

MATHS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 75

Mathematics

1. Let P is a point on the line y+2x=2 and Q and R are two points on the line 3y+6x=3. If the triangle PQR is an equilateral triangle, then its area (in sq. units) is equal to

A.
$$\frac{1}{15}$$

B.
$$\frac{1}{5\sqrt{3}}$$

C.
$$\frac{1}{3\sqrt{5}}$$
D.
$$\frac{1}{\sqrt{5}}$$

Answer: B

Watch Video Solution

2. Let O be an interior point of triangle ABC, such that $2\overrightarrow{OA} + 3\overrightarrow{OB} + 4\overrightarrow{OC} = 0$, then the ratio of the area of

 ΔABC to the area of ΔAOC is

- A. 3:1
- B. 3:2
- C. 2:1
 - D. 4:3

Answer: A

Watch Video Solution

3. Let α, β, γ be three real numbers satisfying

$$\left[egin{array}{cccc} lpha & eta & \gamma \end{array}
ight] \left[egin{array}{ccccc} 2 & -1 & 1 \ -1 & -1 & -2 \ -1 & 2 & 1 \end{array}
ight] = \left[egin{array}{cccc} 0 & 0 & 0 \end{array}
ight]. ext{ If the point}$$

 $A(lpha,eta,\gamma)$ lies on the plane 2x+y+3z=2, then

$$3lpha+3eta-6\gamma$$
 is equal to

- A. 0
- B. $-\frac{1}{3}$
- C. 1
- D.-3

Answer: A

Watch Video Solution

4. If the tangent to the ellipse $x^2+4y^2=16$ at the point P(theta) is a normal to the circle $x^2+y^2-8x-4y=0$, then theta equals

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{5\pi}{2}$$

D.
$$\frac{7\pi}{4}$$

Answer: A

5. The solution of the differential equation $(3\sin^2 x\cos x)y^2dx + 2y\sin^3 xdy = \sin xdx$ (where, C is an arbitrary constant)

A.
$$2y^2 \sin x = \cos x + C$$

$$B. y^2 \sin^3 x + \cos x = C$$

$$\mathsf{C}.\,y^3\sin^2x+\sin x=C$$

D.
$$y \sin x = \cos^2 x + C$$

Answer: B

6. The smallest positive integral value of a, such that the function $f(x)=x^4-4ax^2+10$ has more two local extrema, is

- A. 1
- B. 2
- C. 4
- D. 16

Answer: A

Watch Video Solution

7. The value of $\Sigma_{i=1}^nig(.^{n+1}C_i-.^nC_iig)$ is equal to

A.
$$2^n$$

B.
$$2^{n} + 1$$

C.
$$3.2^{n}$$

D.
$$2^{n} - 1$$

Answer: D

8. If the integral
$$\int_0^2 \frac{dx}{\sin x + \sin(2-x)} = A$$
, then the integral $\beta = \int_0^2 \frac{x dx}{\sin x + \sin(2-x)}$ is equal to

A.
$$(\sin 2)A$$

C. A

D. $\frac{A}{2}$

Answer: C

Watch Video Solution

9. If the reciprocals of 2, $\log_{(3^x-4)} 4$ and $\log_{3^x+\frac{7}{2}} 4$ are in arithmetic progression, then x is equal to

A. 1

B. 2

C. 4

D. 0

Answer: B

Watch Video Solution

10. From point P(4,0) tangents PA and PB are drawn to the circle S: $x^2+y^2=4$. If point Q lies on the circle, then maximum area of $\triangle QAB$ is- (1) $2\sqrt{3}$ (2) $3\sqrt{3}$ (3) $4\sqrt{3}$ A) 9

- A. 12
- B. 27
- C. 48
- D. 45

Answer: B

11. Consider a plane P: 2x + y - z = 5, a line

 $L\colon rac{x-3}{2} = rac{y+1}{-3} = rac{z-2}{-1}$ and a point $A(3,\ -4,1).$ If

the line L intersects plane P at B and the xy plane at C, then the area (in sq. units) of ΔABC is

