©゙" doubtnut

India's Number 1 Education App

PHYSICS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 19

Physics

1. In hydrogen spectrum the wavelength H_{a} of
line is 656 nm whereas in the spectrum of a distant galaxy. H_{a} line wavelength is 706 nm .

Estimated speed of the galaxy with respect to earth is:
A. $1.2 \times 10^{7} \mathrm{~ms}^{-1}$
B. $2.2 \times 10^{7} \mathrm{~ms}^{-1}$
C. $3 \times 10^{7} m s^{-1}$
D. $1.9 \times 10^{7} \mathrm{~ms}^{-1}$

Answer: B
(Watch Video Solution
2. A silver of radius 4.8 cm is suspended by a
thread in the vacuum chamber.$U V$ light of
wavelength 200 nm is incident on the ball for
some times during which a total energy of
$1 \times 10^{-7} J$ falls on the surface. Assuming on
an average one out of ' 1000 photons incident
is able to eject electron. The potential on
sphere will be
A. 1 V
B. 2 V
C. 3 V

D. zero

Answer: C

- Watch Video Solution

3. An underformed spring of spring constant k
is connected to a bead of mass m which can
move along a frictionless rod as shown in the
figure. If the particle strikes the bead at an angle of 45° with the horizontal and sticks to
it, then the maximum elongation of the spring
after the collision is

A. $\frac{v}{4} \sqrt{\frac{m}{2 k}}$
B. $\frac{v}{2} \sqrt{\frac{m}{k}}$
C. $\frac{v}{2} \sqrt{\frac{m}{2 k}}$
D. $\frac{v}{4} \sqrt{\frac{m}{k}}$

Answer: B

- Watch Video Solution

4. A deflection magnetometer is placed with
its arm along the east-west direction (tan A
position) and a short bar magnet is placed symmetrically along its axis at some distance with its north pole pointing towards east. In
this position the needle of the magnetometer shows a deflection of 60°. If we double the
distance of the bar magnet, then the deflection will be

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { B. } \cos ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { C. } \tan ^{-1}\left[\frac{\sqrt{3}}{8}\right] \\
& \text { D. } \cot ^{-1}\left[\frac{\sqrt{3}}{8}\right]
\end{aligned}
$$

Answer: C
5. The masses of three copper wires are in the ratio 2:3:5 and their lengths are in the ratio 5:3:2. Then, the ratio of their electrical resistance is
A. 1:9:15
B. 2:3:5
C. 5:3:2
D. $125: 30: 8$

Answer: D

6. A potential difference of 0.75 V applied across a galvanometer causes a current of 15 mA to pass through it. If can be converted into ammeter of range of 25 A , the requried shunt should be
A. 0.8Ω
B. 0.93Ω
C. 0.03Ω
D. 2.0Ω

Answer: C

- Watch Video Solution

7. In an AC circuit the instantaneous values of emf and current are
$e=200 \sin 300 t$
$i=2 \sin \left(300 t+\frac{\pi}{3}\right)$ amp The average power
consumed (in watts) is
A. 200
B. 100
C. 50
D. 400

Answer: B

D Watch Video Solution

8. The plates of a parallel plate capacitor are
charged upto 200V. A dielectric slab of thickness 4 mm is inserted between its plates.

Then, to maintain the same potential difference between the plates of the capacitor,
the distance between the plates is increased
by 3.2 mm . the dielectric constant of the dielectric slab is
A. 1
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

9. A point charge q is placed at a distance of r
from the centre O of an uncharged spherical
shell of inner radius R and outer radius $2 R$. The electric potential at the centre of the shell will be
A. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{2 R}\right)$
B. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{4 q}{3 R}\right)$
C. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{6 R}\right)$
D. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{5 q}{3 R}\right)$

Answer: C

D Watch Video Solution

10. A cord of length $64 m$ is used to connected
a 100 kg astronaut to spaceship whose mass is
much larger than that of the astronuat.

Estimate the value of the tension in the cord.

Assume that the spaceship is orbiting near earth surface. Assume that the spaceship and
the astronaut fall on a straight line from the
earth centre. the radius of the earth is

6400 km .

> A. $3 \times 10^{-2} N$
> B. $2 \times 10^{-2} N$
> C. $4 \times 10^{-2} N$
> D. $5 \times 10^{-2} N$

Answer: A
(Watch Video Solution
11. Two masses m and M are attached to the strings as shown in the figure. If the system is in equilibrium, then

A. $\tan \theta=1+\frac{2 M}{m}$
B. $\tan \theta=1-\frac{2 m}{M}$
C. $\tan \theta=1-\frac{M}{2 m}$
D. $\tan \theta=1-\frac{m}{2 M}$

Answer: A

D Watch Video Solution

12. Ice starts forming in lake with water at $0^{\circ} C$
and when the atmospheric temperature is
$-10^{\circ} C$. If the time taken for 1 cm of ice be 7
hours. Find the time taken for the thickness of ice to change from 1 cm to 2 cm
A. 7 hours
B. 14 hours
C. 10.5 hours
D. 21 hours

Answer: D
(Watch Video Solution
13. A very long cylindrical wire is carrying a current I_{0} distriuted uniformly over its crosssection area. O is the centre of the crosssection of the wire and the direction of current in into the plane of the figure. The value $\int_{A}^{B} \vec{B} \cdot \overrightarrow{d l}$ along the path $A B$ (from A to B) is

