©゙’ doubtnut

India's Number 1 Education App

PHYSICS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 44

Physics

1. In a hypothetical atom, if transition from
$n=4$ to $n=3$ produces visible light then the
possible transition to obtain infrared radiation is:
A. $n=5$ to $n=3$
B. $\mathrm{n}=4$ to $\mathrm{n}=2$
C. $n=3$ to $n=1$
D. $n=5$ to $n=4$

Answer: D
(Watch Video Solution
2. Two particles, of masses M and $2 M$, moving as shown, with speeds of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$, collide elastically at the origin.After the collision, they move along the indicated directions with speeds v_{1} and v_{2}, respectively.The values of v_{1} and v_{2} are nearly :

> A. $6.5 m s^{-1}$ and $3.2 m s^{-1}$
> B. $3.2 m s^{-1}$ and $12.6 m s^{-1}$
> C. $13.02 m s^{-1}$ and $19.7 m s^{-1}$

D. $3.2 m s^{-1}$ and $6.3 m s^{1}$

Answer: C

D Watch Video Solution

3. A particle of mass m is released from a height H on a smooth curved surface which ends into a vertical loop of radius R, as shown.

Choose the correct alernative(s) if $H=2 R$.

A. the particle reaches the top of the loop
with zero velocity
B. the particle reaches the top of the loop
with a non-zero velocity
C. the particle breaks off at a height $h=r$ from base
D. the particle breaks off at a height

$$
r<h<2 r
$$

Answer: D

D Watch Video Solution

4. A very small sphere having a charge q, uniformly distributed throughout its volume,
is placed at the vertex of a cube of side a. The
electric flux through the cube is

> A. $\frac{q}{\varepsilon_{0}}$
> B. $\frac{q}{3 \varepsilon_{0}}$
> C. $\frac{q}{6 \varepsilon_{0}}$
> D. $\frac{q}{8 \varepsilon_{0}}$

Answer: D

D Watch Video Solution

5. In the circuit shows in fig $E=15 \mathrm{~V}$,
$R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=2 \Omega$, and $L=1.5 H$.
The currents flowing through R_{1}, R_{2}, and R_{3} are i_{1}, i_{2}, and i_{3}, respectively.

Immediately after connecting switch S,

$$
\begin{aligned}
& \text { A. } i_{1}=0 A \text { and } \frac{d i_{3}}{d t}=0 A s^{-1} \\
& \text { B. } i_{1}=0 A \text { and } \frac{d i_{3}}{d t} \neq 0 A s^{-1}
\end{aligned}
$$

C. $i_{3}=0 A$, and rate at which magnetic energy stored is not zero
D. None of these

Answer: B

D Watch Video Solution

6. A non-conducting ring of radius $0.5 m$ carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$ distributed non-uniformly on its circumference producing an electric field E everywhere is
space. The value of the integral
$\int_{l=\infty}^{l=0}-E . d I(l=0$ being centre of the ring $)$ in volt is
A. +2
B. -1
C. -2
D. Zero

Answer: A

- Watch Video Solution

7. If gravitational field due to uniform thin hemispherical shell at point P is I, then the magnitude of gravitational field at Q is (Mass of hemispherical shell is M, radius is R)

A. $\frac{G M}{2 R^{2}}-I$
B. $\frac{G M}{2 R^{2}}+I$
c. $\frac{G M}{4 R}-I$
D. $2 I-\frac{G M}{2 R^{2}}$

Answer: A

- Watch Video Solution

8. Three discs, A, B and C having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and6m respectively are coated with carbon black on their outer surfaces. The wavelengths
corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and 500 nm , respectively. The power radiated by them are Q_{A}, Q_{B} and Q_{C} respectively
(a) Q_{A} is maximum (b) Q_{B} is maximum (c) Q_{C}
is maximum (d) $Q_{A}=Q_{B}=Q_{C}$
A. Q_{A} is maximum
B. Q_{B} is maximum
C. Q_{C} is maximum

$$
\text { D. } Q_{A}=Q_{B}=Q_{C}
$$

9. A current - carrying wire is placed in the grooves of an insulating semicircular - disc of radius R as shown. The current enters at point

A and leaves from point B. Determine the
magnetic field at point D.

A. $\frac{\mu_{0} l}{8 \pi R \sqrt{3}}$
B. $\frac{\mu_{0} l}{4 \pi R \sqrt{3}}$
C. $\frac{\sqrt{3} \mu_{0} l}{4 \pi R}$
D. none of these

Answer: B

D Watch Video Solution

10. A particle is projected at time $t=0$ from a
point P on the ground with a speed v_{0}, at an
angle of 45° to the horizontal. The angular momentum of the particle about P at time $\mathrm{t}=$ v_{0} / g is
A. $0.25 m v_{0}^{3} / g$
B. $0.35 m v_{0}^{3} / g$

C. $0.50 m v_{0}^{3} / g$

D. $0.60 m v_{0}^{3} / g$

Answer: B

- Watch Video Solution

11. Which, among the following, is a correct statement?
A. binding energy of a nucleus is always negative
B. binding energy of a nucleus may be positive
C. higher value of binding energy per nucleon means the nucleus is more unustable
D. higher value of binding energy per nucleon means the nucleus is more stable

