©゙" doubtnut

India's Number 1 Education App

PHYSICS

NTA MOCK TESTS ENGLISH

NTA JEE MOCK TEST 99

Physics

1. The coefficient of linear expansion of an
inhomogeneous rod changes linearly from α_{1}
to α_{2} from one end to the other end of the
rod. The effective coefficient of linear expansion of rod is :

$$
\begin{aligned}
& \text { A. } \alpha_{1}+\alpha_{2} \\
& \text { B. } \frac{\alpha_{1}+\alpha_{2}}{2} \\
& \text { C. } \sqrt{\alpha_{1} \alpha_{2}} \\
& \text { D. } \alpha_{1}-\alpha_{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. A monochromatic plane wave of speed c and

 wavelength λ is diffracted at a small aperture .The diagram illustrates successive wavefront.

After what time will some portion of the wavefront $X Y$ reach P ?

A. $\frac{3 \lambda}{2 c}$
B. $\frac{2 \lambda}{c}$
C. $\frac{3 \lambda}{c}$
D. $\frac{4 \lambda}{c}$

Answer: C

D Watch Video Solution

3. The $x-z$ plane separates two media A and B of refractive indices $\mu_{1}=1.5$ and $\mu_{2}=2$. A ray of light travels from A to B . Its directions in
the two media are given by unit vectors
$u_{1}=a \hat{i}+b \hat{j}$ and $u_{2}=c \hat{i}+a \hat{j}$. Then

$$
\begin{aligned}
& \text { A. } \frac{a}{c}=\frac{4}{3} \\
& \text { B. } \frac{a}{c}=\frac{3}{4} \\
& \text { C. } \frac{b}{d}=\frac{4}{3} \\
& \text { D. } \frac{b}{d}=\frac{3}{4}
\end{aligned}
$$

Answer: A
4. A particle executing SHM has a maximum speed of $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ and a maximum acceleration of $1.0 \mathrm{~m} \mathrm{~s}^{-2}$. The angular frequency of oscillation is
A. $2 r a d s^{-1}$
B. $0.5 r a d s^{-1}$
C. $2 \pi r a d s^{-1}$
D. $0.5 \pi r a d s^{-1}$

Answer: A
5. A small sphere of mass m is suspended by a thread of length I. It is raised upto the height of suspension with thread fully stretched and released. Then, the maximum tension in
thread will be

$$
\text { A. } g \sqrt{1+3 \cos ^{2} \theta}
$$

B. $g \sqrt{1+\cos ^{2} \theta}$
C. $g \sqrt{1+\sin ^{2} \theta}$
D. $g \sqrt{1+3 \sin ^{2} \theta}$

Answer: A

D Watch Video Solution

6. The surface of a metal is illuminated with
the light of 400nm. The kinetic energy of the ejected photoelectrons was found to be $1.68 e V$. The work function of the metal is
$(h c=1240 e V n m)$
A. 1.51 eV
B. 1. 42 eV

C. 3.0 eV

D. 1.68 eV

Answer: B

D Watch Video Solution

7. The cylindrical tube of a spray pump has a cross-section of $8 \mathrm{~cm}^{2}$ one end of which has 40
fine holes each of area If the liquid flows inside
the tube with a speed of $0.15 \mathrm{mmin}^{-1}$, the
speed with which the liquid is ejected through
the holes is $\mathrm{x} m / \mathrm{s}$. Find x .

A. $50 m s^{-1}$
B. $5 m s^{-1}$
C. $0.05 m s^{-1}$
D. $0.5 m s^{-1}$

Answer: B
(Watch Video Solution
8. There are two waves having wavelength 100 cm and 101 cm and same velocity $303 \mathrm{~ms}^{-1}$.

The beat frequency is
A. 4 Hz
B. 1 Hz
C. 3 Hz
D. 2 Hz

Answer: C

D Watch Video Solution
9. An artificial satellite is made to move in circular orbits of different radii around the earth. The variations of its K.E., P.E. and total energy (E) in different orbits is shown in the figure by different curves. Then for the satellites

A. A represents the K.E., B \& C the P.E. and C
the total energy
B. A represents the P.E., B \& C the K.E. and C
the total energy
C. A represents the P.E., B the total energy and C the K.E.

D. A represents the total energy, B the K.E.

and C the P.E.

Answer: C

10. The figure shows two isotherms at temperatures T_{1} and T_{2}. A gas is taken from one isotherm to another isotherm through different processes. Then change in internal energy ΔU has a relation -

A. $\Delta U_{a b}>\Delta U_{a c}>\Delta U_{a d}>\Delta U_{a e}$

$$
\text { B. } \Delta U_{a b}=\Delta U_{a c}>\Delta U_{a d}>\Delta U_{a e}
$$

C. $\Delta U_{a b}=\Delta U_{a c}=\Delta U_{a d}=\Delta U_{a e}$

$$
\text { D. } \Delta U_{a b}<\Delta U_{a c}<\Delta U_{a d}<\Delta U_{a e}
$$

Answer: C

D Watch Video Solution

11. A uniform solid cylindrical roller of mass ' m ' is being pulled on a horizontal surface with force F parallel to the surface and applied at
its centre. If the acceleration of the cylinder is '
a^{\prime} and it is rolling without slipping, then the
value of ' F ' is : -
A. $\frac{3}{2} m a$
B. 2 ma
C. $\frac{5}{3} m a$
D. ma

