

### **PHYSICS**

### **BOOKS - NEET PREVIOUS YEAR**

# अर्द्धचालक इलेक्ट्रॉनिकी ; पदार्थ युक्तियाँ तथा सरल परिपथ

Special Format वाले Objective प्रश्न टॉपिक 1 धातुओं चालकों तथा अर्द्धचालकों का वर्गीकरण 1. किसी निर्वात् नली में इलेक्ट्रॉन के प्रवाह के लिए निर्वात् की आवश्यकता होती है, क्योंकि

A. कैथोड से इलेक्ट्रॉन उत्सर्जित नहीं होते हैं

B. निर्वात, शेष गैस अणुओं या परमाणुओं से इलेक्ट्रॉन को निकालने में सहायता करता है

C. निर्वात् में कैथोड का कार्य-फलन कम हो जाता है

D. इलेक्ट्रॉन, वायु के अणुओं से अपने पथ में टक्कर

करने पर अपनी ऊर्जा खो सकते हैं।

#### Answer: D

- 2. अर्द्धचालक युक्तियाँ (डायोड, ट्रांजिस्टर), निर्वात् नली से छोटी होती हैं, क्योंकि: 1) वे सिलिकॉन जर्मेनियम क्रिस्टल से बनी होती हैं 2) उनका घनत्व अधिक होता है 3) अर्द्धचालकों के बड़े क्रिस्टलों का प्रतिरोध अधिक होता है 4) आवेश का प्रवाह ठोस क्रिस्टल के अन्दर होता है
  - A. वे सिलिकॉन जर्मेनियम क्रिस्टल से बनी होती हैं
  - B. उनका घनत्व अधिक होता है
  - C. अर्द्धचालकों के बड़े क्रिस्टलों का प्रतिरोध अधिक

होता है

D. आवेश का प्रवाह ठोस क्रिस्टल के अन्दर होता है

### **Answer: D**



वीडियो उत्तर देखें

3. यदि किसी ठोस में दृश्य प्रकाश संचरित होता है तथा उसका गलनांक बिन्दु कम होता है, तो ठोस में बन्ध होगा

A. धात्विक बन्ध

B. आयनिक बन्ध

C. सहसंयोजक बन्ध

D. वाण्डर वाल्स बन्ध

### **Answer: D**



वीडियो उत्तर देखें

4. एक अर्द्धचालक में बन्ध होता है

A. धात्विक बन्ध

B. आयनिक बन्ध

C. वाण्डर वाल्स बन्ध

D. सहसंयोजी-बन्ध

### **Answer: D**



# वीडियो उत्तर देखें

## 5. चालकता की SI इकाई है.

A. 
$$(\Omega m)^{-1}$$

B. 
$$\Omega m^{-1}$$

$$\mathsf{C.}\,Sm^{-1}$$

### **Answer: C**

6. सही विकल्प है

A. 
$$\sigma > \sigma > c$$

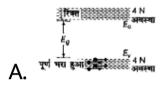
B. 
$$\sigma > \sigma > \sigma$$

C. 
$$\sigma$$
  $> \sigma$   $> \sigma$ 

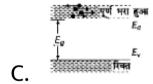
D. 
$$\sigma > \sigma > \sigma$$
 (यहाँ,  $\sigma$  चालकता है)

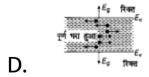
### **Answer: B**




7. किसी क्रिस्टल में, परमाणुओं के मध्य दूरी 2 Å से 3 Å है। इस दूरी पर अन्तरापरमाण्विक क्रिया के कारण ऊर्जा स्तरों में निम्न परिवर्तन होता है


- A. बाह्यतम इलेक्ट्रॉनों में
- B. आन्तरिक इलेक्ट्रॉनों में
- C. विकल्प (a) तथा (b) दोनों
- D. इनमें से कोई नहीं


### **Answer: A**

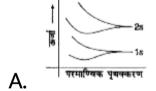


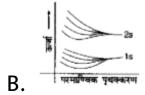

# 8. किसी अर्द्धचालक के 0 केल्विन पर निम्न चित्रों में से ऊर्जा बैण्ड की संरचना है



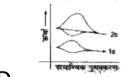








### **Answer: A**




## वीडियो उत्तर देखें

9. जब बहुत अधिक अणु एक साथ ठोस के रूप में परिवर्तित होते हैं, तब 1s और 2s उपकोशों के ऊर्जा स्तरों में निम्न में से किस आरेख द्वारा सबसे सही दशा में दर्शाया गया है?









U

### **Answer: C**



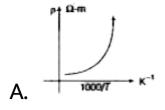
वीडियो उत्तर देखें

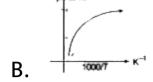
10. अर्द्धचालक का वर्जित ऊर्जा अन्तराल लगभग कितना होता है ?

A. 1 eV

B. 6 eV

C. 0 eV


D. 3 eV


### **Answer: D**



वीडियो उत्तर देखें

11. निम्न में से कौन-सा ग्राफ अर्द्धचालक के लिए प्रतिरोधकता (p) तथा तापमान में सम्बन्ध को दर्शाता है?





### **Answer: D**



12. चालकों में कोटरों के कारण कोई धारा नहीं बहती है, क्योंकि

- A. उनका ऊर्जा अन्तराल अधिक होता है
- B. संयोजी और चालन बैण्ड के अतिव्यापन के कारण

ऊर्जा अन्तराल नहीं होता है

- C. वे पूर्ण रूप से इलेक्ट्रॉन गैस से भरे होते हैं
- D. उनमें कोई संयोजी बैण्ड नहीं होता है

### Answer: B



13. किसी ठोस में उच्चतम ऊर्जा बैण्ड, इलेक्ट्रॉनों से आंशिक रूप में भरा है, तो ठोस निम्न प्रकार का होगा । 1) कुचालक 2) अर्द्धचालक 3) चालक 4) इनमें से कोई नहीं

- A. कुचालक
- B. अर्द्धचालक
- C. चालक
- D. इनमें से कोई नहीं

### **Answer: C**



**14.** यदि सोडियम प्रकाश ( $\lambda = 580$  नैनोमी) के एक फोटॉन की ऊर्जा, अर्द्धचालक के ऊर्जा अन्तराल के बराबर है, तो इलेक्ट्रॉन-कोटर युग्म बनाने के लिए न्यूनतम ऊर्जा की आवश्यकता होगी। 1) 1.5 eV 2) 3.2 eV 3) 2.1 eV 4) 4.1 eV

A. 1.5 eV

B. 3.2 eV

C. 2.1 eV

D. 4.1 eV

### **Answer: C**

# Special Format वाले Objective प्रश्न टॉपिक 2 नैज और बाह्य अर्द्धचालक

1. ताप बढ़ने से, Si अथवा Ge के कुछ सहसंयोजी बन्ध टूट जाते हैं तथा एक बन्ध में एक रिक्ति का निर्माण होता है, तो कोटर या रिक्ति के प्रभावी आवेश का मान होता है 1) धनात्मक 2) ऋणात्मक 3) शून्य 4) कभी धनात्मक तथा कभी ऋणात्मक

A. धनात्मक

B. ऋणात्मक

C. शून्य

D. कभी धनात्मक तथा कभी ऋणात्मक

### **Answer: A**



वीडियो उत्तर देखें

2. किसी अर्द्धचालक के सिलिकॉन और जर्मेनियम का शुद्ध रूप होता है

A. नैज अर्द्धचालक,  $n_e=n_h=n_i$ 

B. बाह्य अर्द्धचालक,  $n_e=n_h=n_i$ 

C. अपमिश्रित अर्द्धचालक

D. उपरोक्त में से कोई नहीं (यहाँ,  $n_e$  = मुक्त इलेक्ट्रॉनों

की संख्या,  $n_h$  = मुक्त कोटरों की संख्या तथा  $n_i$  =

नैज वाहक सान्द्रता)

### Answer: A

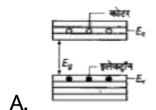


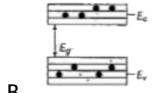
**3.** यदि किसी नैज अर्द्धचालक के लिए कुल धारा  $I_i$  इलेक्ट्रॉन की धारा  $I_e$  तथा कोटर की धारा  $I_h$  हो, तो निम्न में से सत्य सम्बन्ध होगा

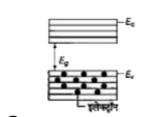
A. 
$$I_{ heta}=rac{I_{h}}{I}$$

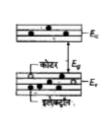
B. 
$$rac{I_e}{I_h}=I$$

$$\mathsf{C}.\,I_{e}-I_{h}=I$$


$$\mathsf{D}.\,I_e+I_h=I$$


### **Answer: D**





# 4. किसी अर्द्धचालक के लिए सोर ऊर्जा बेंड की संरचना

होगी (T=0 केल्विन ताप पर )









D.

### **Answer: D**



## वीडियो उत्तर देखें

5. किसी साम्य स्थिति में, इलेक्ट्रॉन-कोटर युग्म के उत्पन्न होने की दर होगी

- A. उनकी पुनः संयोजन दर से अधिक
- B. उनकी पुनः संयोजन दर से कम
- C. उनकी पुनः संयोजन दर के बराबर
- D. साम्य स्थिति में उत्पन्न दर शून्य होगी

### **Answer: C**



## वीडियो उत्तर देखें

6. नैज अर्द्धचालकों में कमरे के ताप पर, इलेक्ट्रॉनों और कोटरों की संख्या होती है

A. समान

B. शून्य

C. असमान

D. अनन्त

### **Answer: A**



- 7. एक शुद्ध अर्द्धचालक, एक चालक की भाँति व्यवहार करता है
  - A. कमरे के ताप पर
  - B. कम तापमान पर
  - C. अधिक तापमान पर
  - D. विकल्प (b) तथा (c) दोनों

### **Answer: C**



# वीडियो उत्तर देखें

## 8. परमशून्य ताप पर Si कार्य करेगा---

A. अधातु

B. धातु

C. कुचालक

D. उपरोक्त में से कोई नहीं

### **Answer: C**

9. Si और Cu को 300 K ताप पर, ठण्डा करने में इसकी प्रतिरोधकता होगी

A. Si की बढ़ेगी एवं Cu की कम होगी

B. Cu की बढ़ेगी एवं Si की कम होगी

C. Cu एवं Si दोनों की कम होगी

D. Cu एवं Si दोनों की बढ़ेगी

### **Answer: B**



वीडियो उत्तर देखें

10. Si का ऊर्जा अन्तराल 1.14eV एवं जिंक सल्फाइड (ZnS) का ऊर्जा अन्तराल 3.6eV होता है। उपरोक्त तथ्य से हम निष्कर्ष निकालते हैं कि

A. Si पारदर्शी है एवं zns अपारदर्शी है

B. Zns पारदर्शी है एवं Si अपारदर्शी है

C. Zns एवं S दोनों पारदर्शी हैं

D. Zns एवं Si दोनों अपारदर्शी हैं

**Answer: B** 

## 11. अपमिश्रण (मादन) होता है

- A. नैज अर्द्धचालक में अशुद्धि मिलाने की क्रिया
- B. अर्द्धचालक को उसके खनिज से निकालने की क्रिया
- C. अर्द्धचालक को पिघलाने की क्रिया
- D. अर्द्धचालक को शुद्ध करने की क्रिया

### **Answer: A**



## 12. नैज अर्द्धचालकों में मादन निम्न कारण से होती है

A. आवेश वाहकों को उदासीन करने के लिए

B. बहुसंख्यक आवेश वाहकों की सान्द्रता बढ़ाने के लिए

C. क्रिस्टल को निस्तारण से पूर्व विद्युत उदासीन बनाने

के लिए

D. क्रिस्टल के शुद्धिकरण के लिए

### **Answer: B**



13. एक n-प्रकार एवं p-प्रकार के Si की प्राप्ति के लिए शुद्ध Si की क्रमशः निम्न अशुद्धियों से मादन करेगें।

- A. आर्सेनिक एवं फॉस्फोरस
- B. इण्डियम एवं ऐलुमिनियम
- C. फॉस्फोरस एवं इण्डियम
- D. ऐलुमिनियम एवं बोरॉन

### **Answer: C**



14. n-प्रकार के अर्द्धचालकों के सन्दर्भ में कौन-सा कथन सही है? 1) दाता ऊर्जा स्तर चालक बैण्ड के ठीक नीचे स्थित होता है। 2) दाता ऊर्जा स्तर संयोजी बैण्ड के ठीक ऊपर स्थित होता है। 3) दाता ऊर्जा स्तर वर्जित ऊर्जा अन्तराल (संयोजी बैण्ड एवं चालक बैण्ड) के मध्य में स्थित होता है। 4) उपरोक्त में से कोई नहीं

A. दाता ऊर्जा स्तर चालक बैण्ड के ठीक नीचे स्थित होता है।

B. दाता ऊर्जा स्तर संयोजी बैण्ड के ठीक ऊपर स्थित होता है। C. दाता ऊर्जा स्तर वर्जित ऊर्जा अन्तराल (संयोजी बैण्ड

एवं चालक बैण्ड) के मध्य में स्थित होता है।

D. उपरोक्त में से कोई नहीं

### Answer: A



15. किसी मादन के कारण चालन बैण्ड में उपस्थित इलेक्ट्रॉनों की संख्या में अपद्रव्यी अर्द्धचालक का ताप बढ़ाने पर निम्न रूप से परिवर्तन होगा

- A. इलेक्ट्रॉनों की संख्या तेजी से बढ़ेगी
- B. इलेक्ट्रॉनों की संख्या तेजी से घटेगी
- C. इलेक्ट्रॉनों की संख्या में कोई परिवर्तन नहीं होगा
- D. इलेक्ट्रॉनों की संख्या कमरे के ताप से अधिक होते ही

शून्य हो जाएगी

### **Answer: C**



# 16. p-प्रकार का अर्द्धचालक बनाने के लिए जर्मेनियम में निम्न

मादन का उपयोग करेगें

- A. गैलियम
- B. बोरॉन
- C. ऐलुमिनियम
- D. ऊपर के सभी

### **Answer: D**



17. p-प्रकार के अर्द्धचालक में बहुसंख्यक आवेश वाहक एवं

अल्पांश आवेश वाहक क्रमश: होते हैं

- A. प्रोटॉन व इलेक्ट्रॉन
- B. इलेक्ट्रॉन व प्रोटॉन
- C. इलेक्ट्रॉन व कोटर
- D. कोटर व इलेक्ट्रॉन

### **Answer: D**



- 18. निम्न में से सही कथन को चुनिए।
  - A. n-प्रकार का जर्मेनियम ऋणावेशित एवं p-प्रकार का जर्मेनियम धनांवेशित होता है।
  - B. n-प्रकार एवं p-प्रकार के दोनों ही जर्मेनियम उदासीन होते हैं।
  - C. n-प्रकार का जर्मेनियम धनावेशित एवं p-प्रकार का जर्मेनियम ऋणावेशित होता है।
  - D. n-प्रकार एवं p-प्रकार दोनों ही जर्मेनियम ऋणावेशित होते हैं।

