©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG GUIDE

COORDINATION COMPOUNDS

Illustration

1. When a coordination compound $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$
is mixed with $\mathrm{AgNO}_{3}, 2$ moles of AgCl are
precipitated per mole of the compound. Write structural formula of the complex.

- View Text Solution

2. Write the coordination number and oxidation state of platinum in the complex $\left[P t(\mathrm{en}){ }_{2} \mathrm{Cl}_{2}\right]$.

D View Text Solution

3. Write the IUPAC name of
$\left.\operatorname{PtCl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] C I$.
4. Using IUPAC norms write the formulae for the Pentaamminenitrito-Ocobalt(III) chloride

D View Text Solution

5. Using IUPAC norms write the formulae for the Potassium tetracyanidonickelate(II)
6. Using IUPAC norms write the formulae for

Tris(ethane-1,2,diamine)chromium(III) chloride

D View Text Solution

7. Using IUPAC norms write the formulae for Potassium tetrahydroxozincate(II)

D View Text Solution

8. Draw one of the geometrical isomers of the complex $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$ which is optically
active.

D View Text Solution

9. Indicate the types of isomerism exhibited by the following complexes :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$

D View Text Solution

10. Indicate the types of isomerism exhibited by the following complexes:
$\left[C o(\mathrm{en})_{3}\right] C l_{3}(\mathrm{en}=$ ethylene diamine $)$
11. Indicate the types of isomerism exhibited by
the following complexes:
$\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

D View Text Solution

Neet Cafe Werner S Theory Some Important Terms And Nomenclature Of Coordination Compounds

1. The fraction of chlorine precipitated by AgNO_{3}

 solution from $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ isA. $1 / 2$
B. $2 / 3$
C. $1 / 3$
D. $1 / 4$

Answer: B

- View Text Solution

2. The complex ion which has no 'd' electrons in the central metal atom is
A. $\left[\mathrm{MnO}_{4}\right]^{-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

- View Text Solution

3. The EAN of nickel in $\mathrm{Ni}(\mathrm{CO})_{4}$ is

A. 36
B. 38
C. 28
D. 54

Answer: A

- View Text Solution

4. Which will not give the usual test for iron?
A. $\mathrm{K}_{2} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
C. $K_{3}\left[(C N)_{6}\right]$
D. $\mathrm{Fe} e_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: C

- View Text Solution

5. Which one is the most likely structure of $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$, if $1 / 3$ of total chlorine of the
compound is precipitated by adding AgNO_{3} to its aqueous solution?
A. $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Answer: C

- View Text Solution

6. The spin magnetic moment of cobalt in $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$ is
A. $\sqrt{3} B M$
B. $\sqrt{8} B M$
C. $\sqrt{15} B M$
D. $\sqrt{24} B M$

Answer: C

- View Text Solution

7. Which of the following statements is incorrect?
A. In $K_{3}\left[F e(C N)_{6}\right]$, the ligand has satisfied only the secondary valency of ferric ion B. In $K_{3}\left[F e(C N)_{6}\right]$, the ligand has satisfied both primary and secondary valencies of ferric ion.
C. In $K_{4}\left[F e(C N)_{6}\right]$, the ligand has satisfied
both primary and secondary valencies of ferrous ion.

D. In $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$, the ligand has satisfied

 only the secondary valency of copper.Answer: A

- View Text Solution

8. On treatment of 100 mL of 0.1 M solution of the complex $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ with excess of AgNO_{3}, 4.305 g of AgCl was obtained. The complex is
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

D View Text Solution

9. The IUPAC name for $\left[P t(p y)_{4}\right]\left[P t C l_{4}\right]$ is

A. tetrakis
(pyridine)
tetrachloridoplatinate(II)

platinum(II)
B. tetrapyridine tetrachloridodiplatinum(IV)
C. tetrachloridotetrapyridine diplatinum(II)
D. tetrakis
(pyridine)
platinum(IV)

tetrachloridoplatinum

Answer: A

D View Text Solution

10. Given the molecular formula of the hexacoordinate complexes
$\mathrm{CoCl}_{3}, 6 \mathrm{NH}_{3}(\mathrm{~B}) \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}(\mathrm{C}) \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
. If the number of coordinated NH_{3} molecules in
A, B and C respectively are 6,5 and 4 , the primary
valency in (A), (B) and (C) are
A. $3,3,3$
B. $0,1,2$
C. $3,2,1$
D. $6,5,4$