A. $\mu_{0} I_{0}$
B. $-\frac{\mu_{0} I_{0}}{6}$
C. $\frac{\mu_{0} I_{0}}{6}$
D. $\frac{\mu_{0} I_{0}}{3}$

Answer: B

- Watch Video Solution

14. The inclined plane $O A$ rotates in vertical plane about a horizontal axis through O with a constant counter clockwise velocity $\omega=3$
$\mathrm{rad} / \mathrm{sec}$. As it passes the position $\theta=0, \mathrm{a}$ small $m=1 \mathrm{~kg}$ is placed upon it at a radial distance $r=0.5 \mathrm{~m}$. if the mass is observed to be at rest with respect to inclined plane. The value of static friction force at $\theta=37^{\circ}$ between the mass and the incline plane

A. $\frac{3}{16}$
B. $\frac{9}{16}$
C. $\frac{4}{9}$
D. $\frac{5}{9}$

Answer: A

D Watch Video Solution

15. The time period of oscillations of a block attached to a spring is t_{1}. When the spring is replaced by another spring, the time period of the block is t_{2}. If both the springs are
connected in series and the block is made to oscillate using the combination, then the time period of the block is

$$
\begin{aligned}
& \text { A. } T=t_{1}+t_{2} \\
& \text { B. } T^{2}=t_{1}^{2}+t_{2}^{2} \\
& \text { C. } T^{-1}=t_{1}^{-1}+t_{2}^{-1} \\
& \text { D. } T^{-2}=t_{1}^{-2}+t_{2}^{-2}
\end{aligned}
$$

Answer: B

D Watch Video Solution
16. In a photoelectric experiment the relation between applied potential difference between
cathode and anode V and the photoelectric current cathode and anode V and the photoelectric current I and was found to be shown in graph below. If planck's constant $h=6.6 \times 10^{-34} \mathrm{Js}$, the frequency of incident radiation would be nearly (in s^{-1})

A. $0.436 \times 10^{18} \mathrm{~Hz}$
B. $0.436 \times 10^{17} \mathrm{~Hz}$
C. $0.775 \times 10^{16} \mathrm{~Hz}$
D. $0.775 \times 10^{15} \mathrm{~Hz}$

Answer: C

D Watch Video Solution

17. A liquid drop having surface energy E is spread into 512 droplets of same size. The final surface energy of the droplets is
A. 2 E
B. 4 E
C. 8 E
D. 12E

Answer: C

D Watch Video Solution

18. A vessel completely filled with water has holes ' A ' and ' B ' at depths ' h ' and ' $3 h$ ' from the top respectively. Hole ' A ' is a square of side ' L '
and ' B ' is circle of radius ' r '. The water flowing out per second from both the holes is same.

Then 'L' is equal to

$$
\begin{aligned}
& \text { A. } r^{\frac{1}{2}}(\pi)^{\frac{1}{2}}(3)^{\frac{1}{2}} \\
& \text { B. } r(\pi)^{\frac{1}{4}}(3)^{\frac{1}{4}} \\
& \text { C. } r(\pi)^{\frac{1}{2}}(3)^{\frac{1}{4}} \\
& \text { D. } r^{\frac{1}{2}}(\pi)^{\frac{1}{3}}(3)^{\frac{1}{2}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

19. A thin prism of angle 15° made of glass of refractive index $\mu_{1}=1.5$ is combined with another prism of glass of refractive index $\mu_{2}=1.75$. The combination of the prisms produced dispersion without deviation. The angle of the second prism should be
A. 5°
B. 7°
C. $\frac{10^{\circ}}{3}$
D. 1.2°

Answer: C

- Watch Video Solution

20. The outpout Y of the logic circuit shown in
figure is best represented as

A. $\bar{A}+\bar{B} . \bar{C}$
B. $\bar{A}+\bar{B} . C$
c. $\bar{A}+B . \bar{C}$
D. $\bar{A} \cdot B+\bar{C}$

Answer: D

D Watch Video Solution

21. A uniform thin hemispherical shell is kept at rest and in equilibrium on an inclined plane of angle of inclination $\theta=30^{\circ}$ as shown in figure. If the surface of the inclined plane is sufficiently rough to prevent sliding then the
angle α made by the plane of hemisphere with inclined plane is :

- Watch Video Solution

22. A thin biconvex lens of refractive index $3 / 2$
is placed on a horizontal plane mirror as
shown in Figure. The space between the lens
and the mirror is then fille with water or refractive index $4 / 3$. It is found that when a point object is placed 15 cm above the lens on its principal axis, the object coincides with its own image. On representing with another liquid, the object and the image again coincide at a distance 25 cm from the lens. Calculate the refractive index of the liquid.

D Watch Video Solution

23. In young's double-slit experiment, both the slits produce equal intensities on a screen. A 100\% transparent thin film of refractive index $\mu=1.5$ is kept in front of one of the slits, due to which the intensity at the point O on the screen becomes 75% of its initial value. If the wavelength of monochromatic light is 720 nm ,
then what is the minimum thickness (in nm) of
the film?

D Watch Video Solution

24. When the forwward bias voltage of a diode
is changed from 0.6 V to 0.7 V the current changes from 5 mA to 15 mA . Then its forward

- Watch Video Solution

25. Two sonometer wires A and B are fixed on a sonometer. The ratio of their lengths, diameters, densities and tensions are given below:
$\frac{L_{A}}{L_{B}}=\frac{36}{35}, \frac{d_{A}}{d_{B}}=\frac{4}{1}, \frac{T_{A}}{T_{B}}=\frac{8}{1}, \frac{\rho_{A}}{\rho_{B}}=\frac{1}{2}$
If the higher frequency among the two wires is

360 Hz , then what is the best freqency (in Hz)
observed when the two wires are sounded together?