# **Answer: B**



# वीडियो उत्तर देखें

19. यदि चालन बैण्ड में इलेक्ट्रॉनों का संख्या घनत्व  $n_e$  तथा संयोजी बैण्ड में कोटरों का संख्या घनत्व  $n_h$  है, तब कमरे के ताप पर बाह्य अर्द्धचालक के लिए निम्न में से कौन-सा सम्बन्ध सही है? (जहाँ,  $n_i$  = नैज युग्मकों का संख्या घनत्व)

A. 
$$rac{n_e}{n_h}=n_i^2$$

B. 
$$rac{n_h}{n_e}=n_i^2$$

C. 
$$n_e n_h = n_i^2$$

D. 
$$n_e + n_h = n_i^2$$

## **Answer: C**



वीडियो उत्तर देखें

20. कार्बन की प्रतिरोधकता जर्मेनियम (Ge) एवं सिलिकॉन (Si) से अधिक होती है। इनके ऊर्जा अन्तरालों के लिए सही क्रम होगा

A. C>Ge>Si

B. C > Si > Ge

$$\mathsf{C}.\,Si > GE > C$$

$$\mathsf{D}.\,C=Si=Ge$$

## **Answer: B**



वीडियो उत्तर देखें

**21.** मान लीजिए किसी शुद्ध Si क्रिस्टल में  $5 \times 10^{28}$  परमाणु  $^{-3}$  है। इसे पंचसंयोजी As से 1ppm सान्द्रता पर अपिमश्रित किया जाता है। यदि नैज जिनत इलेक्ट्रॉनों की संख्या  $n_i = 1.5 \times 10^{16}$  है, तब अपिमश्रण में कोटरों की संख्या होगी

A. 
$$4.5 imes 10^9$$
  $^{-3}$ 

B. 
$$\sim 10^{16}$$
  $^{-3}$ 

C. 
$$2.25 imes 10^{32}$$
  $^{-3}$ 

D. 
$$5 imes10^2$$
  $^{-3}$ 

# **Answer: A**



वीडियो उत्तर देखें

22. किसी नैज अर्द्धचालक को फॉस्फोरस से मादित करने पर उसके आवेश वाहकों की संख्या में सही सम्बन्ध होगा (  $n_e$  = इलेक्ट्रॉनों की संख्या,  $n_h$  = कोटरों की संख्या)

A.  $n_e > > n_h$ 

B.  $n_e < < n_h$ 

C.  $n_e \leq n_h$ 

D.  $n_e = n_h$ 

# **Answer: A**



वीडियो उत्तर देखें

**23.** किसी नैज अर्द्धचालक में  $v_d$  इलेक्ट्रॉन का अनुगमन वेग  $v_d$  इलेक्ट्रॉन का अनुगमन वेग  $v_d$  इलेक्ट्रॉनों की संख्या है, तो ताप बढ़ाने से निम्न परिवर्तन होगा

A.  $n_e$  का मान बढ़ेगा एवं  $v_d$  का मान घटेगा

B.  $n_e$  का मान घटेगा एवं  $v_d$  का मान बढ़ेगा

C.  $n_e$   $\,$  एवं  $\,v_d$  दोनों का मान बढ़ेगा

D.  $n_e$  एवं  $v_d$  दोनों का मान घटेगा

# Answer: A



24. किसी अपद्रव्यी अर्द्धचालक के लिए सत्य कथन है

A. चालन बैण्ड एवं संयोजन बैण्ड में अतिव्यापन होता है

B. चालन बैण्ड एवं संयोजन बैण्ड में 16eV से अधिक

का ऊर्जा अन्तराल होता है

C. चालन बैण्ड एवं संयोजन बैण्ड में ऊर्जा अन्तराल लगभग 1eV का होता है

D. चालन बैण्ड एवं संयोजन बैण्ड में ऊर्जा अन्तराल 100eV' या उससे अधिक का होता है

**Answer: C** 



25. ऊर्जा अन्तराल के बढ़ते क्रम में तीन नैज अर्द्धचालकों को रखा गया है। सही विकल्प होगा

A. 
$$Sn < Ge < Si$$

$$\operatorname{B.}Sn < Si < Ge$$

$$\mathsf{C.}\,Si < Ge < Sn$$

$$\mathsf{D.}\,Si < Sn < Ge$$

## **Answer: A**



26. जब किसी अर्द्धचालक की चालकता केवल सहसंयोजक

बन्धों के टूटने के कारण होती है, तब अर्द्धचालक कहलाता है

- A. दाता
- B. ग्राही
- C. नैज
- D. अपद्रव्यी

# **Answer: C**



# 27. Ge का कमरे के ताप पर वर्जित ऊर्जा अन्तराल होगा

- A. 1.1 eV
- B. 0.1 eV
- C. 0.67 eV
- D. 6.7 eV

## **Answer: C**



**28.** एक (Ge) जर्मेनियम क्रिस्टल नमूने में AI अशुद्धी के रूप में मिलाया गया है। ग्राही परमाणुओं का घनत्व  $\sim 10^{21}$  परमाणु  $^{-3}$  है। यदि शुद्ध अवस्था में इलेक्ट्रॉन-होल युग्म का घनत्व  $\sim 10^{19}$   $^{-3}$  हो, तो नमूने में इलेक्ट्रॉनों का घनत्व होगा

A. 
$$10^{17}$$
  $^{-3}$ 

B. 
$$10^{15}$$
  $^{-3}$ 

C. 
$$10^4$$
  $^{-3}$ 

D. 
$$10^2$$
  $^{-3}$ 

**Answer: A** 



29. इनमें से किसका प्रतिरोध ताप गुणांक ऋणात्मक होता है?

A. धातुओं का

B. कुचालकों का

C. अर्द्धचालकों का

D. ये सभी

# **Answer: C**



वीडियो उत्तर देखें

30. एक अर्द्धचालक में मुक्त इलेक्ट्रॉनों की संख्या तथा तापमान (T) में सम्बन्ध है

A.  $n \propto T^2$ 

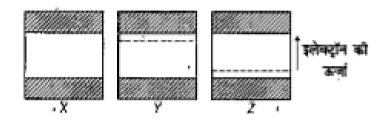
B.  $n \propto T$ 

C.  $n \propto \sqrt{T}$ 

D.  $n \propto T^{3/2}$ 

#### **Answer: D**




31. P तथा N प्रकार के बाह्य अर्धचालक पदार्थों में अशुद्धि परमाणुओ तथा शुद्ध अर्धचालक के परमाणुओं का अनुपात कितना होता है?

- **A.** 1
- $B. 10^{-1}$
- $c. 10^{-4}$
- D.  $10^{-7}$

## **Answer: D**



32. सिलिकॉन अर्द्धचालक के तीन नमनों के बैण्ड ऊर्जा आरेख को दर्शाया गया है। इससे निष्कर्ष प्राप्त होता है



A. X शुद्ध है, Y एवं Z क्रमशः त्रिसंयोजी एवं पंचसंयोजी अशुद्धि युक्त हैं

- B. शुद्ध है, Y एवं 7 में पंचसंयोजी अशुद्धि हैं।
- C. X में समान परिमाण में त्रिसंयोजी व पंचसंयोजी अशुद्धियाँ हैं और Y एवं शुद्ध हैं

D. X शुद्ध है,Y एवं Z क्रमशः पंचसंयोजी एवं त्रिसंयोजी

अशुद्धि युक्त हैं

### **Answer: D**



33. n-प्रकार के अर्द्धचालक के लिए सही कथन को चुनिए।

A. इलेक्ट्रॉन बहुसंख्यक आवेश वाहक एवं त्रिसंयोजक

अपमिश्रण होता है।

B. इलेक्ट्रॉन अल्प संख्यक आवेश वाहक एवं

पंचसंयोजक अपमिश्रण होता है।

C. कोटर अल्पसंख्यक आवेश वाहक एवं पंचसंयोजक अपमिश्रण होता है।

D. कोटर बहुसंख्यक आवेश वाहक एवं त्रिसंयोजक अपमिश्रण होता है।

# **Answer: C**



34. n-प्रकार के सिलिकॉन अर्द्धचालक के लिए सही कथन को चुनिए।

A. इलेक्ट्रॉन बहुसंख्यक आवेश वाहक एवं त्रिसंयोजक अपमिश्रण होता है।

B. इलेक्ट्रॉन अल्पसंख्यक आवेश वाहक एवं पंचसंयोजक अपमिश्रण होता है।

C. कोटर अल्पसंख्यक आवेश वाहक एवं पंचसंयोजक अपमिश्रण होता है। D. कोटर बहुसंख्यक आवेश वाहक एवं त्रिसंयोजक

अपमिश्रण होता है।

## **Answer: C**



वीडियो उत्तर देखें

**35.** Si परमाणुओं की संख्या  $5 \times 10^{28}$  परमाणु प्रति  $^3$  है। इसको As के  $5 \times 10^{22}$  परमाणु प्रति मी और In के  $5 \times 10^{20}$  परमाणु प्रति  $^3$  से अपमिश्रित किया गया है। नमूने में इलेक्ट्रॉन और कोटरों (प्रति मी नमूने में) की संख्या क्रमशः होगी (दिया गया है  $n_i = 1.5 \times 10^{16}$ 

A.  $4.95 imes 10^{22},\, 4.54 imes 10^9$ 

B.  $4.54 \times 10^9$ ,  $4.54 \times 10^9$ 

 $\mathsf{C.}\ 4.54 \times 10^9, 4.95 \times 10^{22}$ 

D.  $4.95 imes 10^{22}, \, 4.95 imes 10^{22}$ 

# **Answer: A**



वीडियो उत्तर देखें

36. सिलिकॉन के एक नमूने को P-प्रकार का अर्द्धचालक बनाने के लिए प्रत्येक  $5 imes 10^7$  सिलिकॉन परमाणुओं में एक परमाणु इण्डियम का मिलाया जाता है। यदि 1 मीट  $^3$ 

आयतन में सिलिकॉन परमाणुओं की संख्या  $5 imes 10^{28}$  है तो

प्रति सेमी ग्राही आयनों की संख्या बताइए।

A. 
$$2.5 imes 10^{30}$$
 परमाणु  $^{-3}$ 

B. 
$$1.0 imes10^{13}$$
 परमाणु  $^{-3}$ 

C. 
$$1.0 imes10^{15}$$
 परमाणु  $^{-3}$ 

D. 
$$2.5 imes10^{-36}$$
 परमाणु  $^{-3}$ 

# **Answer: C**



**37.**  $27^{\circ}C$  पर शुद्ध सिलिकॉन में इलेक्ट्रॉनों एवं होलों के संख्या घनत्व बराबर हैं तथा इसका मान  $2.0 \times 10^{16} m^{-3}$  है। इण्डियम के साथ अपिमश्रण करने पर होल घनत्व  $4.5 \times 10^{22} m^{-3}$  बढ़ जाता है, मादित सिलिकॉन में इलेक्ट्रॉन घनत्व होगा-

A. 
$$10 imes 10^9$$
  $^{-3}$ 

B. 
$$8.89 imes 10^9$$
  $^{-3}$ 

C. 
$$11 imes 10^9$$
  $^{-3}$ 

D. 
$$16.78 imes 10^9$$
  $^{-3}$ 

# **Answer: B**

# Special Format वाले Objective प्रश्न टॉपिक 3 संधि और अर्द्धचालक डायोड

1. एक p-n सन्धि होती है

A. एक p एवं n अर्द्धचालक की चिपकाई हुई पट्टियाँ

B. एक p एवं n अर्द्धचालक की बोल्ट द्वारा कसी हुई

पट्टियाँ

C. एक p एवं । अर्द्धचालक की सटाकर रखी गई पट्टियाँ

D. समान अर्द्धचालक क्रिस्टल के एक ओर p एवं दूसरी

ओर -प्रकार की अपमिश्रित लेई

### **Answer: D**



वीडियो उत्तर देखें

2. विसरण के कारण, p.n सन्धि के दोनों फलकों पर (इलेक्ट्रॉन के विसरण के कारण) विकसित मुक्त आवेश क्षेत्र को कहते हैं

A. तनु क्षेत्र

- B. विसरण क्षेत्र
- C. अवक्षेप क्षेत्र
- D. आयनिक क्षेत्र

# **Answer: C**

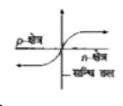


- 3. अवक्षेप क्षेत्र की मोटाई की कोटि होती है
  - A.  $\sim 10^{-7}$  मी
  - B.  $\sim 10^{-10}$  मी

$$C. \sim 10^{-9} H$$

D. 
$$\sim 10^{-3}$$
 मी

# **Answer: A**




वीडियो उत्तर देखें

4. साम्यावस्था में, एक p-n सन्धि में p-क्षेत्र एवं n-क्षेत्र के अर्द्धचालक फलकों के मध्य विभवान्तर का सही आरेख है









# **Answer: C**

В.



# 5. p एवं n-क्षेत्रों का विभवान्तर, जोकि इलेक्ट्रॉन विसरण को

रोकता है, कहलाता है

- A. विभव प्रवणता
- B. विभवान्तर
- C. रोधिका विभव
- D. ह्रासी विभव

### **Answer: C**



**6.** क्या p-n संधि बनाने के लिए हम p प्रकार के अर्धचालक की एक पट्टी को n प्रकार के अर्धचालक से भौतिक रूप से संयोजित कर p-n संधि प्राप्त सकते हैं?

