

MATHS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 42

1. The number of positive integral solution of the inequality $x+y+z\leq 20$ is

A. 1008

B. 1028

C. 1108

D. 1140

Answer: D

2. A tower AB leans towards west making an angle α with the vertical . The anlgular elevation of B , the topmost point of the tower is β as obsreved from a point C due east of A at distance d from A.If the angular elevation of B from a pont D at a distance 2d due east of C is α , then

A.
$$\sqrt{3} + 1$$

B. $\frac{\sqrt{3} + 1}{\sqrt{\sqrt{3}} - 1}$
C. $\sqrt{3} - 1$
D. $\frac{\sqrt{3} - 1}{\sqrt{3} + 1}$

Answer: C

3. Consider the function $f(x) = \min ig\{ ig| x^2 - 9 ig|, ig| x^2 - 1 ig| ig\}$, then the

number of points where f(x) is non - differentiable is/are

A. 0		
B. 7		
C. 6		
D 4		

Answer: C

Watch Video Solution

4. The consecutive odd integers whose sum is 45^2-21^2 are

A. 43, 45,...., 75

B. 43, 45,, 85

C. 43, 45,, 85

D. 43, 45,, 89

Answer: D

5. For a complex number Z, if one root of the equation $Z^2 - aZ + a = 0$ is (1+i) and its other root is α , then the value of $\frac{a}{\alpha^4}$ is equal to

6. Let a,bgt0 and
$$\alpha = \frac{\hat{i}}{a} + \frac{4\hat{j}}{b} + b\hat{k}$$
 and $\beta = b\hat{i} + a\hat{t}j + \frac{1}{b}\hat{k}$, then the maximum value of $\frac{10}{5 + \alpha \cdot \beta}$ is

A.
$$\frac{12}{11}$$

C. 1

D.
$$\frac{10}{9}$$

Answer: A

Watch Video Solution

7. If the cofficient of viration of two distribution are 50 ,60 and their arithmetic means are 30 and 25 respectively then the difference of their standard deviaton is

A.
$$\frac{2075}{3}$$

B. $\frac{2075}{9}$
C. $\frac{1000}{9}$
D. $\frac{1075}{3}$

8. If the centroid of triangles formed by the vertices (1, 2, 3), (2, 1, 0) and (3, 1, 4) is (α, β, γ) then the value of $[\alpha] + [\beta] + [\gamma]$, where [] represents the greatest integer function, is _____.

- A. 1
- B. 1
- C. 4
- $\mathsf{D.}-3$

Answer: D

9. If $2, h_1, h_2, \ldots, h_{20}6$ are in harmonic progression and $2, a_1, a_2, \ldots, a_{20}, 6$ are in arithmetic progression, then the value of a_3h_{18} is equal to

A. 6	
B. 12	
C. 3	
D. 9	

Answer: B

Watch Video Solution

10. If $\sin A$ and $\cos A$ are the roots of the equation $4x^2-3x+a=0,$ $\sin A+\cos A+\tan A+\cot A+\sec A+\csc A=7$, then the value of a must be

A.
$$\frac{7}{25}$$

B. $\frac{25}{7}$
C. $\frac{28}{25}$
D. $\frac{25}{28}$

Answer: C

11. The statement $p \Leftrightarrow q$ is not equivalent to

A.
$$(p \lor q) \Rightarrow (p \land q)$$

B. $(p \land q) \Rightarrow (p \lor q)$
C. $(p \lor q) \Leftrightarrow (p \land q)$

D. ~
$$(p \lor q) \lor (p \land q)$$

Answer: B

Watch Video Solution

12. Prove that the curve represented by $x=3(\cos t+\sin t), y=4(\cos t-\sin t), t\in R, ext{ is an ellipse.}$

A. Ellipse

B. Parabola

C. Hyperbola

D. Circle

Answer: A

Watch Video Solution

13. The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z = 25. The equation of the plane in its new position is x - 4y + 6z = k where k is

A. 106

B. - 89

C. 73

D. 37

Answer: A

14. The lengths of the perpendiculars from the points $ig(m^2,2mig),\,(mn,m+n)$ and $ig(n^2,2nig)$ to the line $x+\sqrt{3}y+3=0$ are in

- A. Arithmetic progression
- B. Geometric progression
- C. Harmonic progression
- D. None of these

Answer: B

Watch Video Solution

15. The value of
$$\int_0^\infty {dx\over 1+x^4}$$
 is equal to

A.
$$\frac{\pi}{2\sqrt{2}}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{\sqrt{2}}$$

D. $2\pi\sqrt{2}$

Answer: A

16. The coefficient of
$$x^5$$
 in the expansion of $\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}\right)^2$ is
A. $\frac{2}{15}$
B. $\frac{4}{15}$
C. $\frac{1}{30}$
D. $\frac{2}{45}$

17. The value of the integral $\int \! e^{x^2+rac{1}{x}} igg(2x^2-rac{1}{x}+1igg) dx$ is equal to

(where C is the constant of integration)

A.
$$e^{x^2 + rac{1}{x}} + C$$

B. $x^2 \left(x^2 + rac{1}{x} \right) + C$
C. $x e^{x^2 + rac{1}{x}} + C$
D. $x. e^x + C$

Answer: C

Watch Video Solution

18. If $A \neq B, AB = BA$ and $A^2 = B^2$, then the value of the determinant of matrix A + B is (where A and B are square matrices of order 3×3)

A.	0
В.	1
C.	3^3

 $D.3^2$

Answer: A

Watch Video Solution

19. The locus of the mid-point of the chords of the hyperbola $x^2-y^2=4$, that touches the parabola $y^2=8x$ is

A.
$$x^2(x-2) = y^3$$

B. $y^2(x-2) = x^3$
C. $x^3(x-2) = y^2$
D. $y^3(x-2) = x^2$

20. The area bounded by the curve $y = \{x\}$ with the x-axis from $x = \pi$ to x = 3.8 is $\left(\frac{\pi}{2} - a\right)(b - \pi)$ sq. units, then the value of b - a is equal to (where $\{.\}$ denotes the fractional part function)

Watch Video Solution

21. Consider the function $f(x) = \tan^{-1}\left\{\frac{3x-2}{3+2x}\right\}$, $\forall x \ge 0$. If g(x) is the inverse function of f(x), then the value of $g'\left(\frac{\pi}{4}\right)$ is equal to

Watch Video Solution

22. If $\int e^{-\frac{x^2}{2}} dx = f(x)$ and the solution of the differential equation $\frac{dy}{dx} = 1 + xy$ is $y = ke^{\frac{x^2}{2}}f(x) + Ce^{\frac{x^2}{2}}$, then the value of k is equal to

(where C is the constant of integration)

23. A subset of 5 elements is chosen from the set of first 15 natural numbers. The probability that at least two of the five numbers are consecutive is λ , then the value of $\frac{22}{\lambda}$ is equal to

Watch Video Solution

24. If
$$a, b, c, \lambda \in N$$
, then the least possible value of
 $\begin{vmatrix} a^2 + \lambda & ab & ac \\ ba & b^2 + \lambda & bc \\ ca & cb & c^2 + \lambda \end{vmatrix}$ is
Watch Video Solution