©゙" doubtnut

India's Number 1 Education App

PHYSICS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 83

Physics

1. A 100 W sodium lamp radiates energy
uniformly in all directions. The lamp is located
at the centre of a large sphere that absorbs all
the sodium light which is incident on it. The wavelength of the sodium light is 589 nm . The number of photons delivered per second to the sphere is
A. 2.11
B. 1.22
C. 0.5
D. 3.21

Answer: A

2. A soap bubble has radius R and thickness
$d(\ll R)$ as shown. It colapses into a spherical drop. The ratio of excess pressure in the drop to the excess pressure inside the bubble is

A. $\left(\frac{R}{3 d}\right)^{\frac{1}{3}}$
B. $\left(\frac{R}{6 d}\right)^{\frac{1}{3}}$
C. $\left(\frac{R}{24 d}\right)^{\frac{1}{3}}$
D. None of these

Answer: C

D Watch Video Solution

3. A hollow cylinder has a charge q coulomb within it. If ϕ is the electric flux in units of volt-
metre associated with the curved surface B,
then the flux linked with the plane surface A in
units of volt-metre will be

A. $\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)$
B. $\frac{q}{2 \varepsilon_{0}}$
C. $\frac{\phi}{3}$
D. $\frac{q}{\varepsilon_{0}}-\phi$

Answer: A

D Watch Video Solution

4. Every atom makes one free electron in copper. If 1.1 ampere current is flowing in the wire of copper having 1 mm diameter, then the drift velocity (approx.) will be (Density of copper $=9 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic weight = 63)
A. $0.1 \mathrm{~mm} \mathrm{~s}^{-1}$
B. $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$
C. $0.3 \mathrm{~mm} \mathrm{~s}^{-1}$
D. $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$

Answer: A

D Watch Video Solution
5. Two balls of masses 2 g and 6 g are moving
with kinetic energy in the ratio of $3: 1$. What is
the ratio of their linear momentum ?
A. $1: 1$
B. 2:1
C. 1:2
D. None of these

Answer: A

- Watch Video Solution

6. A cylinder of radius R made of a material of
thermal conductivity K_{1} is surrounded by a
cylindrical shell of inner radius R and outer
radius 2 R made of a material of thermal
conductivity K_{2}. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is

$$
\begin{aligned}
& \text { A. } \frac{K_{1} K_{2}}{K_{1}+K_{2}} \\
& \text { B. } K_{1}+K_{2} \\
& \text { C. } \frac{K_{1}+3 K_{2}}{4} \\
& \text { D. } \frac{3 K_{1}+K_{2}}{4}
\end{aligned}
$$

D Watch Video Solution

7. The density of a substance at $0^{\circ} C$ is $10 \mathrm{~g} /$
and at $100^{\circ} \mathrm{C}$, its density is $9.7 \mathrm{~g} / \mathrm{cc}$. The
coefficient of linear expansion of the substance is
A. $10^{-4} .{ }^{\circ} C^{-1}$
B. $10^{-2} .{ }^{\circ} C^{-1}$
C. $10^{-3} \cdot{ }^{\circ} C^{-1}$

D. $10^{2} .{ }^{\circ} C^{-1}$

Answer: A

- Watch Video Solution

8. In a resonance column first and second resonance are obtained at depths 22.7 cm and
70.2 cm . The third resonance will be obtained at a depth of
A. 117.7 cm
B. 92.9 cm
C. 115.5 cm
D. 113.5 cm

Answer: A

D Watch Video Solution

9. In YDSE apparatus shown in figure wavlength of light used is λ. The screen is moved away form the source with a constant speed v. Initial distance between screen and
plane of slits was D.

At a point P on the screen the order of fringe
will
A. $\frac{2 D}{V}$
B. $\frac{2 D}{3 V}$
C. $\frac{3 D}{2 V}$
D. $\frac{3 D}{V}$

Answer: B

D Watch Video Solution

10. A rod $A B$ of length L and mass M is free to move on a frictionless horizontal surface. It is moving with a velocity v , as shown in figure.

End B of $\operatorname{rod} A B$ strikes the end of the wall.