A. हाँ

B. नहीं

C. यह n एवं p प्रकार के क्षेत्रों के आवेश सान्द्रता पर

निर्भर करता है

D. केवल जब एक p-प्रकार का अर्द्धचालक, एक n-

प्रकार के अर्द्धचालक साथ मिश्रित होता है

# **Answer: B**

# 7. p-n सन्धि क्षेत्र में अवक्षय परत बनती है

- A. कोटर अनुगमन से
- B. आवेश वाहकों के विसरण से
- C. अशुद्धि आयनों के प्रवसन से
- D. इलेक्ट्रॉन के अनुगमन से

## **Answer: B**



8. P-N सन्धि का रोधिका विभव निर्भर करता है : (i) अर्द्धचालक की प्रकृति पर, (ii) अशुद्धि की मात्रा पर, (iii) ताप पर। सही कथन है :

A. (i) तथा (ii)

B. केवल (ii)

C. (ii) तथा (ii)

D. (i), (ii) तथा (iii)

### **Answer: D**



9. अवक्षेप क्षेत्र का प्रतिरोध अधिक होता है, क्योंकि इसमें होता है

A. प्रबल विद्युत क्षेत्र

B. अत्यधिक संख्या में आवेश वाहक

C. इलेक्ट्रॉन

D. कोटर

**Answer: A** 



10. बिना बायस p-n सन्धि से , होल p- क्षेत्र में n- क्षेत्र की ओर विसरित होते है , क्योंकि :

A. n-क्षेत्र के मुक्त इलेक्ट्रॉन के आकर्षण से

B. विभव विभावान्तर के द्वारा सन्धि को पार कर देने से

C. क्षेत्र में कोटर सान्द्रता, क्षेत्र में कोटर सान्द्रता से

अधिक होने से

D. उपरोक्त सभी

## **Answer: C**



11. एक Si आधारीय p-n सन्धि में अवक्षेप क्षेत्र की मोटाई 1 माइक्रो मी एवं निरोधी विभवान्तर 0.6 वोल्ट है। ह्रासी क्षेत्र में , विद्युत क्षेत्र की तीव्रता होगी

A. 
$$0.6Vm^{-1}$$

B. 
$$6 imes10^{-4}Vm^{-1}$$

C. 
$$6 imes 10^5 Vm^{-1}$$

D. 
$$6 imes10^4 Vm^{-1}$$

#### **Answer: C**



# 12. एक डायोड है

A. सहसंयोजक क्रिस्टल का टुकड़ा

B. अर्द्धचालक का टुकड़ा, जिसके सिरों पर धात्विक सम्पर्क जुड़े होते हैं

C. एक p -nसन्धि जिसके सिरों पर धात्विक टुकड़ें जुड़े होते हैं

D. धातु का टुकड़ा जिस पर अर्द्धचालक का लेप किया हो

### **Answer: C**



# वीडियो उत्तर देखें

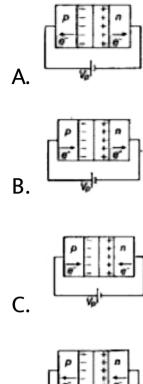
# 13. एक p-n सन्धि का प्रतीक चिन्ह एक तीर होता है।

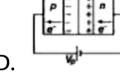


# तीर की दिशा निरूपित करती है

- A. कुछ नहीं यह केवल एक प्रतीक है
- B. इलेक्ट्रॉनों के प्रवाह की. दिशा को

C. विद्युत धारा की दिशा, जबकि डायोड अग्रदिशिक


बायस है


D. विद्युत क्षेत्र की दिशा

### **Answer: C**



14. p-n सन्धि के अग्रदिशिक बायसित होने पर आवेश वाहकों की सही गमन दिशा निम्न में से कौन-सा चित्र दर्शाता है?





### **Answer: D**



**15.** एक p-n सन्धि के अग्रदिशिक बायस में अनुप्रयुक्त वोल्टता  $\vee$  है। एवं निरोधी विभव  $V_0$  है, तब अग्रदिशिक बायस के अन्दर प्रभावी रोधिका की ऊँचाई होगी।

A. 
$$V-V_0$$

B. 
$$V_0 - V$$

$$C. V_0 + V$$

D. 
$$V_0$$

### **Answer: B**



16. अग्रदिशिक बायस में, p-n सन्धि डायोड से अग्र धारा बहती है, क्योंकि

- A. p-क्षेत्र में इलेक्ट्रॉन का अंतक्षेपण होता है
- B. क्षेत्र में कोटरों का अंतक्षेपण होता है
- C. विकल्प (a) तथा (b)दोनों
- D. बैटरी के ऋण टर्मिनल से धन टर्मिनल पर इलेक्ट्रॉन

जाने के कारण

### **Answer: C**



17. p-n सन्धि डायोड में,

A. पश्चदिशिक बायस में विद्युत प्रवाह मन्द होता है

B. पश्चदिशिक बायस में विद्युत प्रवाह मन्द होता है, परन्तु

धारा जो अग्रदिशिक बायस स्थिति में, बायस वोल्टेज

से स्वतन्त्र होता है

C. पश्चदिशिक बायस धारा अनुप्रयुक्त वोल्टता पर

अत्यधिक निर्भर करती है

D. अग्रदिशिक बायस धारा, पश्चदिशिक बायस धारा की

तुलना में बहुत कम होती है

### **Answer: A**



# वीडियो उत्तर देखें

18. किसी पश्चदिशिक बायसित p-n सन्धि डायोड में,

A. पश्चदिशिक धारा अनुप्रयुक्त वोल्टता पर अत्यधिक

निर्भर नहीं होती है

B. पश्चदिशिक धारा अनुप्रयुक्त वोल्टता के समानुपाती

होती है

C. पश्चदिशिक धारा प्रारम्भिक रूप में वोल्टता पर निर्भर

करती है, लेकिन बाद में स्वतन्त्र हो जाती है।

D. पश्चदिशिक धारा का प्रवाह नहीं होता है

### Answer: A



वीडियो उत्तर देखें

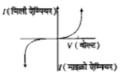
19. यदि डायोड के पश्चदिशिक बायस वोल्टता को भंजन से अधिक कर दें, तब

A. डायोड अत्यधिक गर्म होकर नष्ट हो जाएगा

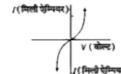
B. डायोड से कोई विद्युत धारा नहीं बहेगी

C. भंजन के बाद एक संतृप्त धारा p से क्षेत्र की ओर

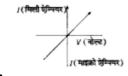
बहेगी


D. रोधिका विभव शून्य हो जाएगा

### **Answer: A**




वीडियो उत्तर देखें


20. p-n सन्धि के लिए V-I अभिलाक्षणिक ग्राफ है



A.



В.



V (चोल्ट) /(माडक्रो फेन्मियर)

D.

### **Answer: A**



21. Si एवं Ge डायोड के अग्रदिशिक बायस होने पर देहली

या नी-वोल्टता का मान क्रमशः होगा

A. 0.2 वोल्ट, 0.7 वोल्ट

B. 0.7 वोल्ट, 1.1 वोल्ट

C. 1.2 वोल्ट, 0.7 वोल्ट

D. 0.7 वोल्ट, 0.2 वोल्ट

### **Answer: A**



22. डायोड द्वारा प्राथमिक रूप से धारा का प्रवाह एक दिशा में होता है। अग्रदिशिक बायस प्रतिरोध पश्चदिशिक बायस की तुलना में कम होता है, तब परिपथ में डायोड निम्न में से किसके समान व्यवहार करेगा?

- A. वाल्व
- B. स्विच
- C. प्रवर्धक
- D. बहुमार्गी

### **Answer: A**



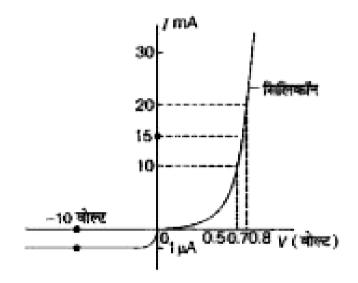
तीटिगो उन्ना टेग्रें

23. डायोड का गतिक प्रतिरोध परिभाषित है

A. 
$$r_d = rac{\Delta V}{\Delta I}$$

B. 
$$r_d = ~-~rac{\Delta V}{\Delta I}$$

C. 
$$I_d =$$


D. 
$$r_d =$$

### **Answer: A**



24. सिलिकॉन डायोड का V-I अभिलाक्षणिक दिया गया है।

 $I_D=15\,$  मिली ऐम्पियर एवं  $\,V_D=\,-\,10\,$  वोल्ट यूनिट पर डायोड प्रतिरोधों का अनुपात होगा।



A.  $10^{-3}$ 

 $B. 10^{-4}$ 

 $c. 10^{-5}$ 

 $D. 10^{-6}$ 

### **Answer: D**



वीडियो उत्तर देखें

25. यदि PN सन्धि के परितः कोई बाह्य वोल्टेज न लगाया जाये तो

A. सन्धि में कोई विद्युत क्षेत्र नहीं होगा ।

B. सन्धि में n-क्षेत्र से p-क्षेत्र की ओर विद्युत क्षेत्र बनेगा

C. सन्धि में p-क्षेत्र से n-क्षेत्र की ओर विद्युत क्षेत्र बनेगा

D. p-n सन्धि के निर्माण के समय एक अस्थायी विद्युत

क्षेत्र उत्पन्न होगा, जो शीर्घ ही अदृश्य (शून्य) हो जाएगा

### **Answer: B**

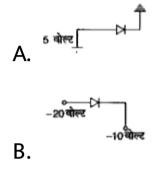


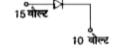
26. दिए गए p-n सन्धि डायोड परिपथ के लिए, निम्न में से कौन-सा कथन सत्य है?



A. अग्रदिशिक बायस में R के परितः वोल्टेज V है।

B. अग्रदिशिक बायस में R के परितः वोल्टेज 2V है।


C. पश्चदिशिक बायस में R के परितः वोल्टेज V है।


D. पश्चदिशिक बायस में R के परितः वोल्टेज 2V है।

### **Answer: A**



# 27. निम्न में से कौन-सा डायोड पश्चदिशिक बायसित है?





C.

### **Answer: B**

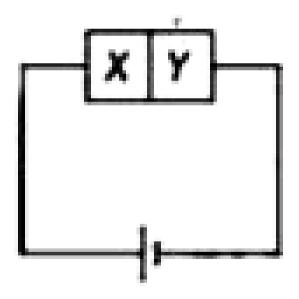


### 28. नीचे दिए गए परिपथ में धारा का मान होगा



A. a. 0 ऐम्पियर

B. b.  $10^{-2}$  ऐम्पियर


C. c.  $10^2$  ऐम्पियर

D. d.  $10^{-3}$  ऐम्पियर

### **Answer: B**



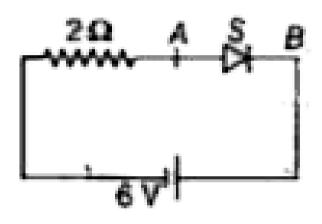
29. एक अर्द्धचालक X, As(Z = 33) अशुद्धियुक्त बाल Ge क्रिस्टल है एवं दूसरा अर्द्धचालक In (Z = 49) अशुद्धियुक्त Ge क्रिस्टल है। दोनों' | को चित्रानुसार एक बैटरी से जोड़ा गया है। निम्न में से कौन-सा कथन सही है?



A. X एवं Y क्रमशः p एवं n-प्रकार के हैं तथा सन्धि

अग्रदिशिक बायसित है।

B. X एवं Y क्रमशः n एवं p- प्रकार के हैं तथा सन्धि अग्रदिशिक बायसित है।


C. X एवं Y क्रमशः p एवं n -प्रकार के हैं तथा सन्धि पश्चदिशिक बायसित है।

D. X एवं Y क्रमशः n एवं p प्रकार के हैं तथा सन्धि पश्चदिशिक बायसित है।

### **Answer: D**



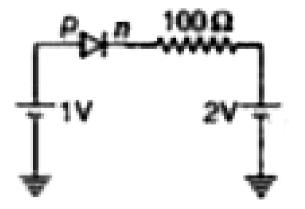
30. दिए गए परिपथ में डायोड सिलिकॉन का है। A एवं B के मध्य विभवान्तर होगा



A. 6 वोल्ट

B. 0.6 वोल्ट

C. 0.7 वोल्ट .


### D. 0 वोल्ट

### **Answer: A**



वीडियो उत्तर देखें

31. निम्नचित्रित आदर्श p-n सन्धि परिपथ आरेख में प्रवाहित धारा का मान है



- A. शून्य
- B.1 mA
- C. 10 mA
- D. 30 mA

### Answer: A



वीडियो उत्तर देखें

**32.** 0.3 V का विभव प्राचीर p-n संधि में स्थित है। यदि अवक्षय क्षेत्र 1  $\mu$ m चौड़ा हो, तो इस क्षेत्र में विद्युत क्षेत्र की तीव्रता क्या होगी?

A. 
$$2 imes 10^5 Vm^{\,-1}$$

B. 
$$3 imes10^5 Vm^{-1}$$

C. 
$$4 imes10^5 Vm^{-1}$$

D. 
$$5 imes10^5 Vm^{-1}$$

### **Answer: B**



वीडियो उत्तर देखें

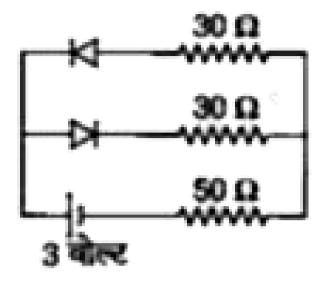
**33.** जब p-n संधि डायोड में वोल्टेज ड्रॉप 0.65 V से 0.70 V तक बढ़ जाता है, तो डायोड धारा में परिवर्तन 5 mA होता है। डायोड का गतिक प्रतिरोध क्या होगा?

A.  $5\Omega$ 

B.  $10\Omega$ 

 $\mathsf{C.}\ 20\Omega$ 

D.  $25\Omega$ 


### **Answer: B**



वीडियो उत्तर देखें

**34.** दर्शाए गए परिपथ में दो डायोड हैं, जिसमें प्रत्येक के साथ  $30\Omega$ का अग्रदिशिक प्रतिरोध तथा पश्चदिशिक अनन्त प्रतिरोध संयोजित है। यदि बैटरी 3 वोल्ट की है, तो  $50\pi$  के

प्रतिरोध में प्रवाहित धारा (ऐम्पियर में) है



**A.** 0

B. 0.01

C. 0.02

D. 0.03

### **Answer: C**



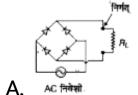
Special Format वाले Objective प्रश्न टॉपिक 4 दिष्टिकारी के रूप में जंक्शन डायोड का उपयोग और विशिष्ट उपयोग P N संधि डायोड

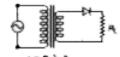
1. यदि भार (load) के साथ श्रेणीक्रम में संयोजित डायोड के परितः प्रत्यावर्ती धारा आरोपित की जाती है, तब

A. भार के परितः संतत् DC वोल्टेज प्राप्त होगा

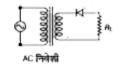
B. भार के परित: AC वोल्टेज प्राप्त होगा

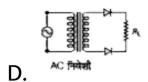
C. भार के परितः स्पंदित DC वोल्टेज प्राप्त होगा


D. भार के परितः कोई वोल्टेज प्राप्त नहीं होगा।


### **Answer: C**




वीडियो उत्तर देखें


## 2. निम्न में से कौन-सा अर्द्धतरंग दिष्टकारी का परिपथ है?





B. Act





### Answer: B



3. किसी प्रायोगिक अर्द्धतरंग दिष्टकारी परिपथ के लिए,

A. डायोड का पश्चदिशिक भंजन वोल्टेज शिखर AC

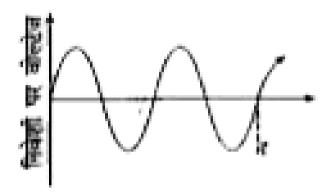
वोल्टेज से अधिक होगा

B. डायोड का पश्चदिशिक भंजन वोल्टेज, वर्ग-माध्य-मूल

प्रत्यावर्ती वोल्टेज से अधिक होगा

C. डायोड का पश्चदिशिक भंजन वोल्टेज माध्य प्रत्यावर्ती

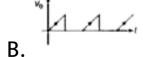
वोल्टेज से अधिक होगा


D. डायोड का पश्चदिशिक भंजन वोल्टेज, वर्ग-माध्य-मूल

प्रत्यावर्ती वोल्टेज |से कम होगा

### **Answer: A**




# 4. एक अर्द्धतरंग दिष्टकारी का निवेशी निम्न प्रकार है



# इसका निर्गत् होगा

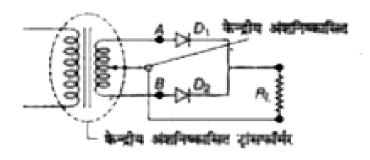


A.