Answer: A

D View Text Solution
11. The coordination number and the oxidation state of element in the complex
$\left[E(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{NO}_{2} \quad$ (where \quad (en) is
ethylenediamine) are, respectively
A. 6 and 3
B. 6 and 2
C. 4 and 2
D. 4 and 3

Answer: A
12. The most stable complex among the following is
A. $K_{3}\left[A u\left(C_{2} O_{4}\right)_{3}\right]$
B. $\left[P t(\mathrm{en})_{2}\right] C l_{2}$
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
D. $K_{2}[N i(E D T A)]$

Answer: D

- View Text Solution

13. The oxidation number of Pt in

$$
\left[P t\left(C_{2} H_{4}\right) \mathrm{Cl}_{3}\right]^{-} \text {is }
$$

A. +1
B. +2
C. +3
D. +4

Answer: B

D View Text Solution
14. How many EDTA (ethylenediamminetetraacetic acid) molecules are required to make an octahedral complex with a Ca^{2+} ion?
A. Six
B. Three
C. One
D. Two

Answer: C

D View Text Solution
15. A complex of a certain metal ion has a magnetic moment of 4.90 BM , another complex of the same metal in the same oxidation state
has a zero magnetic moment. The central metal ion could be
A. Cr (III)
B. Mn (II)
C. Fe (III)
D. Fe (II)

Answer: D
16. The most acidic aqua ion is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- View Text Solution

17. In the coordination compound, $K_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$

 , the oxidation state of nickel isA. -1
B. 0
C. +1
D. +2

Answer: B

- View Text Solution

18. A solution containing 2.675 g of $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
(molar mass $=267.5 \mathrm{~g} \mathrm{~mol}^{-1}$) is passed through
a cation exchanger. The chloride ions obtained in
solution were treated with excess of AgNO_{3} to
give 4.78 g of $\mathrm{AgCl}\left(\right.$ molar mass $\left.=143.5 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
The formula of the complex is (At. Mass of $\mathrm{Ag}=$ 108u)
A. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{2}\right.$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
D. $\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

Answer: B

D View Text Solution

Neet Cafe Importance And Applications Of Coordination Compounds

1. Coordination compounds have great

importance in biological systems. In this context
which of the following statements is incorrect?
A. Chlorophylls are green pigments in plants
and contain calcium.
B. Haemoglobin is the red pigment of blood and contains iron.
C. Cyanocobalamine is B_{12} and contains cobalt.
D. Carboxypeptidase-A is an enzyme and contains zinc.

Answer: A

- View Text Solution

2. A reagent used for identifying nickel ion is
A. potassium ferrocyanide
B. phenolphthalein
C. dimethyl glyoxime
D. EDTA

Answer: C

- View Text Solution

3. In the process of extraction of gold,

$$
\begin{array}{lcc}
\text { Roasted } & \text { gold } & \text { ore } \\
\mathrm{CN}_{a q}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{O_{2}}[X]+\left[\mathrm{OH}^{-}\right]
\end{array}
$$

$[X]+Z n \rightarrow[Y]+A u$
Identify the complexes $[\mathrm{X}]$ and $[\mathrm{Y}]$.
A. $\left[A u(C N)_{2}\right]^{-},\left[Z n(C N)_{4}\right]^{2-}$
B. $\left[A u(C N)_{4}\right]^{3-},\left[Z n(C N)_{4}\right]^{2-}$
C. $\left[A u(C N)_{2}\right]^{2-},\left[Z n(C N)_{6}\right]^{4-}$
D. $\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{4-},\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$

Answer: A

- View Text Solution

4. Chlorophyll is a coordination compound of
A. iron
B. magnesium
C. manganese
D. chromium

Answer: B

- View Text Solution

5. The chelating ligand used to remove excess of
copper and iron in chelate therapy is
A. D-penicillamine

B. oxalate ion

C. EDTA

D. ethylenediamine

Answer: A

- View Text Solution

6. Wilkinson's catalyst is used for
A. epoxidation

B. hydrogenation

C. polymerisation
D. substitution

Answer: B

- View Text Solution

7. Excess of copper in toxic proportions in plants/animals can be removed by chelating with
A. EDTA
B. ethane-1,2-diamine
C. oxalate ion