Assuming elastic impact, the angular velocity
of the $\operatorname{rod} A B$, just after impact, is

A. $\frac{v}{2 L}$
B. $\frac{3 v}{L}$
C. $\frac{3 v}{2 L}$
D. $\frac{v}{L}$

Answer: B
11. A body starts from rest and is uniformly accelerated for $30 s$. The distance travelled in
the first $10 s$ is x_{1} next $10 s$ is x_{2} and the last
$10 s$ is x_{3}. Then $x_{1}: x_{2}: x_{3}$ is
A. $1: 2: 3$
B. 1:2:5
C. $1: 3: 5$
D. $1: 3: 9$

Answer: C

- Watch Video Solution

12. In a transformer the number of primary turns is four times that of the secondary turns. Its primary is connected to an AC source of voltage V . Then
A. current through its secondary is about
four times that of the current through
its primary.
B. voltage across its secondary is about
four times that of the voltage across its
primary.
C. voltage across its secondary is about
two times that of the voltage across the
primary.
D. voltage across its secondary is about
$\frac{1}{2 \sqrt{2}}$ times of the voltage across its
primary.
13. If the earth be one-half of its present
distance from the sun, how many days will be in one year?
A. 183
B. 730
C. 129
D. 365

- Watch Video Solution

14. One plano-convex and one plano-concave
lens of same radius of curvature 'R' but of different materials are joined side by side as
shown in the figure.If the refractive index of the material of 1 is μ_{1} and that of 2 is μ_{2}, then
the focal length of the combination is :

R
A.

$$
\overline{2-\left(\mu_{1}-\mu_{2}\right)}
$$

B. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
c. $\frac{2 R}{\mu_{1}-\mu_{2}}$
D. $\frac{R}{\mu_{1}-\mu_{2}}$

Answer: D

D Watch Video Solution

15. Which two of the following five physical paramenters have the same dimensions?
(i) Energy density
(ii) Refractive index
(iii) Dielectric constant
(iv) Young's modulus
(v) Magnetic field
A. (B) and (D)
B. (C) and (E)
C. (A) and (D)
D. (A) and (E)

Answer: C

- Watch Video Solution

16. A ball whose kinetic energy is E, is projected at an angle of $45(\circ)$ to the horizontal . The kinetic energy of the ball at the highest point of its flight will be
A. E
B. $\frac{E}{2}$
C. $\frac{E}{\sqrt{2}}$
D. 0

Answer: B
17. A potential difference of 20 kV is applied across an X-ray tube. The minimum
wavelength of X -rays generated (in angstrom)
is :-
A. $0.84 \AA$
B. $0.31 \AA$
C. $0.62 \AA$
D. $0.96 \AA$

Answer: C

D Watch Video Solution

18. Define the activity of a radio nuclide. Write
its S.I. unit. Give a plot of the activity of a radioactive species versus time.

How long will a radioactive isotope, whose half
life is T years, take for its activity to reduce to
$1 / 8$ th of its initial value?
A. T
B. $T / 2$
C. $T / 3$
D. 3 T

Answer: D

D Watch Video Solution

19. Find the magnetic induction at point O, if
the current carrying wire is in the shape
shown in the figure.

A. $\frac{\mu_{0} l}{5 \pi r}\left[\frac{3 \pi}{2}+1\right]$
B. $\frac{\mu_{0} l}{3 \pi r}\left[\frac{3 \pi}{4}+1\right]$
\odot
C. $\frac{\mu_{0} l}{2 \pi r}\left[\frac{3 \pi}{4}+1\right]$
\odot
D. $\frac{\mu_{0} l}{4 \pi r}\left[\frac{3 \pi}{2}+1\right]$
\odot

Answer: D

D Watch Video Solution

20. The frequency of sonometer wire is f. The frequency becomes $f / 2$ when the mass producing the tension is completely immersed in water and on immersing the mass in a certain liquid, frequency becomes $f / 3$. The relative density of the liquid is
A. $\frac{4}{3}$
B. $\frac{16}{9}$
C. $\frac{15}{12}$
D. $\frac{32}{27}$

Answer: D

D Watch Video Solution

21. A ring of mass $(2 \pi) \mathrm{kg}$ and of radius 0.25 m
is making 300 rpm about an axis through its
perpendicular to its plane. The tension in newton developed in ring is approximately a)

50 b) 100 c) 175 d) 247

D Watch Video Solution
22. Block B starts from rest and accelerates as
$a_{B}=12 t m s^{-2}$. Simultaneously another end of the string is pulled with constant acceleration a_{0}. If at $\mathrm{t}=3 \mathrm{~s}$, block A comes to rest than then the value of $a_{0}\left(\right.$ in $\left.m s^{-2}\right)$ is equal to

Watch Video Solution

23. If the displacement (x) and velocity (v) of a particle executing SHM are related through the expression $3 v^{2}=30-x^{2}$. If the time period of the particle is $T=\pi \sqrt{n}$, then what is the value of n ?

- Watch Video Solution

24. A Carnot engine has efficiency $\frac{1}{5}$. Efficiency becomes $\frac{1}{3}$ when the temperature of sink is
decreased by 50 K . Temperature of the sink (in
K) is

D Watch Video Solution
25. In optical communication system operating
at 1200 nm , only 2% of the source frequency is
available for TV t ransmission having a bandwidth of 5 MHz . the number of TV channels that can be transmitted is