C Vo

D. \*\*


### **Answer: D**



## वीडियो उत्तर देखें

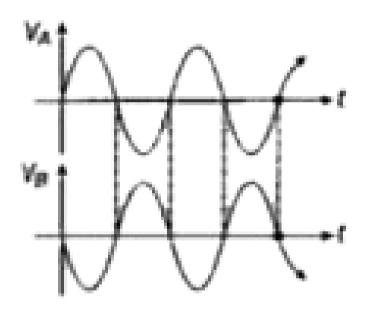
5. दिष्टकरण के सन्दर्भ में A पर वोल्टेज ऋणात्मक तथा B पर वोल्टेज धनात्मक होती है, जिसके परिणामस्वरूप ट्रांसफॉर्मर तथा A के मध्य वोल्टेज आधा हो जाता है। यदि ट्रांसफॉर्मर के 2 डायोड केन्द्रीय अंशनिष्कासित (center tap) सहित प्रयुक्त किया गया है, तो पूर्ण दिष्टकरण होता है तथा दिष्टकारी

का निर्गत् वोल्टेज है



A. 2 x ट्रांसफॉर्मर की द्वितीयक वोल्टेज।

B. 
$$\frac{2}{3}x$$
 ट्रांसफॉर्मर की द्वितीयक वोल्टेज


C. 
$$\frac{1}{2}x$$
 ट्रांसफॉर्मर की द्वितीयक वोल्टेज

D. 
$$\frac{3}{2}x$$
 ट्रांसफॉर्मर की द्वितीयक वोल्टेज

### **Answer: C**



6. चित्र में दर्शाए अनुसार, दो डायोडों को मध्य निष्कासी ट्रांसफॉर्मर के द्वितीयक कुण्डली के परितः जोड़ा गया है, जिसके निवेशी A और B निम्न हैं,



तब लोड प्रतिरोध से निर्गत वोल्टेज आरेख होगी

### **Answer: D**



वीडियो उत्तर देखें

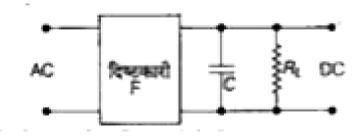
7. पूर्ण तरंग दिष्टकारी का निर्गत् होता है

- A. शुद्ध DC वोल्टेज
- B. शुद्ध AC वोल्टेज
- C. स्पंदित DC वोल्टेज
- D. स्पंदित AC, वोल्टेज

### **Answer: C**



- 8. पूर्ण तरंग दिष्टकारी में फिल्टर का उपयोग किया जाता है
  - A. निर्गत् से AC भाग हटाने के लिए


- B. निर्गत् से DC भाग हटाने के लिए
- C. AC और DC को मिश्रित करने के लिए
- D. उपरोक्त में से कोई नहीं

#### **Answer: A**



वीडियो उत्तर देखें

9. दिए गए परिपथ आरेख में संधारित्र G प्रयुक्त होता है



A. स्थितिज ऊर्जा संग्रहित करने के लिए

B.  $R_L$  में प्रत्यावर्ती धारा प्राप्त करने के लिए DC

अवयव को गुजरने देना।

C. स्पार्क को हटाना

D.  $R_L$  में दिष्टधारा प्राप्त करने के लिए AC अवयव को

गुजरने देना

## Answer: D



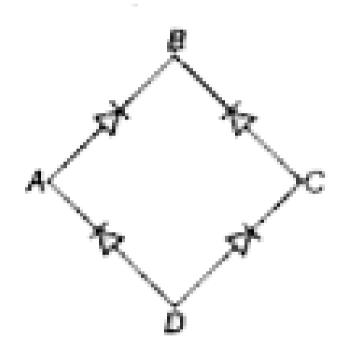
10. एक पूर्ण तरंग दिष्टकारी की निवेशी प्रत्यावर्ती धारा की

आवृत्ति (v) है, तो धारा की निर्गत् आवृत्ति होगी

- A.  $\frac{v}{2}$
- B. v
- C. 2v
- D. इनमें से कोई नहीं

#### **Answer: C**




11. अर्द्धतरंग दिष्टकारी की तुलना में, पूर्ण तरंग दिष्टकारी में मध्य निष्कासन (centre tapping) निम्न में से क्या कम होती है

- A. दक्षता
- B. औसत
- C. निर्गत् वोल्टेज
- D. इनमें से कोई नहीं

#### **Answer: C**



12. दिए गए चित्र में, टर्मिनल A तथा c के परितः निवेशी वोल्टेज है तथा टर्मिनल B तथा D के परितः निर्गत् ' वोल्टेज प्राप्त होती है, तब निर्गत् वोल्टेज है



A. शून्य

B. निवेशी के समान

C. पूर्ण तरंग दिष्टकारी

D. अर्द्धतरंग दिष्टकारी

#### **Answer: C**



वीडियो उत्तर देखें

13. एक स्थिति में यदि एक संधारित्र, लोड प्रतिरोध  $(R_L)$  के साथ समान्तर क्रम में संयोजित होता है, तो यह लोड प्रतिरोध द्वारा निरावेशित हो जाता है, तब संधारित्र के परितः विभव पतन की दर समानुपाती होगी

A. 
$$R_L C$$

B. 
$$\frac{C}{R_L}$$

C. 
$$\frac{1}{R_L C}$$

D. 
$$\frac{R_L}{C}$$

## **Answer: C**



वीडियो उत्तर देखें

14. पूर्ण तरंग दिष्टकारी तथा अर्द्धतरंग दिष्टकारी की निर्गत् आवृत्ति का अनुपात क्या होगा? यदि निवेशी पर 50 हर्ट्स की निवेशी आवृत्ति है।

- A. 1:2
- B. 2:1
- C. 4:1
- D.1:4

## **Answer: B**



वीडियो उत्तर देखें

15. पश्चदिशिक बायस में प्रयुक्त जेनर डायोड का उपयोग किया जाता है

- A. वोल्टेज रेगुलेटर में
- B. वोल्टेज दिष्टकारी में
- C. धारा रेगुलेटर में
- D. धारा दिष्टकारी में

## **Answer: A**



वीडियो उत्तर देखें

16. एक जेनर डायोड की p-n सन्धि डायोड से भिन्नता है

A. अति न्यून मादित pn सन्धि से जेनर डायोड बनाया जाता है

B. अत्यधिक अपमिश्रित pn सन्धि से जेनर डायोड बनाया जाता है

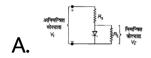
C. एक धात्विक टुकड़े से जेनर डायोड बनाया जाता है।

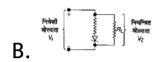
D. अत्यधिक अपमिश्रित p-प्रकार के अर्द्धचालक से

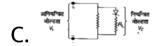
जेनर डायोड बनाया जाता है ।

## **Answer: B**




17. जेनर डायोड के p-क्षेत्र से n-क्षेत्र में इलेक्ट्रॉनों की गति
तथा उत्सर्जन के कारण भंजन पर प्रेक्षित उच्च धारा को
कहते हैं

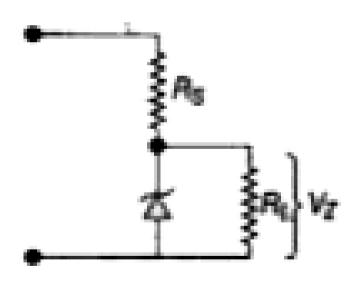

- A. तापायनिकं उत्सर्जन
- B. बाह्य क्षेत्र उत्सर्जन
- C. आन्तरिक क्षेत्र उत्सर्जन
- D. प्रकाश उत्सर्जन


## **Answer: C**



# 18. जेनर डायोड के वोल्टेज रेग्युलेटर का सही परिपथ है








#### **Answer: D**



19. किसी जेनर नियन्तित विद्युत आपूर्ति में नियन्त्रण के लिए  $V_Z=60$  वोल्ट के साथ जेनर डायोड का उपयोग किया जाता है। लोड धारा का मान 4.0mA रखा जाना है तथा अनियन्त्रित निवेश वोल्टता 10.0 वोल्ट है। श्रेणी प्रतिरोधक  $R_S$  का मान क्या होगा? (यदि  $I_2 \, / \, I_2 = 5$ )



A.  $167\Omega$ 

- $\mathrm{B.}\,120\Omega$
- $\mathsf{C.}\ 250\Omega$
- D.  $20\Omega$

## **Answer: A**



वीडियो उत्तर देखें

20. ऑप्टोइलेक्ट्रॉनिक युक्ति है

A. CFL

B. प्रकाश आधारित अर्द्धचालक डायोड

C. ৰল্ৰ

D. निरावेशित नली

**Answer: B** 



वीडियो उत्तर देखें

21. प्रकाश संसूचक है।

A. प्रकाशीय संकेतों के संसूचन के लिए प्रयुक्त

फोटोडायोड

B. अवरक्त संकेतों के संसूचन के लिए प्रयुक्त प्रकाश

उत्सर्जक डायोड

C. एक निर्वातित नली जिसमें प्रकाश संवेदी कैथोड लगी

हो

D. उपरोक्त में से कोई नहीं

## Answer: A

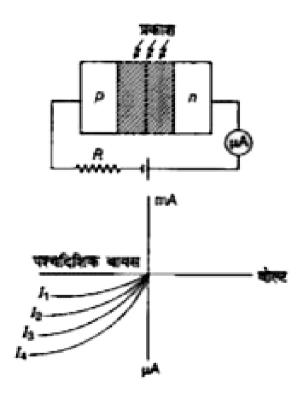


वीडियो उत्तर देखें

22. एक फोटोडायोड रूपान्तरित करता है

A. प्रकाश की तीव्रता में परिवर्तन को धारा आयाम परिवर्तन में

B. धारा आयाम के परिवर्तन को उत्सर्जित प्रकाश की तीव्रता के परिवर्तन में


C. वोल्टेज के परिवर्तन को धारा के परिवर्तन में।

D. प्रकाश की तीव्रता में परिवर्तन को आयतन के परिवर्तन में

## **Answer: A**



**23.** पश्चिदिशिक बायस में संयोजित फोटोडायोड पर उचित आवृत्ति का प्रकाश आपितत कर परिपथ में धारा का मापन करते हैं, तो प्रदीप्त तीव्रता  $I_1,\,I_2,\,I_3$  और  $I_4$  के लिए निम्न प्रकार का अभिलक्षण प्राप्त होता है



निम्न में से अधिकतम तीव्रता है

A.  $I_1$ 

 $B. I_2$ 

 $\mathsf{C}.\,I_3$ 

D.  $I_4$ 

## **Answer: D**



वीडियो उत्तर देखें

24. जब LED अग्रदिशिक बायस में होती है, तब इलेक्ट्रॉन n से p की ओर गति करते हैं और सन्धि तल के निकट इलेक्ट्रॉन-कोटर का संयुग्मन होता है। यदि  $E_g$  चालन तथा

संयोजी बैण्ड के मध्य ऊर्जा अन्तराल है, तब इलेक्ट्रॉन-कोटर

के संयुग्मन से प्राप्त ऊर्जा के लिए सत्य स्थिति है.

A. 
$$E=E_g$$

B. 
$$E>E_g$$

C. 
$$E \leq E_g$$

D. 
$$E \geq E_g$$

## **Answer: C**



25. पश्चदिशिक बायस में LED का उपयोग वोल्टेज रेगुलेटर के समान नहीं किया जाता है, क्योंकि

- A. इसके लिए पश्च भंजन वोल्टेज बहुत कम होती है
- B. इसके लिए पश्च भंजन वोल्टेज बहुत उच्च होती है
- C. वे किसी भी वोल्टेज के लिए भंजन प्रदर्शित नहीं करते हैं
- D. उपरोक्त में से कोई नहीं।

## **Answer: A**



**26.** अर्द्धचालक से निर्मित LED (जो दृश्य प्रकाश उत्पन्न करती है ) के लिए ऊर्जा अन्तराल  $\left(E_q\right)$  होना चाहिए

A. 
$$1.1eV < E_q$$

B. 
$$E_q>3eV$$

C. 
$$1.8eV < E_q$$

$$\mathrm{D.}\, 1.1 eV < E_g < 2.8 eV$$

#### **Answer: C**



## 27. लाल LEDs निर्माण के लिए प्रयक्त पदार्थ है

- A. सिलिकॉन
- B. जर्मेनियम
- C. गैलियम आर्सेनिक फॉस्फाइड
- D. इण्डियम फॉस्फाइड

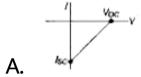
#### **Answer: C**

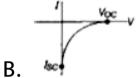


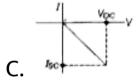
28. एक सोलर सेल है

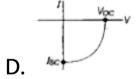
A. प्रकाश संसूचक

B. फोटो वोल्टीय युक्ति


C. प्रकाश उत्सर्जक डायोड


D. फोटो जनित्र


#### **Answer: B**




## 29. सोलर सेल का I-V अभिलक्षण का सही प्रदर्शन है









## **Answer: D**



30. सोलर सेल निर्माण के लिए प्रयुक्त पदार्थ का वर्जित ऊर्जा अन्तराल होगा।

- A. लगभग 0.7 eV
- B. 1eV से कम
- C. लगभग 1.5eV
- D. 0.7 eV से कम

#### **Answer: C**



**31.** 2.8eV के ऊर्जा अन्तराल के अर्द्धचालक द्वारा एक p-n'सन्धि डायोड का निर्माण किया गया है, तो इसके द्वारा संसूचित तरंगदैर्ध्य का मान होगा |

- A. 5200 Å
- B. 4400 Å
- C. 6200 Å
- D. 7500 Å

## **Answer: B**



32. जब 620 नैनोमी तरंगदैर्ध्य से कम तरंगदैर्ध्य का प्रकाश फोटोडायोड पर आपतित होता है, तो चालकता बढ़ जाती है। तब 'डायोड के निर्माण में प्रयुक्त क्रिस्टल का ऊर्जा अन्तराल है

- A. 1.12 eV
- B. 1.8 eV
- C. 2.0 eV
- D. 1.62 eV

## **Answer: C**



**33.** जब LED पर उचित बायिसंग लगाई जाती है, तब LED प्रदीप्त हो जाती है, तथा इलेक्ट्रॉन A से B की ओर गित, करते हैं, तो A a B हैं

A. चालन बैण्ड, संयोजी बैण्ड

B. संयोजी बैण्ड, चालन बैण्ड

C. चालन बैण्ड, संयोजी तार

D. संयोजी तार, चालन बैण्ड

#### **Answer: A**

## 34. प्रकाश संसूचक तथा LED का उपयोग किया जाता है -

- A. सड़क निर्माण कार्य में
- B. प्रकाशिक दूरसंचार में
- C. बाँध के निकट जल के गिरने से शक्ति उत्पादन में
- D. रेडियो ट्रांसमीटरों में

## **Answer: B**



35. दो भिन्न अर्द्धचालकों A और B का उपयोग क्रमशः लाल और बैंगनी LED बनाने के लिए किया जाता है, तो अर्द्धचालकों के ऊर्जा अन्तराल का अनुपात होगा

A. 
$$rac{E_A}{E_B}>1$$

B. 
$$rac{E_A}{E_B} < 1$$

C. 
$$E_A=E_B$$

D. 
$$E_A > 3eV$$
 और  $E_B < 1.5eV$ 

### **Answer: B**



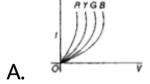
36. LED (जबिक इनका उपयोग ऑटोमोबाइल बल्बों तथा औद्योगिक क्षेत्र में प्रकाश उत्पन्न के लिए होता है). का प्रयोग कमरे को । प्रकाशमय करने के लिए नहीं किया जाता है, क्योंकि

A. हमारे नेत्र, अति तीव्र प्रकाश के लिए असहज हो जाते हैं

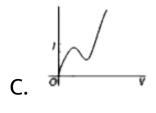
B. हमारे नेत्र, एकवर्णी प्रकाश के लिए असहज हो जाते हैं

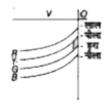
C. CFL और ट्यूबलाइट की तुलना में LED अधिक

बहुमूल्य होती है


# D. LED की अधिक मात्रा के निर्माण से प्रदूषण होता है

### **Answer: B**





वीडियो उत्तर देखें

## 37. LED का I-V अभिलाक्षणिक वक्र है









## **Answer: A**

D.