D. D-penicillamine.

Answer: D

D View Text Solution

Check Your Neet Vitals

1. According to Werner's theory, the primary valencies of the central metal atom
A. are satisfied by negative ions or neutral molecules
B. are satisfied by negative ions
C. are equal to its coordination number
D. decide the geometry of the complex

Answer: A

D View Text Solution

2. When one mole of each of the following complex salts is treated with excess of AgNO_{3}, which of them gives maximum amount of AgCl ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $N a_{2}\left[P t C l_{6}\right]$

Answer: D

D View Text Solution

3.

Among
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{3+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{Cl})_{6}\right]\right.$
species, the hybridisation state of the Fe atom are, respectively
A. $d^{2} s p^{3} d^{2}, s p^{3} d^{2}$
B. $s p^{3} d^{2}, d^{2} s p^{3}, d^{2} s p^{3}$
C. $s p^{3} d^{2}, d^{2} s p^{3}, s p^{3} d^{2}$
D. none of these

Answer: B

D View Text Solution

4. Which of the following ions is paramagnetic?
A. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Fe}(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: C

- View Text Solution

5. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$, (At. no. of $\mathrm{Cr}=24$) has a magnetic moment of 3.83 B.M. The correct distribution of 3d electrons in the central metal of the complex is
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{x z}^{1}$
B. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z^{2}}^{1}$
C. $3 d_{\left(x^{2}-y^{2}\right)}^{1}, 3 d_{z^{2}}^{1}, 3 d_{x z}^{1}$
D. $3 d_{x y}^{1}, 3 d_{\left(x^{2}-y^{2}\right)}^{1}, 3 d_{y z}^{1}$

Answer: B

D View Text Solution

6. The geometry of $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[N i\left(P P h_{3}\right)_{2} C l_{2}\right]$ are
A. both square planar
B. tetrahedral and square planar respectively
C. both tetrahedral
D. square planar and tetrahedral respectively.

Answer: C

- View Text Solution

7. IUPAC name of $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right), \mathrm{CI}\left(\mathrm{NO}_{2}\right)\right]$ is
A. platinum diamminechloronitrite
B. chloronitrito- N -ammineplatinum (II)
C. diamminechloridonitrito-N-platinate (II)
D. diamminechloronitrito-N-platinate (II)

Answer: A

- View Text Solution

8. Which of the following will form an inner octahedral complex?
A. d^{4} low spin
B. d^{8} high spin
C. d^{6} low spin

D. all of these

Answer: C

D View Text Solution

9. Which is not true about the coordination compound $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] C I$?
A. It exhibits geometrical isomerism.
B. It exhibits optical isomerism.
C. It exhibits ionization isomerism.
D. It is an octahedral complex.

Answer: B

D View Text Solution

10. A complex compound of Co^{3+} with molecular formula $\mathrm{CoCl}_{x . y} \mathrm{NH}_{3}$ gives a total of 3 ions on dissolving it in water. To satisfy both primary and secondary valencies in this complex, the number of $C l^{-}$ions required is
A. one
B. four
C. three

D. zero

Answer: B

- View Text Solution

11. Match the entries of Column I with

 appropriate entries of Column II and select the
correct option

Column I
P. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
Q. cis- $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
R. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$
S. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$

Column II

1. Optical isomerism
2. Ionisation isomerism
3. Coordination isomerism
4. Geometrical isomerism
5. The complex which involves outer orbital hybridisation of central metal ion is

$$
\text { A. }\left[Z n\left(N H_{3}\right)_{6}\right]^{2+}
$$

B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[V\left(N H_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: C

D View Text Solution

13. Effective atomic number (EAN) of Fe in brown ring complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$ is
A. 36
B. 37
C. 38
D. 39

Answer: B

D View Text Solution
14. Which of the following statements is correct about the given complex?

A. It is a molecular complex
B. It gives four ions in the aqueous solution
C. Primary valency of cobalt is six.
D. All are correct.