Answer: A

D Watch Video Solution
12. Two spherical black bodies of radii r_{1} and
r_{2} and with surface temperatures T_{1} and T_{2}
respectively radius the same power. Then, $\frac{r_{1}}{r_{2}}$
r_{2}
must be equal to
A. $\frac{T_{1}}{T_{2}}$
B. $\frac{T_{1}}{T_{2}}$
C. $\left(\frac{T_{1}}{T_{2}}\right)^{2}$
D. $\left(\frac{T_{2}}{T_{1}}\right)^{2}$

Answer: C
13. A particle moves in space along the path
$z=a x^{3}+b y^{2}$ in such a way that $\frac{d x}{d t}=c=\frac{d y}{d t} \quad$ where $\quad a, b \quad$ and $\quad c \quad$ are constants. The acceleration of the particle is
A. $\left(6 a c^{2} x+2 b c^{2}\right) \hat{k}$
B. $\left(2 a x^{2}+6 b y^{2}\right) \hat{k}$
C. $\left(4 b c^{2} x+3 a c^{2}\right) \hat{k}$
D. $\left(b c^{2} x+2 b y\right) \hat{k}$
14. The radius of the Earth is 6400 km . If the
height of an antenna is 500 m , then its range
is
A. 800 km
B. 100 km
C. 80 km
D. 10 km

- Watch Video Solution

15. The deceleration exerienced by a moving motor blat, after its engine is cut-off is given by $d v / d t=-k v^{3}$, where k is constant. If v_{0} is the magnitude of the velocity at cut-off, the magnitude of the velocity at a time t after the cut-off is.
A. $\frac{v_{0}}{2 k t v_{0}^{2}}$
B. $\frac{v_{0}}{1+2 k t v_{0}^{2}}$

$$
\begin{aligned}
& \text { C. } \frac{v_{0}}{\sqrt{1-2 k v_{0}^{2}}} \\
& \text { D. } \frac{v_{0}}{\sqrt{1+2 k t v_{0}^{2}}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. The relationship between the force F and position x of body is as shown in figure. The work done in displacing the body in displacing
the body from ($x=1 m$ to $x=5 m$) will be

A. 30 J
B. 15 J
C. 25 J
D. 20 J
17. Let $\lambda_{\alpha} \lambda_{\beta}$ and λ_{α} denote the wavelength of
the X -rays of the $K_{\alpha} K_{\beta}$ and L_{α} lines in the characteristic X-rays for a metal

$$
\begin{aligned}
& \text { A. } \frac{1}{\lambda_{\beta}}=\frac{1}{\lambda_{\alpha}}+\frac{1}{\lambda^{\prime}{ }_{\alpha}} \\
& \text { B. } \frac{1}{\lambda_{\alpha}^{\prime}}=\frac{1}{\lambda_{\alpha}}+\frac{1}{\lambda_{\beta}} \\
& \text { C. } \frac{1}{\lambda_{\alpha}}=\frac{1}{\lambda_{\beta}}+\frac{1}{\lambda^{\prime}{ }_{\alpha}} \\
& \text { D. } \lambda_{\alpha}=\lambda_{\beta}+\lambda^{\prime}{ }_{\alpha}
\end{aligned}
$$

18. The values of two resistors are
$R_{1}=(6 \pm 0.3) k \Omega$ and $R_{2}=(10 \pm 0.2) k \Omega$.
The percentage error in the equivalent resistance when they are connected in parallel is
A. 2%
B. ${ }^{`} 3.125 \%$
C. 7%

D. 10.125%

Answer: D

D Watch Video Solution

19. If the slab is brought inside the parallel
plate capacitor with a speed v. Then the
variation of with respect to v is = Rate change
of capacitance) -

Answer: B

(Watch Video Solution

20. An arc of a circular loop of radius R is kept in the horizontal plane and a constant
magnetic field B is applied in the vertical direction as shown in the figure. If the arc carries current I then find the force on the arc

A. IRB
B. $\frac{I R B}{4}$
C. $\sqrt{2} I R B$

D. $\frac{I R B}{\sqrt{2}}$

Answer: C

D Watch Video Solution

21. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 m / s$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is

Watch Video Solution

22. Two wires that are made up of two different materials whose specific resistances are in the ratio $2: 3$ length $3: 4$ and area $4: 5$ The ratio of their resistance is -

D Watch Video Solution

23. If the rms value of the voltage of the waveform shown below is $\sqrt{\frac{p}{q}} V$, then what is the value of $(p+q)$? (p and q are the
smallest positive integers.)

- Watch Video Solution

24. In a meter-bridge experiment with a resistance R_{1} in left gap and a resistance X in
a right gap. null point is obtained at 40 cm from the left emf. With a resistance R_{2} in the left gap, the null point is obtainned at 50 cm
from left hand. Find the position of the left gap is containing R_{1} and R_{2} (i) in series and (ii) in parallel.

- Watch Video Solution

25. Cobalt-57 is radioactive, emitting β particles.The half-life for this is 270 days. If 100 mg of this is kept in an open container, then what mass (in mg) of Cobalt-57 will remain after 540 days ?
\square