**38.** एक p-n डायोड  $2 \cdot 0eV$  बेंड अंतराल के पदार्थ से बना है | इस पदार्थ द्वारा अवशोषित विकिरण की न्यूनतम आवर्ती होगी---

A. 
$$1 imes 10^{14}$$
 हर्ट्ज

B. 
$$20 imes 10^{14}$$
 हर्ट्ज

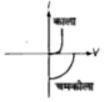
C. 
$$10 imes 10^{14}$$
 हर्ट्ज

D. 
$$5 imes 10^{14}$$
 हर्ट्ज

### **Answer: D**



वीडियो उत्तर देखें


39. अर्द्धचालक युक्तियों की पहचान कीजिए जिनके अभिलक्षण चित्र (i), (ii), (iii) तथा (iv) में दर्शाए गए हैं।



A.



В.



C



D.

## **Answer: A**



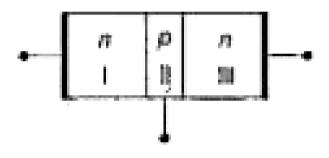
40. एक ट्रांजिस्टर में होते हैं,

A. दो मादित क्षेत्र, जो बड़ी p-n सन्धि बनाते हैं

B. तीन मादित क्षेत्र, जो दो p-n सन्धि बनाते हैं

C. दो का सन्धि, चालक तार द्वारा संयोजित होते हैं . .

D. उपरोक्त में से कोई नहीं


#### **Answer: B**



वीडियो उत्तर देखें

# Special Format वाले Objective प्रश्न टॉपिक 5 दिष्टिकारी के रूप में जंक्शन डायोड का उपयोग और विशिष्ट उपयोग P N संधि डायोड Junction Transistor

1. नीचे दर्शाए गए n-p-n ट्रांजिस्टर में,

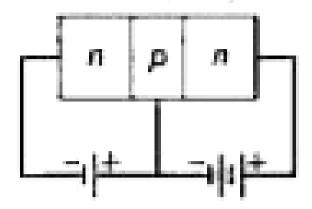


। क्षेत्र ।, ॥ और ॥। क्रमशः हैं ।

A. उत्सर्जक, संग्राहक, आधार

B. आधार, संग्राहक, उत्सर्जक

C. उत्सर्जक, आधार, संग्राहक

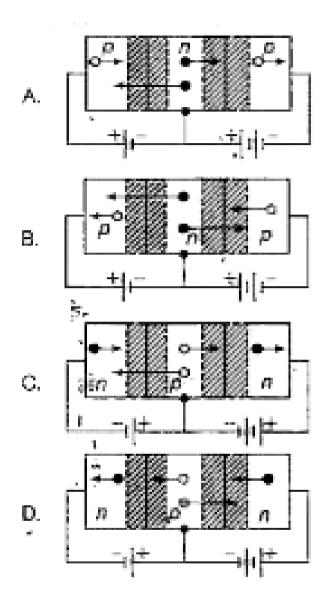

D. संग्राहक, उत्सर्जक, आधार

#### **Answer: C**



वीडियो उत्तर देखें

2. जब ट्रांजिस्टर को नीचे दर्शाए अनुसार बायसित किया जाता है,




## तब यह है

- A. ठोस अवस्था में
- B. सक्रिय अवस्था में
- C. अक्रिय अवस्था में
- D. निष्क्रिय अवस्था में

### **Answer: B**

3. माना नीचे दर्शाए चित्र में इलेक्ट्रॉनों को 'O' से तथा कोटरों को O से प्रदर्शित किया गया है, तो निम्न में से आवेश वाहकों की : गति का सही आरेख है



A. A तथा B

B. B तथा C

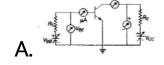
C. A तथा C

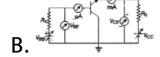
D. B तथा D

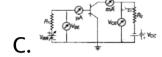
### **Answer: C**

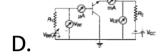


4. ट्रांजिस्टर की सक्रिय अवस्था में, उत्सर्जक-आधार जंक्शन .... प्रतिरोध के समान तथा आधार-संग्राहक सन्धि .... प्रतिरोध के समान कार्य करता है, तब A और B हैं


- A. निम्न, निम्न
- B. निम्न, उच्च
- C. उच्च, निम्न
- D. उच्च, उच्च


### **Answer: B**





वीडियो उत्तर देखें

5. n-p-n ट्रांजिस्टर के CE अभिविन्यास में निवेशी-निर्गत् 'अभिलक्षण के लिए उपयुक्त परिपथ आरेख है.









### **Answer: A**



6. ट्रांजिस्टर के लिए, निम्न में से सत्य है।

A. 
$$V_{CE}=V_{CB}+V_{BE}$$

B. 
$$V_{BE}=V_{CB}+V_{VE}$$

C. 
$$V_{CB}=V_{CE}+V_{BE}$$

D. 
$$V_{CE}=V_{CB}-V_{BE}$$

### **Answer: A**



**7.** सिलिकॉन ट्रांजिस्टर के लिए.  $V_{CE}$  का मान निम्न में से किससे अधिक होता है?

- A. 21 वोल्ट
- B. 0.7 वोल्ट
- C. 0.1 वोल्ट
- D. 20 वोल्ट

### **Answer: B**



वीडियो उत्तर देखें

**8.** n-p-n ट्रांजिस्टर के CE अभिविन्यास में, जब  $V_{CE}$  को बढ़ाया . जाता है, तब

A.  $l_B$  बढ़ती है और  $l_C$  समानुपातिक रूप से बढ़ती है

B.  $l_B$  बढ़ती है तथा  $l_C$  नियत रहती है

C.  $l_B$  पर प्रभाव नगण्य रहेगा, परन्तु  $l_C$  बढ़ जाती है

D.  $l_B$  और  $l_C$  दोनों नियत रहेगें

### **Answer: C**



9. उभयनिष्ठ उत्सर्जक प्रवर्धक में वोल्टता लाभ G है | दिए गए ट्रांजिस्टर में चालकत्व  $0 \cdot 03$  म्हो तथा धारा लाभ 25 का प्रयोग किया गया है | यदि ट्रांजिस्टर को बदलकर ऐसे

ट्रांजिस्टर का उपयोग किया जाए जिसका चालकत्व  $0\cdot 02$ 

म्हो तथा धारा लाभ 20 हो तो वोल्टता लाभ होगा---

A. 
$$\frac{2}{3}G$$

B. 1.5 G

$$\mathsf{C.}\;\frac{1}{3}G$$

D. 
$$\frac{5}{4}G$$

### **Answer: A**



वीडियो उत्तर देखें

**10.** CE अभिविन्यास में निवेशी प्रतिरोध  $(r_1)$  का मान होगा

A. 
$$\left[rac{\Delta V_{BE}}{\Delta l_B}
ight]_{V_{CE}}$$

B. 
$$\left[rac{\Delta V_{CE}}{\Delta l_B}
ight]_{V_{BE}}$$

C. 
$$\left[rac{\Delta V_{BB}}{\Delta l_B}
ight]_{V_{BE}}$$

D. 
$$\left[rac{\Delta V_{BC}}{\Delta l_B}
ight]_{V_{CE}}$$

### **Answer: A**



वीडियो उत्तर देखें

11. दिए गए प्रवर्धक में उभयिनष्ठ उत्सर्जक अभिविन्यास है, जिसमें एक n-p-n ट्रांजिस्टर संयोजित है। एक लोड प्रतिरोध 800Ω संग्राहक परिपथ में संयोजित है, जिसके परितः वोल्टेज 0.8 वोल्ट है। यदि इसका प्रवर्धक गुणांक 0.96 तथा परिपथ का निवेशी प्रतिरोध 192Ω है, तो प्रवर्धक का वोल्टेज लाभ तथा शक्ति लाभ है

A. 3.69, 2.84

B. 4, 4

C. 4, 3.69

D. 4, 3.84

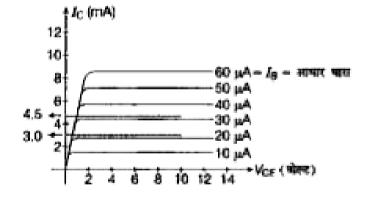
**Answer: D** 



वीडियो उत्तर देखें

12. ट्रांजिस्टर के लिए  $eta_{DC}$  का मान है

A. 
$$rac{\Delta l_C}{\Delta l_B}$$


B. 
$$rac{\Delta l_B}{\Delta l_C}$$

C. 
$$rac{l_C}{l_B}$$

D. 
$$rac{l_B}{l_C}$$

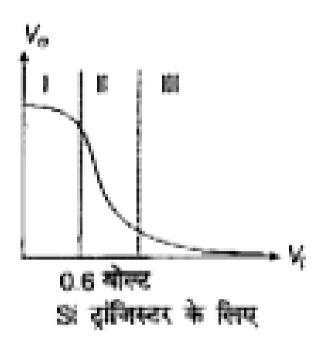
**Answer: C** 

**13.** n-p-n ट्रांजिस्टर के CE अभिविन्यास का निर्गत् अभिलाक्षणिक वक्र दर्शाया गया है। जब  $V_{CE}=10$  वोल्ट और  $I_C=4.0$  mA है, तब  $eta_{AC}$  तथा  $eta_{DC}$  का अनुपात है



**A.** 1

B. 2


C. 3

D. 4

### **Answer: A**



🕞 वीडियो उत्तर देखें



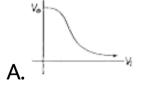
14.

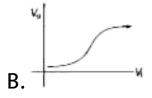
ऊपर दर्शाए गए n-p-n ट्रांजिस्टर में CE अभिविन्यास में संस्तबद्ध क्षेत्र, सक्रिय क्षेत्र तथा संतृप्त क्षेत्र क्रमशः हैं

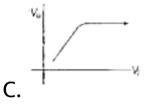
A. II, III तथा ।

B. III, I तथा ॥

C. III, II तथा।


D. I, II तथा III


#### **Answer: D**





वीडियो उत्तर देखें

15. n-p-n ट्रांजिस्टर के लिए CE अभिविन्यास में, निवेशी वोल्टेज के साथ निर्गत् वोल्टेज में परिवर्तन का सत्य आरेख है









### Answer: A



**16.** एक n-p-n ट्रांजिस्टर को प्रवर्धक के समान उपयोग किया जाता है, तो शक्ति लाभ  $(A_P)$  तुल्य होगा (जहाँ,  $A_V$  = वोल्टेज लाभ)

A. 
$$A_P = \left(eta_{AC}
ight)^2 imes A_V$$

B. 
$$A_P = rac{1}{eta_{AC}} imes A_V$$

C. 
$$A_P=eta_{AC} imes A_V$$

D. 
$$A_P = rac{1}{\left(eta_{AC}
ight)^2} imes A_V$$

#### **Answer: C**

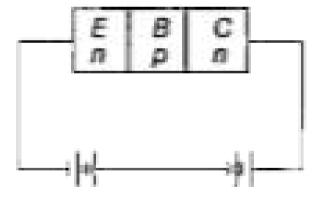


वीडियो उत्तर देखें

17. CE ट्रांजिस्टर प्रवर्धक के लिए,  $2.0K\Omega$  के संग्राहक प्रतिरोध के पिरतः ध्विन सिग्नल वोल्टेज 2.0 वोल्ट है। माना ट्रांजिस्टर का धारा प्रवर्धक गुणांक 100 है। 2.0 वोल्ट आपूर्ति  $(V_{BB})$  से श्रेणीक्रम में संयोजित प्रतिरोध  $R_B$  का मान क्या होगा, यिद DC आधार धारा, सिग्नल धारा की 10 गुनी है? ( $V_{BE}=0.6$  वोल्ट)

A.  $14k\Omega$ 

B.  $24k\Omega$ 


 $\mathsf{C}.\,34k\Omega$ 

D.  $44k\Omega$ 

### **Answer: A**

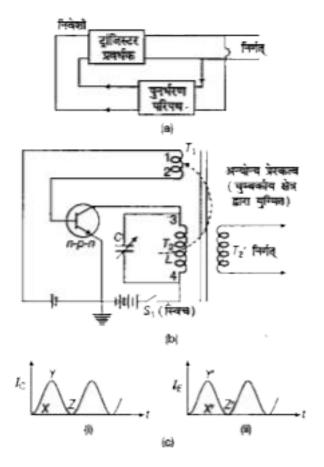


18. यदि एक n-p-n ट्रांजिस्टर की संग्राहक धारा 24 mA है, तो सम्भावित उत्सर्जक धारा (mA) में है