Answer: C

D View Text Solution

15. Which of these statements about $\left[\mathrm{Co}(C N)_{6}\right]^{3-}$ is true?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons
and will be in a high-spin configuration.
B. $\left[C o(C N)_{6}\right]^{3-}$ has no unpaired electrons
and will be in a high-spin configuration.
C. $\left[\mathrm{Co}(C N)_{6}\right]^{3-}$ has no unpaired electrons and will be in a low -spin configuration.
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a low -spin configuration.

Answer: C

D View Text Solution

16. The hybridisation involved in complex

$$
\left.\left[N i(C N)_{4}\right]^{2-} \text { is (At. No. } \mathrm{Ni}=28\right)
$$

A. $s p^{3}$
B. $d^{2} s p^{2}$
C. $d^{2} s p^{3}$
D. $d s p^{2}$

Answer: D

D View Text Solution

17. The name of complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is
A. hexacyanitoferrate(III) ion

B. tricyanoferrate(III) ion

C. hexacyanidoferrate(III) ion
D. hexacyanoiron(III). ion.

Answer: C

- View Text Solution

18. The sum of coordination number and oxidation number of the metal M in the complex
$\left[M(\mathrm{en})_{2}\left(C_{2} O_{4}\right)\right] C I \quad$ (where en is
ethylenediamine) is
A. 6
B. 7
C. 8
D. 9

Answer: D

- View Text Solution

19. Number of possible isomers for the complex
$\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ will be (en $=$ ethylenediamine)
A. 1
B. 3
C. 4
D. 2

Answer: B

- View Text Solution

20. Which of the following has longest C-O bond length? (Free C-O bond length in CO is 1.128 Å.)
A. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
B. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
C. $\mathrm{Ni}(\mathrm{CO})_{4}$
D. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$

Answer: A

D View Text Solution

21. The correct increasing order of trans-effect of the following species is

$$
\begin{aligned}
& \text { A. } \mathrm{NH}_{4}>\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-} \\
& \text {B. } \mathrm{CN}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}>\mathrm{Br}^{-}>\mathrm{NH}_{3} \\
& \text { C. } \mathrm{Br}^{-}>\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{C}_{6} H_{5}^{-} \\
& \text {D. } \mathrm{CN} N^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}>\mathrm{NH}_{3}
\end{aligned}
$$

Answer: B

D View Text Solution

22. Jahn-Teller effect is not observed in high spin
complexes of
A. d^{7}
B. d^{8}
C. d^{4}
D. d^{9}
23. An example of a sigma bonded organometallic compound is
A. Grignard reagent
B. ferrocene
C. cobaltocene
D. ruthenocene

Answer: A
24. The correct order of the stoichiometries of

AgCl formed when AgNO_{3} in excess is treated
$\mathrm{CoCI}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
respectively is
A. $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
B. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
C. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
D. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$

- View Text Solution

25. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is
A.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
$$

B.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}
$$

c.

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

D.

$$
\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

Answer: D

- View Text Solution

26. Pick out the correct statement with respect to $\left[M n(C N)_{6}\right]^{3-}$
A. It is $s p^{3} d^{2}$ hybridised and tetrahedral.
B. It is $d^{2} s p^{3}$ hybridised and octahedral.
C. It is $d s p^{2}$ hybridised and square planar.

D. It is $s p^{3} d^{2}$ hybridised and octahedral.

Answer: B

D View Text Solution

27. The type of isomerism shown by the complex $\left[\mathrm{CoCl}(\mathrm{en})_{2}\right]$ is
A. geometrical isomerism
B. coordination isomerism
C. ionization isomerism
D. linkage isomerism.

Answer: A

D View Text Solution

28. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
A. square planar geometry and diamagnetic
B. tetrahedral geometry and diamagnetic
C. square planar geometry and paramagnetic
D. tetrahedral geometry and paramagnetic.
29. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A. tetranuclear
B. mononuclear
C. trinuclear
D. dinuclear

Answer: B

- View Text Solution

30. What is the correct electronic configuration of the central atom in $K_{4}\left[F e(C N)_{6}\right]$ based on crystal field theory?
A. $e^{4} t_{2}^{2}$
B. $t_{2 g}^{4} e_{g}^{2}$
C. $t_{2 g}^{6} e_{g}^{0}$
D. $e^{3} t_{2}^{3}$

Answer: C

