©゙" doubtnut

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

PARABOLA

Others

1. The equation of a tangent to the parabola
$y^{2}=8 x$ is $y=x+2$. The point on this line
from which the other tangent to the parabola
is perpendicular to the given tangent is

D Watch Video Solution

2. If a parabola has the origin as its focus and
the line $x=2$ as the directrix, then the coordinates of the vertex of the parabola are

D Watch Video Solution

3. If two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles, then the locus of P is $(a) 2 \mathrm{x}+1=0(b) \mathrm{x}=-1(c) 2 \mathrm{x}-1=0(d) \mathrm{x}=1^{`}$

- Watch Video Solution

4. Statement 1: An equation of a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $\quad 2 x^{2}+y^{2}=4 i s y=2 x+2 \sqrt{3}$

$$
\begin{aligned}
& \text { Statement } \quad 2: \quad \text { If } \quad \text { the line } \\
& y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0) \text { is a common }
\end{aligned}
$$

tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$, then m satisfies $m^{4}+2 m^{2}=24$. (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

Statement 1 is true, statement 2 is false

D Watch Video Solution

5. The equation to the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is

D View Text Solution

6. Let O be the vertex and Q be any point on
the parabola, $x^{2}=8 y$. It the point P divides
the line segment $O Q$ internally in the ratio 1 :
3, then the locus of P is : (1) $x^{2}=y(2) y^{2}=x$
(3) $y^{2}=2 x$ (4) $x^{2}=2 y$
7. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on : (1) a circle. (2) an ellipse which is not a circle. (3) a hyperbola. (4) a parabola.