A. 36

- B. 20
- C. 16
- D. 6


### **Answer: A**



वीडियो उत्तर देखें

**19.** n-p-n ट्रांजिस्टर के उपयोग से निर्मित समस्विरत (tuned) संग्राहक दोलित्र के  $I_C, I_E$  धारा के ग्राफों से

### निष्कर्ष निकलता है निवेशी ट्रांजिस्टर



A. प्रारम्भ में  $I_C$  और  $I_E\,$  बढ़ते हैं।

- B.  $I_C,\,I_E\,$  बढ़ते हैं, परन्तु  $I_E$  घटता है
- C. प्रारम्भ में  $I_C$  बढ़ता है, परन्तु  $I_E$  घटता है

D. प्रारम्भ में  $I_C$  घटता है, परन्तु  $I_E$  बढ़ता है

### **Answer: A**



**20.** संग्राहक धारा के अधिकतम मान के बाद संग्राहक धारा में कोई परिवर्तन नहीं होता है, इसलिए  $T_2$  के निकट चुम्बकीय क्षेत्र बढ़ना बन्द हो जाता है, जैसे ही क्षेत्र स्थिर हो जाएगा, वैसे ही  $T_2$  से  $T_1$  में पुनर्भरण रूक जाएगा। पुनर्भरण बन्द होने पर उत्सर्जक धारा कम होनी शुरु हो जाती है।। फलस्वरूप ...A... धारा Y से Z की ओर घटती है, परन्तु

संग्राही धारा के घटने के कारण कुण्डली  $T_2$  के निकट चुम्बकीय क्षेत्र का क्षय शुरु हो जाता है। इस प्रकार,  $T_1$  को  $T_2$  में एक ...B... क्षेत्र दिखता है (प्रारम्भिक में शुरू हुई क्रिया के समय जब क्षेत्र बढ़ रहा था), तब यह क्रिया करता है। यहाँ, A और B हैं

B. उत्सर्जक, घटती

C. संग्राहक, बढ़ती

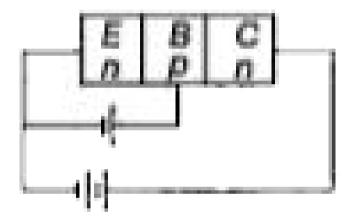
D. संग्राहक, घटती

### Answer: B

वीडियो उत्तर देखें

**21.** उभयनिष्ठ उत्सर्जक ट्रांजिस्टर में धारा लाभ 80 है। यदि आधार धारा में  $250\mu m$  का परिवर्तन किया जाता है, तब संग्राहक धारा में परिवर्तन होगा

A. 
$$(80 imes 250) \mu A$$


B. 
$$(250 - 80)\mu A$$

C. 
$$(250+80)\mu A$$

D. 
$$\left(\frac{250}{80}\right)\mu A$$

Answer: A

22. n-p-n ट्रांजिस्टर की स्थिति में, संग्राहक धारा सदैव उत्सर्जक धारा से कम होती है, क्योंकि



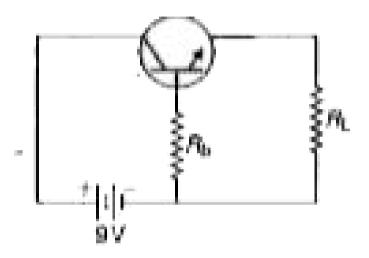
A. संग्राहक की ओर पश्चदिशिक बायस तथा उत्सर्जक

की ओर अग्रदिशिक बायस होता है

B. आधार में इलेक्ट्रॉन की क्षति होती है और शेष ही पुनः

उत्सर्जक पर पहुँचते हैं

C. संग्राहक की ओर अग्रदिशिक बायस और उत्सर्जक भाग पश्चदिशिक बायस होगा


D. पश्चिदिशिक बायिसत संग्राहक कम इलेक्ट्रॉनों कोआकर्षित करेगा

### Answer: A



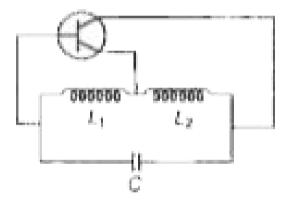
# 23. नीचे दर्शाए गए ट्रांजिस्टर परिपथ में आधार धारा

 $35\mu m$  है, तो प्रतिरोध  $R_b$  का मान है ।



A.  $123.5k\Omega$ 

B.  $257k\Omega$ 


 $\mathsf{C.\,380.5}\Omega$ 

D. ज्ञात नहीं किया जा सकता है

### **Answer: B**



### 24. दिए गए परिपथ में,



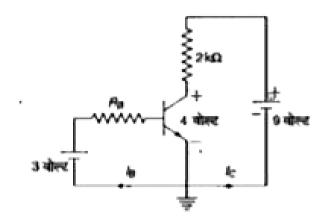
दोलन की आवृत्ति है

A. 
$$f=rac{1}{2\pi}\sqrt{rac{1}{(L_1+L_2)C}}$$

B. 
$$f=rac{1}{2\pi\sqrt{L_1-L_2}C}$$

C. 
$$f=rac{1}{2\pi\sqrt{L_1\sqrt{L_2}.~C}}$$

D. 
$$f=rac{1}{2\pi\sqrt{\left(rac{L_1+L_2}{2}
ight)}C}$$


### **Answer: A**



वीडियो उत्तर देखें

$$eta=90$$
 और  $V_{BE}=0.7$  वोल्ट है, तब आधार प्रतिरोध

 $R_B$  है



- A.  $180k\Omega$
- B.  $185k\Omega$
- $\mathsf{C.}\,82k\Omega$
- D.  $190k\Omega$

### Answer: C



उत्तर देखें

**26.** एक परिपथ में ट्रांजिस्टर इस प्रकार जुड़ा है कि  $I_B=10\mu A$  तथा  $I_C=5\,\mathrm{mA}$  है, तब

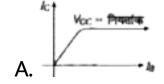
A. ट्रांजिस्टर  $eta_{DC}=10$  के प्रवर्धक के समान प्रयुक्त $\,$  किया जा सकता है

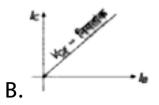
B. ट्रांजिस्टर  $eta_{DC}=100$  के प्रवर्धक के समान प्रयुक्तpprox किया जा सकता है

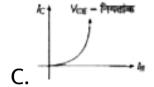
C. ट्रांजिस्टर  $eta_{DC}=250$  के प्रवर्धक के समान प्रयुक्त

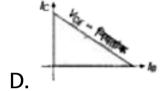
किया जा सकता है

D. ट्रांजिस्टर का उपयोग प्रवर्धक के समान नहीं किया


जा सकता है


#### **Answer: C**





वीडियो उत्तर देखें

**27.** सक्रिय क्षेत्र में n-p-n ट्रांजिस्टर के उभयनिष्ठ उत्सर्जक अभिविन्यास के लिए  $I_B$  तथा  $I_C$  के मध्य सम्बन्ध का सत्य आलेख है









## **Answer: B**



28. एक PNP ट्रांजिस्टर जो उभयनिष्ठ-आधार प्रवर्धक की तरह कार्य करता है, के लिए धारा लब्धि 0.96 है एवं उत्सर्जक धारा 7.2 mA है तो आधार धारा का मान होगा

- A. 0.29 mA
- B. 0.35 mA
- C. 0.39 mA
- D. 0.43 mA

#### **Answer: A**



29. उभयनिष्ठ आधार प्रवर्धक के लिए शक्ति लाभ 800 है एवं वोल्टेज प्रवर्धन गुणांक 840 है। जब आधार धारा 1.2 mA हो, तो संग्राहक धारा क्या होगी?

- A. 24 mA
- B. 12 mA
- C. 6 mA
- D. 3 mA

## Answer: A



**30.** किसी CE (उभयनिष्ठ उत्सर्जक) प्रवर्धक की वोल्टता- $\mathbb{R}$  150 है। इसका निवेश सिग्नल ( संकेत),  $V_i = 2\cos\left(15t + \frac{\pi}{3}\right)$  है, तो संगत निर्गत सिग्नल होगा

A. 
$$300\cos\Bigl(15t+rac{\pi}{3}\Bigr)$$

B. 
$$75\cos\left(15t + \frac{2\pi}{3}\right)$$

C. 
$$2\cos\left(15t+rac{5\pi}{3}
ight)$$

D. 
$$300\cos\left(15t + \frac{4\pi}{3}\right)$$

## **Answer: D**



**31.** एक ट्रांजिस्टर का धारा लाभ 30 है। यदि संग्राहक प्रतिरोध 6  $k\Omega$  हो, निवेशी प्रतिरोध 1  $k\Omega$  हो, तो इसका वोल्टेज लाभ क्या होगा?

A. 90

B. 180

C. 45

D. 360

## **Answer: B**

32. एक ट्रांजिस्टर का निवेशी प्रतिरोध  $1000\Omega$  है। इसकी आधार धारा को  $10\mu A$  बढ़ाने पर संग्राहक धारा 2 mA बढ़ जाती है। यदि परिपथ में प्रयुक्त प्रतिरोध  $5k\Omega$  है, तो प्रवर्धक का वोल्टेज लाभ है

- A. 100
- B. 500
- C. 1000
- D. 1500

#### **Answer: C**



## वीडियो उत्तर देखें

33. एक n-p-n ट्रांजिस्टर परिपथ में, संग्राहक धारा 10 mA है। यदि उत्सर्जित इलेक्ट्रॉन में से 80% संग्राहक पर पहुँचते हैं, तब

- A. उत्सर्जक धारा 7.5mA होगी
- B. आधार धारा 2.5MA होगी
- C. आधार धारा 3.5 mA होगी
- D. उत्सर्जक धारा 15 mA होगी

## **Answer: B**



## वीडियो उत्तर देखें

**34.** जब p-n संधि डायोड में वोल्टेज ड्रॉप 0.65 V से 0.70 V तक बढ़ जाता है, तो डायोड धारा में परिवर्तन 5 mA होता है। डायोड का गतिक प्रतिरोध क्या होगा?

A.  $200\Omega$ 

 $\mathsf{B.}\,50\Omega$ 

 $\mathsf{C.}\ 10\Omega$ 

D.  $80\Omega$ 

#### **Answer: C**



## वीडियो उत्तर देखें

## 35. एनालॉग सिग्नल (analog signal) है

A. सतत् तरंग प्रारूप

B. विवक्त संकेत

C. अनिरन्तर सिग्नल

D. अनियमित तरंग प्रारूप

**Answer: A** 

# Special Format वाले Objective प्रश्न टॉपिक 6 डिजिटल इलेक्ट्रॉनिक्स और लॉजिक गेट

1. डिजिटल सिग्नल (digital Signal) है

A. सतत् तरंग प्रारूप

B. विवक्त संकेत

C. अनिरन्तर सिग्नल

D. अनियमित तरंग प्रारूप

#### **Answer: B**



## वीडियो उत्तर देखें

- 2. NOT गेट को इन्वर्टर कहते हैं, क्योंकि
  - A. इनके द्वारा उत्पन्न निर्गत् समय के साथ बदलता है
  - B. जब निवेशी O होता है, तो निर्गत् 1 प्राप्त होता है और

इसके विपरीत भी

- C. यह किसी भी निवेशी के लिए निर्गत् नहीं है
- D. इसमें केवल एक निवेशी होता है

#### **Answer: B**

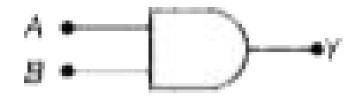


# वीडियो उत्तर देखें

# **3.** OR गेट के लिए सत्यता सारणी लॉजिक प्रतीक , बूलियन व्यंजक तथा सत्यता सारणी दीजिए ।

|    | A | B | Y |
|----|---|---|---|
|    | 0 | 0 | 0 |
|    | 1 | 0 | 0 |
|    | 0 | 1 | 0 |
| ١. | 1 | 1 | 1 |

|    | A | 8 | У |
|----|---|---|---|
|    | 0 | 0 | 0 |
| -  | 1 | 0 | 1 |
|    | 0 | 1 | t |
| В. | 1 | 1 | 0 |


| A | B | Y |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| O | 1 | 0 |
| 1 | 1 | 0 |

|   | A | В | Y |
|---|---|---|---|
|   | 0 | 0 | 0 |
|   | 1 | 0 | 1 |
|   | D | 1 | 1 |
| D | 1 | 1 | t |

#### **Answer: D**



4. नीचे दर्शाए गए लॉजिक गेट प्रतीक के लिए सत्यता सारणी है

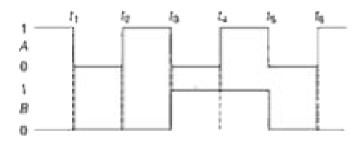


|    | A | 8 | Y |
|----|---|---|---|
|    | 0 | 0 | 0 |
|    | 1 | 0 | 1 |
|    | 0 | 1 | 1 |
| A. | 1 | 1 | 1 |

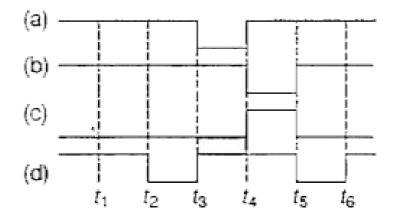
|    | A   | 8 | γ |
|----|-----|---|---|
|    | 0   | 0 | 0 |
|    | 1   | 0 | 0 |
|    | 0 ' | 1 | 0 |
| B. | 1   | 1 | 1 |
|    |     |   |   |

| 1 | 1 | 1 |
|---|---|---|
| Α | 8 | Y |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |

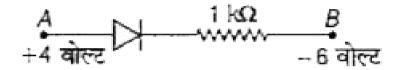
| 1.1 | 1 | - 1 |
|-----|---|-----|
| A   | B | γ   |
| 0   | 0 | 1   |
| 1   | 0 | 0   |
| 0   | 1 | 0   |
| - 1 | 1 | 0   |


D.