Answer: D

12. Light of wavelength $4000 \AA$ is allowed to fall
on a metal surface having work function 2 eV .
The maximum velocity of the emitted electrons is

$$
\left(h=6.6 \times 10^{-34} J s\right)
$$

A. $1.35 \times 10^{5} \mathrm{~ms}^{-1}$
B. $2.7 \times 10^{5} \mathrm{~ms}^{-1}$
C. $6.2 \times 10^{5} \mathrm{~ms}^{-1}$
D. $8.1 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

13. The work done is increasing the size of a soap film from $10 \mathrm{~cm} \times 6 \mathrm{~cm}$ to $10 \mathrm{~cm} \times 11$ cm is 3×10^{-4} joule. The surface tension of the film is
A. $1.5 \times 10^{-2} \mathrm{Nm}^{-1}$
B. $3.0 \times 10^{-2} \mathrm{Nm}^{-1}$
C. $6.0 \times 10^{-2} \mathrm{Nm}^{-1}$
D. $11.0 \times 10^{-2} \mathrm{Nm}^{-1}$

Answer: B

D Watch Video Solution

14. The diagram shows a spherical surface which separates two media of refractive index,
μ_{1} and μ_{2}. Respectively. Now, a point object is placed on the principal axis as shown in the
figure. Then

A. Real image will form if $\mu_{1}>\mu_{2}$ and for all values of u
B. Real image for some values of u if

$$
\mu_{1}>\mu_{2}
$$

C. Virtual image will form if $\mu_{1}>\mu_{2}$
D. Virtual image will form if $\mu_{1}<\mu_{2}$

Answer: C

D Watch Video Solution

15. A uniform rod $A B$ of length I and mass m is
free to rotate about point A. The rod is
released from rest in the horizontal position.

Given that the moment of inertia of the rod about A is $\frac{m l^{2}}{3}$, the initial angular
acceleration of the rod will be:-

A. $\frac{2 g}{3 l}$
B. $\frac{g(l)}{2}$
C. $\frac{3}{2} g l$
D. $\frac{3 g}{2 l}$

Answer: D
16. In the following circuit, a voltmeter V is connected across a lamp L. What change would occure in voltmeter reading if the resistance R is reduced in value?

A. Increases

B. Decreases

C. Remains same
D. None of these

Answer: A

D Watch Video Solution

17. Three rods of equal of length are joined to
from an equilateral triangle $A B C . D$ is the midpoint of $A B$. The coefficient of linear expansion is α_{1} for AB and α_{2} for $A C$ and $B C$
. If the distance $D C$ remains constant for small changes in temperature,

D Watch Video Solution

18. Dimensions of permeability are

A. $\left[A^{-2} M^{1} L^{1} T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{0} T^{-1}\right]$
D. $\left[A^{-1} M L T^{-2}\right]$

- Watch Video Solution

19. In the arrangement shown in Fig., slits S_{1} and S_{4} are having a variable separation Z. Point

O on the screen is at the common perpendicular bisector of $S_{1} S_{2}$ and $S_{3} S_{4}$.

The minimum value of Z for which the intensity at O is zero is
A. $\frac{\lambda D}{d}$
B. $\frac{2 \lambda D}{d}$
C. $\frac{\lambda D}{2 d}$
D. $\frac{\lambda D}{3 d}$

Answer: A

D Watch Video Solution

20. A star is going away from the earth. An
observer on the earth will see the wavelength
of light coming from the star:
A. (a) $2.5 \times 10^{6} m s^{-1}$
B. (b) $2 \times 10^{6} \mathrm{~ms}^{-1}$
C. (c) $1.5 \times 10^{6} m s^{-1}$
D. (d) $0.5 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution
21. A wire of length L and three identical cell of negligible internal resistance are connected in series. Due to the current, the temperature of
wire is raised by ΔT in a time t . A number N of similar cells is now connected in series with a wire of the same material and cross section but of length 2 L . The temperature of wire is raised by the same amount ΔT in the same time t. The value of N is

D Watch Video Solution

22. A boy weighing 50 kg eats bananas. The energy constant of banana is 100 cal , if this
energy is used to lift the body from ground, then the height through which it is lifted is

D Watch Video Solution

23. A galvanometer of resistance 50Ω is connected to a battery of 8 V along with a resistance of 3950Ω in series. A full scale deflection of 30 divisions is obtained in the galvanometer. In order to reduce this deflection to 15 divisions, the resistance in series should be Ω.

Watch Video Solution

24. One - fourth length of a uniform rod is placed on a rough horizontal surface and it starts rotating about the edge as soon as we release it. The rod starts slipping on the edge when it has turned through an angle θ. If the coefficient of friction between rod and surface is μ, and it satisfies the relation $x \tan \theta=4 \mu$, then what is the value of x ?
$\left[\right.$ Take $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$

- Watch Video Solution

25. Two particles P_{1} and P_{2} are performing

SHM along the same line about the same
mean position, initial they are at their extreme position. If the time period of each particle is 12 sec and the difference of their amplitude is 12 cm then find the minimum time after which the separation between the particle becomes 6 cm .

D Watch Video Solution

