©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

MATRICES

Others

1. Let A be a 2×2 matrix with real entries. Let I
be the 2×2 identity matrix. Denote by $\operatorname{tr}(\mathrm{A})$,
the sum of diagonal entries of A. Assume that
$A^{2}=I$. Statement 1: If $A \neq I$ and $A \neq-I$,
then $\operatorname{det} A=-1$.Statement 2 : If $A \neq I$ and
$A \neq-I$, then $\operatorname{tr}(A) \neq 0$.

- View Text Solution

2. Let A be a square matrix all of whose entries
are integers. Then which one of the following
is true? (1) If $\operatorname{det} A= \pm 1$, then A^{1} exists but
all its entries are not necessarily integers (2) If $\operatorname{det} A \neq \pm 1$, then A^{1} exists and all its entries
are non-integers (3) If $\operatorname{det} A= \pm 1$, then A^{1}
exists and all its entries are integers (4) If $\operatorname{det} A= \pm 1$, then A^{1} need not exist

D Watch Video Solution

3. Let A be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where $।$ is 2×2 identity matrix. Define $\operatorname{Tr}(\mathrm{A})=$ sum of diagonal elements of A and $|A|=$ determinant of matrix
A. Statement-1: $\quad \operatorname{Tr}(A)=0 \quad$ Statement-2:
$|A|=1$ (1) Statement-1 is true, Statement-2 is
true; Statement-2 is not the correct
explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

D View Text Solution
4. The number of $3^{\prime} 3$ non-singular matrices,
with four entries as 1 and all other entries as

0 , is (1) 5
(2) 6
(3) at least

7
(4) less than 4

- Watch Video Solution

5. consider the system of linear equations
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$,
$3 x_{1}+5 x_{2}+2 x_{3}=1$
the system has

D Watch Video Solution
6. Let A and B be two symmetric matrices of order 3. Statement-1 : $A(B A)$ and ($A B$)A are symmetric matrices. Statement-2 : $A B$ is symmetric matrix if matrix multiplication of A with B is commutative. Statement-1 is true,

Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is true;

Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2
is false. Statement-1 is false, Statement-2 is true.

Diew Text Solution

7. Let P and Q be 3×3 matrices with $P \neq Q$.

$$
\text { If } \quad P^{3}=Q^{3} a n d P^{2} Q=Q^{2} P, \quad \text { then }
$$

determinant of $\left(P^{2}+Q^{2}\right)$ is equal to (1) 2(2)
1 (3) 0 (4) 1

- Watch Video Solution