#### **Answer: B**




उत्तर देखें


## 5. NAND गेट के निवेशी A और B निम्न हैं



## NAND गेट का निर्गत् है



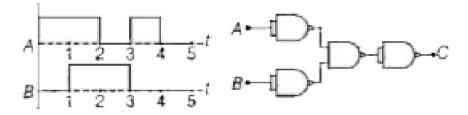
6. माना कि सन्धि डायोड आदर्श है, तो AB से प्रवाहित धारा का मान है



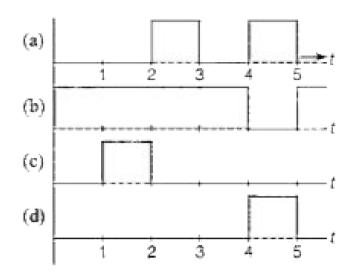
A. a.  $10^{-2}$  ऐम्पियर

B. b.  $10^{-1}$  ऐम्पियर

C. c.  $10^{-3}$  ऐम्पियर

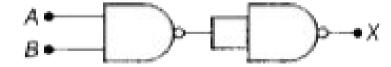

D. d. 0 ऐम्पियर

## **Answer: A**




## वीडियो उत्तर देखें

## 7. गेट संयोजन के निवेशी A और B को नीचे दिया गया है,




## तब निर्गत C है



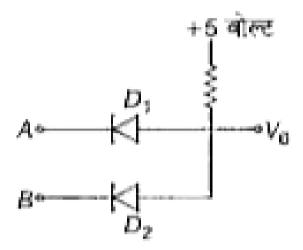


8. नीचे दर्शाए गए लॉजिक गेट परिपथ का निर्गत (X) है



A. 
$$X=\overline{A}$$
 .  $\overline{B}$ 

B. 
$$X=\overline{A.\,B}$$


$$\mathsf{C}.\,X=A.\,B$$

$$\operatorname{D.}X=\overline{A+B}$$

## **Answer: C**



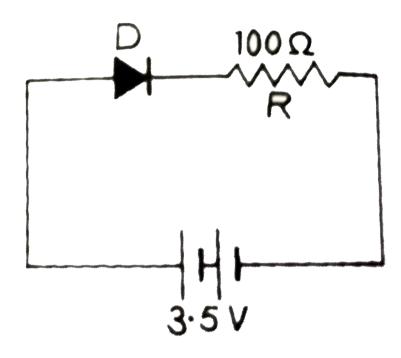
## 9. नीचे दर्शाया गया परिपथ किस लॉजिक गेट का है?



A. NAND

B. AND

C. OR


D. NOR

## **Answer: B**



**10.** यहाँ परिपथ में, एक डायोड D को एक बाह्य प्रतिरोध,  $R=100\Omega$  तथा 3.5 V विo वाo बल की बैटरी से जोड़ा गया है। यदि डायोड में ( दोनों क्षेत्रों की सन्धि के आर-पार)

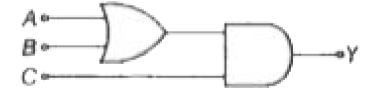
उत्पन्न रोधिका विभव 0.5 V है तो, परिपथ में धारा होगी :



A. 30 mA

B. 40 mA

C. 20 mA


D. 35 mA

## **Answer: A**



वीडियो उत्तर देखें

11. नीचे दिए गए परिपथ में 1 निर्गत प्राप्त करने के लिए निवेशी का सही मान है



A. A=1, B=0, C=0

B. A=1, B=1, C=1

C. A=1, B=0, C=1

D. A=0, B=1, C=0

**Answer: C** 



उत्तर देखें

# Special Format वाले Objective प्रश्न । कथन कारण Assertion Reason

1. कथन : नैज अर्द्धचालक की चालकता ताप पर निर्भर करती है। कारण :कम मादित p-प्रकार के अर्द्धचालक की चालकता

नैज अर्द्धचालक से कुछ कम होती है।

A. कथन और कारण दोनों सत्य हैं तथा कारण, कथन की सत्य व्याख्या करता है।

B. कथन और कारण दोनों सत्य हैं लेकिन कारण, कथन

की सत्य व्याख्या नहीं करता है।

C. कथन सत्य है, लेकिन कारण असत्य है।

D. कथन असत्य है, लेकिन कारण सत्य है।

Answer: C

2. कथन : जेनर डायोड का उपयोग वोल्टेज रेग्यलेशन के लिए किया जाता है।

कारण : जेनर डायोड के पश्चदिशिक बायस अभिनित में एक नियत वोल्टेज पर धारा अचानक बढ़ जाती है, परन्तु डायोड के परितः विभवान्तर नियत रहता है।

A. कथन और कारण दोनों सत्य हैं तथा कारण, कथन की सत्य व्याख्या करता है। B. कथन और कारण दोनों सत्य हैं लेकिन कारण, कथन

की सत्य व्याख्या नहीं करता है।

C. कथन सत्य है, लेकिन कारण असत्य है।

D. कथन असत्य है, लेकिन कारण सत्य है।

#### **Answer: A**



वीडियो उत्तर देखें

3. कथन : ट्रांजिस्टर में आधार पतला होता है।

कारण : पतले आधार से ट्रांजिस्टर स्थायी बनता है।

A. कथन और कारण दोनों सत्य हैं तथा कारण, कथन

की सत्य व्याख्या करता है।

B. कथन और कारण दोनों सत्य हैं लेकिन कारण, कथन

की सत्य व्याख्या नहीं करता है।

C. कथन सत्य है, लेकिन कारण असत्य है।

D. कथन असत्य है, लेकिन कारण सत्य है।

## Answer: C



- 4. कथन दोलित्र में पुर्निनवेश समान. कला में होता है.
  जिसको धनात्मक पुर्निनवेश कहते हैं।
  कारण यदि पुर्निनवेश वोल्टेज विपरीत कला में होता है, तो
  लाभ एक से अधिक होता है।
  - A. कथन और कारण दोनों सत्य हैं तथा कारण, कथन की सत्य व्याख्या करता है।
  - B. कथन और कारण दोनों सत्य हैं लेकिन कारण, कथन की सत्य व्याख्या नहीं करता है।
  - C. कथन सत्य है, लेकिन कारण असत्य है।
  - D. कथन असत्य है, लेकिन कारण सत्य है।

#### **Answer: C**



वीडियो उत्तर देखें

#### 5. कथन



यह परिपथ OR गेट के समान व्यवहार करता है।

कारण दो निवेशी गेट के लिए सत्यता सरणी निम्न है

| A | 8 | Υ |
|---|---|---|
| 6 | 0 | 0 |
| Ü | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

A. कथन और कारण दोनों सत्य हैं तथा कारण, कथन की सत्य व्याख्या करता है।

B. कथन और कारण दोनों सत्य हैं लेकिन कारण, कथन

की सत्य व्याख्या नहीं करता है।

C. कथन सत्य है, लेकिन कारण असत्य है।

D. कथन असत्य है, लेकिन कारण सत्य है।

## **Answer: A**



वीडियो उत्तर देखें

# Special Format वाले Objective प्रश्न Ii कथन प्रकार Statement Type

1. कथन । : p-n सन्धि के, p-क्षेत्र से इलेक्ट्रॉन n-क्षेत्र की ओर गित करते हैं, जब आवेशों का अनुगमन सन्धि तल के पार होता है।

कथन ॥ : आवेश के अनुगमन के कारण, सन्धि तल के परितः सान्द्रता प्रवणता कम होती है। A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

## Answer: C



- 2. कथन । : साम्यावस्था में p-n सन्धि डायोड का p-क्षेत्र धनात्मक विभव पर होता है।
- कथन II : p-प्रकार के अर्द्धचालक में इलेक्ट्रॉनों की तुलना में कोटर अधिक होते हैं।
  - A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

- B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,
  - कथन । की सत्य व्याख्या नहीं करता है।
- C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।
- D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

#### **Answer: C**



## वीडियो उत्तर देखें

3. कथन । : आरोपित वोल्टेज (p-n सन्धि के अग्रदिशिक बायस में) का पतन मुख्यतः अवक्षय परत पर होता है तथा p व n-क्षेत्र पर नगण्य वोल्टेज पतन होता है। कथन ॥ : n या p -क्षेत्र की तुलना में अवक्षय परत का प्रतिरोध उच्च होता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥, कथन। की सत्य व्याख्या करता है। B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: A**



A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: B**



वीडियो उत्तर देखें

5. कथन । : प्रत्यावर्ती धारा के दिष्टकरण के लिए डायोड प्रयुक्त कर सकते हैं।

कथन ॥ : p-n सन्धि'डायोड से धारा प्रवाहित होती है, केवल जब डायोड पश्चदिशिक बायस में होता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन। की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: C**



### वीडियो उत्तर देखें

6. कथन । : DC वोल्टेज से AC ऊर्मिका को अलग करने के लिए लोड के श्रेणीक्रम में प्रेरक तथा समान्तर क्रम में संधारित्र को संयोजित करते हैं।

कथन ॥ : जब आवृत्ति का मान उच्च होता है, तो संधारित्र की धारिता निम्न तथा AC प्रेरक का प्रेरकत्व उच्च होता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: A**



7. कथन । : सोलर सेल का आकार बड़ा होता है।

कथन ॥ : क्षेत्रफल बढ़ाने पर, इलेक्ट्रॉन का कार्य-फलन कम

होता है। 1

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### Answer: C



8. कथन । : जब कम मादित p-n सन्धि, v आवृत्ति का प्रकाश विकरित करती है, तो यह विद्युत वाहक बल उत्पन्न करती है तथा p-क्षेत्र अधिक ऋणात्मक हो जाता है। कथन : ॥ फोटॉन अवशोषण के कारण सन्धि द्वारा इलेक्ट्रॉन कोटर युग्म पृथक्कृत किए जाते हैं तथा इन्हें अलग क्षेत्रों में भेजा जाता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥, कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: D**



वीडियो उत्तर देखें

9. कथन । : एक आदर्श ट्रांजिस्टर में,  $I_E=I_C=I_B$ होता है या  $\,\Rightarrow\,I_Epprox I_C$ 

हाता ह था  $\Rightarrow I_E \approx I_C$ 

कथन ॥ : ट्रांजिस्टर का आधार पतला होता है, जिसे कम

मादित किया जाता है। आधार धारा  $(I_B)$  का मान अल्प तथा संग्राहक धारा  $(I_C)$  का मान उच्च होता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

कथन । की सत्य व्याख्या नहीं करता है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### Answer: A



**10.** कथन । यदि n-p-n ट्रांजिस्टर के CE अभिविन्यास को स्विच के समान प्रयुक्त किया जाता है, तो यह अंतक क्षेत्र या संतृप्त क्षेत्र में चालू होता है। कथन ॥ अंतक क्षेत्र में  $V_i$  निम्न, परन्तु  $V_o$  उच्च होता है। संतृप्त क्षेत्र में  $V_i$  उच्च, परन्तु  $V_o$  निम्न होता है।

A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥, कथन। की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥, कथन । की सत्य व्याख्या नहीं करता है। C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### **Answer: A**



वीडियो उत्तर देखें

11. कथन । एक लॉजिक गेट एक डिजिटल परिपथ है। कथन ॥ इन्हें लॉजिक गेट कहते हैं, क्योंकि यह अपने अन्दर से धारा प्रवाहित नहीं होने देते हैं। A. कथन । और कथन ॥ दोनों सत्य हैं तथा कथन ॥,

कथन । की सत्य व्याख्या करता है।

B. कथन । और कथन ॥ दोनों सत्य हैं, लेकिन कथन ॥,

कथन । की सत्य व्याख्या नहीं करता है।

C. कथन । सत्य है, लेकिन कथन ॥ असत्य है।

D. कथन । असत्य है, लेकिन कथन ॥ सत्य है।

### Answer: C



12. अर्द्धचालक उपकरणों का निर्वात् नली की तुलना में (अपेक्षा) क्या लाभ है?

।. छोटा आकार

॥. अधिक जीवनकाल और विश्वसनीय

III. निम्न शक्ति उपयोग

IV. निम्न लागत

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

चुनिए।

A. I, II, III तथा IV

B. II, III तथा I

C. I, III तथा IV

#### D. I तथा IV

### **Answer: A**



वीडियो उत्तर देखें

### 13. निम्न चार कथनों में से सत्य कथन है

- क्रिस्टल के अन्दर इलेक्ट्रॉन की भिन्न स्थितियों में भिन्न ऊर्जा होती हैं, जिससे ऊर्जा अन्तराल बनते हैं।
- II. संयोजी बैण्ड में संयोजी इलेक्ट्रॉन के ऊर्जा स्तर सम्मिलित होते हैं।
- III. संयोजी बैण्ड के ऊपर का ऊर्जा स्तर चालन बैण्ड

IV. चालकों में संयोजी तथा चालन बैण्ड अध्यारोपित होते हैं। उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को चुनिए।

A.। तथा ॥

कहलाता है।

- B. I, II तथा IV
- C. II तथा III
- D. I, II, III तथा IV

### **Answer: D**



- 14. n-क्षेत्र से p-क्षेत्र में इलेक्ट्रॉनों के विसरण के कारण,
- I. p-n सन्धि के परितः इलेक्ट्रॉन-कोटर का संयोजन होता है।

II.

p-क्षेत्र के बाईं में आयनित ग्राही होते हैं।

III. n-क्षेत्र के बाईं में आयनित दाता होते हैं।

IV. n-क्षेत्र के इलेक्ट्रॉन, क-क्षेत्र में आते हैं और p-क्षेत्र में

इलेक्ट्रॉन-कोटर का संयोजन होता है।

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

A. । तथा ॥

चुनिए।

B. II तथा III

C. II तथा IV

D. II, III तथा IV

#### **Answer: D**



वीडियो उत्तर देखें

15. अबायसित p-n सन्धि डायोड के सन्दर्भ में कौन-सा सत्य

कथन

I. p से n-क्षेत्र में अनुगमन तथा विसरण धारा बनती हैं।

II. प्रारम्भिक रूप से विसरण धारा अधिक और अनुगमन

```
धारा अल्प होती है।
III. अन्त में विसरण तथा अनुगमन धारा का मान समान हो
जाता है।
 IV. साम्यावस्था में p-n सन्धि तल के परित: कोई भी धारा
नहीं जाती है।
उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को
चुनिए।
    A. I तथा IV
    B. I, II तथा III
    C. II, III तथा IV
    D. ये सभी
```

#### **Answer: C**



### वीडियो उत्तर देखें

### 16. निम्न में से सत्य है?

- I. अग्रदिशिक बायस में, p-क्षेत्र से कोटर सन्धि को पार करके
- n-क्षेत्र में जाते हैं।
- II. अग्रदिशिक बायस में, n-क्षेत्र से इलेक्ट्रॉन सन्धि को पार करके p-क्षेत्र में जाते हैं।
- III. n-क्षेत्र में कोटर अल्पसंख्यक आवेश वाहक होते हैं।
- IV. p-क्षेत्र में इलेक्ट्रॉन अल्पसंख्यक आवेश वाहक होते हैं।

A. I, II तथा III

B. I , III तथा IV

C. II, III तथा IV

D. I,II, III तथा IV

### **Answer: D**



वीडियो उत्तर देखें

17. निम्न कथनों A तथा B पर विचार करें तथा सही विकल्प चुनें

A: अग्र अभिनति में PN सन्धि डायोड में अवक्षय पर्त की

चौड़ाई बढ़ती है

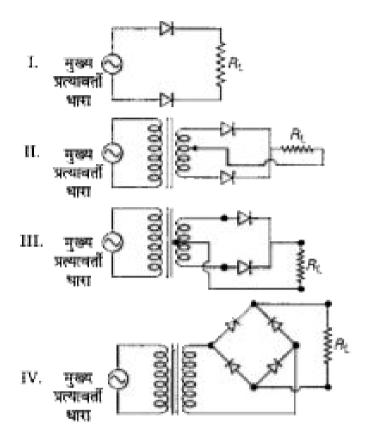
B: निज अर्द्धचालक में, फर्मी ऊर्जा स्तर, वर्जित ऊर्जा अन्तराल के ठीक मध्य में होता है

A. । सत्य है और ॥ असत्य है।

B. । और ॥ दोनों असत्य हैं।

C.। असत्य है और ॥ सत्य है।

D. । और ॥ दोनों सत्य हैं।


### **Answer: C**



वीडियो उत्तर देखें

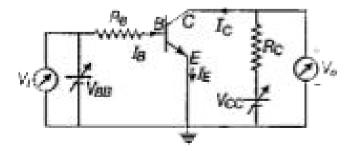
### 18. निम्न में से किस प्रकार के परिपथ का उपयोग पूर्ण तरंग

दिष्टकरण के लिए कर सकते हैं?



