle formed by the lines y + 3x + 2 = 0, 3y - 2x - 5 = 0, 4y + x - 14 = 0 is

A.
$$0 < v\eta < rac{5}{2}$$

B.
$$0$$

$$\mathsf{C.}\,\frac{5}{3} \leq \beta \leq \frac{7}{2}$$

D. None of these

Answer: C

Watch Video Solution

7. The value of $\int_0^{\pi} \left(\sum_{r=0}^3 a_r \cos^{3-r} x \sin^r x \right) dx$ depends upon

A. a_1 and a_2

 $B. a_0 \text{ and } a_3$

 $\mathsf{C}.\,a_2$ and a_3

D. a_1 and a_3

Answer: D

Watch Video Solution

- **8.** Solve the equation: $an^{-1}\sqrt{x^2+x}+\sin^{-1}\sqrt{x^2+x+1}=rac{\pi}{2}$
 - A. -1, 0
 - B.0, 1
 - C. -1, 1
 - D. -1, 2

Answer: A

9. Find the sum of the first n terms of the series:

$$0.2 + 0.22 + 0.222 + \dots n - terms$$

$$\mathsf{A.}\left(\frac{2}{9}\right) - \left(\frac{2}{81}\right) \left(1 - 10^{-n}\right)$$

B.
$$n\Big(rac{1}{9}\Big)ig(1-10^{-n}ig)$$

C.
$$\left(\frac{2}{9}\right)\left[n-\left(\frac{1}{9}\right)\left(1-10^{-n}\right)\right]$$

D.
$$\left(\frac{2}{9}\right)$$

Answer: C

Watch Video Solution

10. If tangents at (1,2) to the circle C_1 : $x^2+y^2=5$ intersects the circle C_2 : $x^2+y^2=9$ at A and B and tangents at A and B to the second circle meet at point C, then the co-ordinates of C are given by

A.
$$(4, -5)$$

$$\mathsf{B.}\left(\frac{3}{5},\,\frac{6}{5}\right)$$

$$\mathsf{D.}\left(\frac{9}{5},\frac{18}{5}\right)$$

Answer: D

11. The minimum distance of a point on the curve $y=x^2-4$ from origin ,

A.
$$\frac{\sqrt{15}}{2}$$
 units

B.
$$\sqrt{\frac{19}{2}}$$
 units

C.
$$\sqrt{\frac{15}{2}}$$
 units

D.
$$\frac{\sqrt{19}}{2}$$
 units

Answer: A

Watch Video Solution

12. The domain of the function $f(x) = \sqrt{1n_{\left(\left.\left|x\right.\right|-1\right)}\left(x^2+4x+4\right)}$

is $(-3, -1) \cup (1, 2)$

 $(\,-2,\,-1)\cup(2,\infty)$

 $(\,-\infty,\,-3)\cup(\,-2,\,-1)\cup(2,\infty)$ none of these

A. $[\,-3,\,-1]\cup[1,2]$

 $\texttt{B.}\,(\,-2,\,-1)\cup[2,\infty)$

 $\mathsf{C.}\ (\,-\infty,\ -3]\cup(\,-2.\ -1)\cup(2,\infty)$

 $\mathsf{D}.\,[\,-2,\,-1]\cup[2,\infty)$

Answer: C

13. The expression $(1+\tan\!x+\tan^2\!x)(1-\cot\!x+\cot^2\!x)$ has the positive values of x, given by

A.
$$\left[0, \frac{\pi}{2}\right]$$

$$\mathrm{B.}\left[0,\pi\right]$$

C.
$$R-\left\{x=rac{n\pi}{2},n\in I
ight\}$$

D.
$$[0, \infty]$$

Answer: C

Watch Video Solution

14. the value of heta for which the system of equations

$$(\sin 3\theta)x - 2y + 3z = 0, (\cos 2\theta)x + 8y - 7z = 0$$

and
$$2x+14y-11z=0$$
 has a non - trivial solution, is (here, $n\in Z$)

A. $n\pi$

B.
$$n\pi + (-1)^n\pi/3$$

C.
$$n\pi + (-1)^n\pi/2$$

D. None of these

Answer: A

Watch Video Solution

15. If both the mean and the standard deviation of 50 observatios

$$x_1,x_2,\ldots x_{50}$$
 are equal to 16, then the mean of $(x_1-4)^2,(x_2-4)^2,\ldots,(x_{50}-4)^2$ is

B. 480

C. 400

D. 380

Answer: C

Watch Video Solution

16. For an initial screening of an admission test, a candidate is given fifty problems to solve. If the probability that the candidate can solve any problem is $\frac{4}{5}$ then the probability that he is unable to solve less than two problem is :

A.
$$\frac{201}{5} \left(\frac{1}{5}\right)^{49}$$

B.
$$\frac{164}{25} \left(\frac{1}{5}\right)^{48}$$

c.
$$\frac{316}{25} \left(\frac{4}{5}\right)^{48}$$

D.
$$\frac{54}{5} \left(\frac{4}{5}\right)^{49}$$

Answer: D

17. Let S be the set of all real numbers. Then , the relation

 $R = \{(a,b)\!:\! 1+ab>0\}$ on S is

A. reflexive and symmetric but not transitive

B. reflexive and transitive but not symmetric

C. reflexive, transitive and symmetric

D. None of the above

Answer: A

18. The contrapositive of $(p \lor q) \to r$ is

A.
$$r \Rightarrow (p \lor q)$$

B. ~
$$r \Rightarrow (p \lor q)$$

C. ~
$$r \Rightarrow ~p \wedge ~q$$

$$extsf{D.}\,r \Rightarrow (q ee r)$$

Answer: C

Watch Video Solution

19. The value of

$$\Big(1+\frac{\cos\pi}{8}\Big)\bigg(1+\frac{\cos(3\pi)}{8}\bigg)\bigg(1+\frac{\cos(5\pi)}{8}\bigg)\bigg(1+\frac{\cos(7\pi)}{8}\bigg)is$$

1/4 (b) 3/4 (c) 1/8 (d) 3/8

- A. $\frac{1}{2}$
- B. $\frac{1}{4}$
- c. $\frac{1}{8}$
- D. $\frac{1}{16}$

Answer: C

20. Tangents are drawn from the point (lpha,2) to the hyperbola

 $3x^2-2y^2=6$ and are inclined at angles heta and ϕ to the x-axis . If $an heta. an\phi=2,\,$ then the value of $2lpha^2-7$ is

21. Let $f\colon R\to R$ be a differentiable function with f(0)=1 and satisfying the equation $f(x+y)=f(x)f'(y)+f'(x)f(y) \ \ \text{for all} \ \ x,y\in R. \ \ \text{Then, the}$

value of $\log_e(f(4))$ is -

22. If \widehat{a} , \widehat{b} and \widehat{c} are three non-zero non-coplanar vectors and $\overrightarrow{p}=\overrightarrow{a}+\overrightarrow{b}-2\overrightarrow{c}$, $\overrightarrow{q}=3\overrightarrow{a}-2\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{r}=\overrightarrow{a}-4\overrightarrow{b}+2\overrightarrow{c}$ are three vectors such that the volumes of the parallelopiped

formed by \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} as their conterminous edges are V_1 and V_2 respectively. Then $\frac{V_2}{V_1}$ is equal to :

23. If a complex number z lie on a circle of radius $\frac{1}{2}$ units, then the complex number $\omega=-1+4z$ will always lie on a circle of radius k units, where k is equal to