A.
$$\sqrt{7}$$

B.
$$\sqrt{8}$$

c.
$$\sqrt{10}$$

D.
$$2\sqrt{3}$$

Answer: C

12. The number of triplets (a, b, c) of positive integers

satisfying the equation
$$\begin{vmatrix} a^3+1 & a^2b & a^2c \ ab^2 & b^3+1 & b^2c \ ac^2 & bc^2 & c^3+1 \ \end{vmatrix}=30$$
 is

equal to

A. 3

B. 6

C. 9

D. 12

Answer: A

13. The locus of the trisection point of any arbitrary double ordinate of the parabola $x^2=4y$, is

A.
$$9x^2=y$$

B.
$$3x^2=2y$$

$$\mathsf{C.}\,9x^2=4y$$

D.
$$9x^2=2y$$

Answer: C

Watch Video Solution

14. If

 $A = \{1, 3, 5, 7, 9, 11, 13, 15, 17\}, B = \{2, 4, \dots, 18\}$ and N

the set of natural numbers is the universal set, then

$$A$$
 ' \cup $\{(A \cup B) \cap B$ ' $\}$ is (a) $oldsymbol{\phi}$ (b)N (c) A (d) B

A. A

B. N

C. B

D. None of these

Answer: B

Watch Video Solution

15. Let $f\colon (6,8) o (9,11)$ be a function defined as $f(x)=x+\left[rac{x}{2}
ight]$ (where $[.\,]$ denotes the greatest integer function), then $f^{-1}(x)$ is equal to

A.
$$x-\left[rac{x}{2}
ight]$$

$$B.-x-3$$

$$c. x - 3$$

D.
$$\frac{1}{x + \left\lceil \frac{x}{2} \right\rceil}$$

Answer: C

16. Let
$$f(x+y)=f(x)f(y)$$
 for all $x,y \in R$ and $f(x)=1+x\phi(x)ln2$ where $\lim_{x \to 0} \phi(x)=1$ then $f,(x)$ is

B.
$$[f(x)]^{(2)}$$

 $\mathsf{C}.\,g(x)$

D. None of these

Answer: A

Watch Video Solution

17. If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

- (1) $3a^2 26a + 55 = 0$
- $(2) 3a^2 32a + 84 = 0$
- $(3) 3a^2 34a + 91 = 0$
- $(4) 3a^2 23a + 44 = 0$

A. $3a^2 - 23a + 24 = 0$

 $B. \, 3a^2 - 26a + 46 = 0$

 $\mathsf{C.}\, 3a^2 - 32a + 28 = 0$

D. $3a^2 - 34a + 45 = 0$

Answer: C

Watch Video Solution

18. The domain of
$$f(x) = 4\sqrt{\cos^{-1}\left(rac{1-|x|}{2}
ight)}$$
 is

A.
$$(-\infty, -3) \cup (3, \infty)$$

the function

C.
$$(-\infty, -3] \cup [3, \infty)$$

B. [-3, 3]

Answer: B

Watch Video Solution

19. The integral $I=\int\!\!\sec^3x\tan^3xdx$ is equal to (where, C is the constant of integration)

A.
$$\sec^5 x - \sec^3 x + C$$

$$\mathsf{B.} \; \frac{\sec^5 x}{5} - \sec^3 x + C$$

C.
$$rac{\sec^5 x}{5} - rac{\sec^3 x}{3} + C$$

D.
$$\frac{\sec^5 x}{5} - \tan^{-1} x + C$$

Answer: C

.......

Watch Video Solution

20. If ω is the imaginary cube roots of unity, then the number of pair of integers (a,b) such that $|a\omega+b|=1$ is

Watch Video Solution

21. If $\sqrt{3}\sin x + \cos x - 2 = (y-1)^2$ for $0 \le x \le 8\pi$, then the number of values of the pair (x, y) is equal to

Watch Video Solution

22. The probability that a married man watches a certain T.V. show is 0.6 and the probability that a married woman

watches the show is 0.5. The probability that a man watches the show given that his wife does watch is 0.8. If the probability that a wife watches the show given that her husband does watch is k, then $\frac{1}{k}$ is equal to

Watch Video Solution

23. The value of $\lim_{x o 1} \Sigma_{r=1}^{10} = rac{x^r-1^r}{2(x-1)}$ is equal to