A.I,II तथा III

B. II, III तथा IV


C. I, III तथा IV

D. I, II तथा IV

### **Answer: B**



19. दिए गए परिपथ में, n-p-n ट्रांजिस्टर के CE अभिविन्यास को स्विच के समान प्रयुक्त किया जाता है।



निम्न में से कौन-सा सम्बन्ध सत्य है?

I. 
$$V_{BB}=I_BR_B+V_{BE}$$

II. 
$$V_{CE}=V_{CC}-I_{C}R_{C}$$

III. 
$$V_i = I_B R_B + V_{BE}$$

IV. 
$$V_o = V_{CC} - I_C R_C$$

A. I, II तथा IV

B. II, III तथा IV

C. I, II तथा III

D. I, II, III तथा IV

### Answer: D



उत्तर देख

20. दोलित्र में,

I. हम बिना किसी बाह्य निवेशी सिग्नल के AC निर्गत् प्राप्त

करते हैं।

II. निर्गत् स्वयं समायोजित है।

III. L-C या R-C परिपथ द्वारा पुर्ननिवेश प्राप्त किया जा

सकता है।

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

चुनिए।

A. केवल I

- B. केवल II
- C. केवल III
- D. इनमें से कोई नहीं

### **Answer: D**



वीडियो उत्तर देखें

21. निम्न में से किस गेट को NOR गेट की सहायता से बना

सकते हैं?

I. AND II. OR

III. NOT IV. NAND

- A. I तथा II
- B. II तथा III
- C. I, II तथा IV
- D. I, II तथा III, IV

### **Answer: D**



वीडियो उत्तर देखें

Special Format वाले Objective प्रश्न Iii मैचिंग प्रश्न Matching Questions 1. ट्रांजिस्टर के आविष्कार से पूर्व निर्वात निर्यां का उपयोग किया जाता है, जिनका नाम उनमें उपस्थित इलेक्ट्रॉडों के आधार पर होता है। नीचे दी गई निर्वात् निर्यों के नामों को इलेक्ट्रॉडों की संख्या से सुमेलित कीजिए।

|    | भौतर ।<br>रंग्टोड | 1. | कॉलम् ॥<br>२ |
|----|-------------------|----|--------------|
| A. |                   |    |              |
| B. | टेट्रोब           | 2. | 3            |
| C. | ट्रायोड           | 3. | 4            |
| D. | <b>टायोड</b>      | 4. | 5            |

A. A-1, B-2, C-3, D-4

B. A-2, B-3, C-4, D-1

C. A-3, B-4, C-1, D-2

D. A-4, B-3, C-2, D-1

#### **Answer: D**



### वीडियो उत्तर देखें

# 2. नीचे दिए गए अवयवों/पदार्थों को उनके ऊर्जा अन्तराल से सुमेलित कीजिए।

| कॉलम ।      |                                | कॉलम ॥                                  |
|-------------|--------------------------------|-----------------------------------------|
| होरा        | 1.                             | 1.1 eV                                  |
| ऐलुमिनियम   | 2                              | 6.71 eV                                 |
| वर्गैनियम   | 3.                             | 0.03 #∀                                 |
| निर्धारमधील | 4.                             | 6 eV                                    |
|             | होरा<br>ऐलुमिनियम<br>जर्मेनियम | होरा 1.<br>ऐलुमिनियम 2.<br>जर्मेनियम 3. |

A. A-1, B-2, C-3, D-4

B. A-2, B-1, C-4, D-3

C. A-4, B-3, C-1, D-2

D. A-4, B-3, C-2, D-1

#### **Answer: D**



वीडियो उत्तर देखें

### 3. NOR गेट के लिए कॉलम। में दिए गए निवेशी को कॉलम

### ॥ में दिए गए निर्गत् से सुमेलित कीजिए।

|    | कॉलम । |    | वर्गलन | 11 |
|----|--------|----|--------|----|
| Α. | 0, 0   | 1. | 0      |    |
| В. | 0, 1   | 2  | 1      |    |
| C. | 1, 0   |    |        |    |
| D. | 1, 1   |    |        |    |

A. A-1, B-1, C-2, D-2

- B. A-1,B-1, C-1, D-2
- C. A-2, B-2, C-2, D-1
- D. A-2, B-1, C-1, D-1

#### **Answer: D**



वीडियो उत्तर देखें

### 4. कॉलम । को कॉलम ॥ से सुमेलित कीजिए।

|    | कॉलप ।                  |    | कॉलम ॥                                 |
|----|-------------------------|----|----------------------------------------|
| A. | n-p-n ट्रांजिस्टर       | 1. | $-\bigcirc$                            |
| В. | p-n-p द्रांजिस्टर       | 2. | - (N)                                  |
| C. | प्रकाश चरसर्जक<br>कायोज | 3. | E ←                                    |
| D. | जेगर जाबोड              | 4, | €•———————————————————————————————————— |

A. A-3, B-4, C-2, D-1

B. A-4, B-2, C-1, D-3

C. A-2, B-34, C-3, D-1

D. A-4, B-3, C-2, D-1

### **Answer: A**



वीडियो उत्तर देखें

## Special Format वाले Objective प्रश्न Iv पैराग्राफ पर आधारित प्रश्न Passage Based Questions

**1.** एक उभयनिष्ठ आधार प्रवर्धक परिपथ में निवेशी तथा निर्गत प्रतिरोध क्रमशः  $400\Omega$  तथा  $400k\Omega$  हैं। उत्सर्जक

धारा 2 mA तथा धारा लाभ 0.98 है

संग्राहक धारा है

A. 1.84 mA

B. 1.96 mA

C. 1.2 mA

D. 2.04 mA

### **Answer: B**



वीडियो उत्तर देखें

**2.** एक उभयनिष्ठ आधार प्रवर्धक परिपथ में निवेशी तथा निर्गत प्रतिरोध क्रमशः  $400\Omega$  तथा  $400k\Omega$  हैं। उत्सर्जक धारा 2 mA तथा धारा लाभ 0.98 है आधार धारा है

- A. 0.012 mA
- B. 0.022 mA
- C. 0.032 mA
- D. 0.042 mA

### **Answer: D**



ਨੀਟਿਸੀ ਤਜ਼ਹ ਟੇਸ਼ੇਂ

**3.** एक उभयनिष्ठ आधार प्रवर्धक परिपथ में निवेशी तथा निर्गत प्रतिरोध क्रमशः  $400\Omega$  तथा  $400k\Omega$  हैं। उत्सर्जक धारा 2 mA तथा धारा लाभ 0.98 है ट्रांजिस्टर का वोल्टेज लाभ है

A. 960

B. 970

C. 980

D. 990

#### **Answer: C**



# वीडियो उत्तर देखें

**4.** एक उभयनिष्ठ आधार प्रवर्धक परिपथ में निवेशी तथा निर्गत प्रतिरोध क्रमशः  $400\Omega$  तथा  $400k\Omega$  हैं। उत्सर्जक धारा 2 mA तथा धारा लाभ 0.98 है ट्रांजिस्टर का शक्ति लाभ है

A. 950

B. 960

C. 970

D. 980

### **Answer: B**



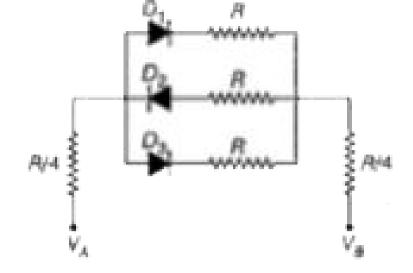
वीडियो उत्तर देखें

**5.** एक उभयनिष्ठ आधार प्रवर्धक परिपथ में निवेशी तथा निर्गत प्रतिरोध क्रमशः  $400\Omega$  तथा  $400k\Omega$  हैं। उत्सर्जक धारा 2 mA तथा धारा लाभ 0.98 है यदि निवेशी AC स्रोत का शिखर वोल्टेज 0.1 वोल्ट है, निर्गत वोल्टेज का शिखर मान होगा

A. 9.8 वोल्ट

B. 98 वोल्ट

C. 980 वोल्ट


D. 970 वोल्ट

### **Answer: B**



वीडियो उत्तर देखें

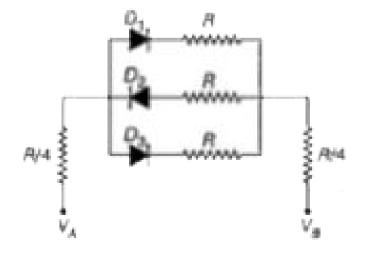
**6.** नीचे दर्शाए गए परिपथानुसार, तीन आदर्श डायोड  $D_1, D_2$  और  $D_3$  संयोजित हैं। विभव  $V_A$  तथा  $V_B$  परिवर्तित किए जा सकते हैं।



यदि  $V_A$  को -10 वोल्ट और  $V_B$  को -5 वोल्ट पर रखा जाए, तो A और B के मध्य प्रभावी प्रतिरोध है

A.R

 $\mathsf{B.}\;\frac{R}{2}$ 


C. 3R

 $\mathrm{D.}~\frac{3R}{2}$ 

#### **Answer: D**



**7.** नीचे दर्शाए गए परिपथानुसार, तीन आदर्श डायोड  $D_1,\,D_2$  और  $D_3$  संयोजित हैं। विभव  $V_A$  तथा  $V_B$  परिवर्तित किए जा सकते हैं।



यदि  $V_A=\,-\,5$  वोल्ट और  $\,V_B=\,-\,10\,$  वोल्ट हो, तो

A और B के मध्य प्रतिरोध होगा

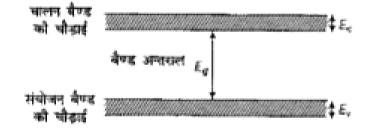
A.R

B.  $\frac{R}{2}$ 

C. 3R

 $\mathrm{D.}~\frac{3R}{2}$ 

## **Answer: A**




उत्तर देखें

# Special Format वाले Objective प्रश्न V एक से अधिक सही ऑप्शन वाले प्रश्न More Than One Correct Option

1. यदि अर्द्धचालक का जालक नियतांक घट रहा है, तो निम्न

में से कौन-सा कथन असत्य है?



- A.  $E_C, E_g$  तथा  $E_v$  बढ़ेगें।
- B.  $E_C$  और  $E_v$  बढ़ेगें, परन्तु  $E_g$  घटेगा।
- C.  $E_C$  और  $E_v$  घटेगें, परन्तु  $E_g$  बढ़ेगा।

D.  $E_C,\,E_q$  तथा  $E_v$  बढ़ेगें।

### **Answer: C**



## 2. निम्न में से सत्य कथन का चुनाव कीजिए।

A. 10eV की कोटि के ऊर्जा अन्तराल वाले पदार्थ कुचालक होते हैं।

B. ताप बढ़ाने पर अर्द्धचालकों की चालकता बढ़ती है।

C. चालकों में चालन व संयोजी बैण्ड एक-दूसरे पर

अध्यारोपित होते हैं।'

D. ताप बढ़ाने पर अर्द्धचालकों की प्रतिरोधकता बढ़ती है।

## **Answer: C**



3. अबायसित p-n सन्धि की अवक्षय परत के लिए निम्न में से सत्य कथन है A. अवक्षय परत की चौड़ाई, अशुद्धियों के घनत्व पर

निर्भर नहीं करती है।

B. अवक्षय परत की चौड़ाई, अशुद्धियों के घनत्व पर निर्भर करती है।

C. आयनित अशुद्ध परमाणुओं द्वारा अवक्षय परत में विद्युत क्षेत्र उत्पन्न किया जाता है।

D. चालन बैण्ड के इलेक्ट्रॉनों तथा संयोजी बैण्ड के

कोटर द्वारा अवक्षय, परत में विद्युत क्षेत्र बनता है।

### **Answer: B**



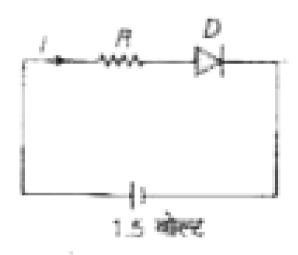
वीडियो उत्तर देखें

4. शुद्ध सिलिकॉन को p-प्रकार का अर्द्धचालक बनने के लिए, प्रयुक्त अशुद्धि है

A. फॉस्फोरस

B. बोरॉन

C. एन्टीमनी


D. ऐलुमिनियम

**Answer: C** 



वीडियो उत्तर देखें

**5.** नीचे दर्शाए गए परिपथ में प्रयुक्त डायोड का सभी धाराओं पर नियत विभव पतन 0.5 वोल्ट तथा अधिकतम शक्ति 100 मिलीवाट है। जब R के परितः विभव  $V_R$  है, तब परिपथ में अधिकतम धारा। प्रवाहित होती है, तो निम्न में से सत्य है



A.  $l=200mA,\,V_R=1\,$  वोल्ट

B. 
$$l=200mA, R=5\Omega$$

C. 
$$l=100mA, V_R=2$$
 वोल्ट

D. 
$$l=100mA, R=10\Omega$$

### **Answer: B**



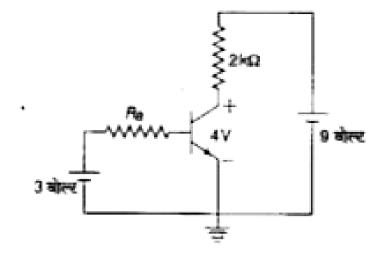
6. एक n-p-n ट्रांजिस्टर परिपथ में, संग्राहक धारा 10 mA है। यदि उत्सर्जित इलेक्ट्रॉनों में से 90% उत्सर्जक पर पहुँचते हैं, तब

A. उत्सर्जक धारा 9 mA होगी

B. आधार धारा 1 mA होगी

C. उत्सर्जक धारा 11 mA होगी

D. आधार धारा -1mA होगी


## **Answer: A**



वीडियो उत्तर देखें

**7.** नीचे दर्शाए गए परिपथ में, यदि  $V_{BE} = 0.7$  वोल्ट और

eta=90 है, तब निम्न में से सत्य है



A. 
$$I_C=2.5mA$$

B. 
$$I_B=27.8mA$$

C. 
$$R_B=82k\Omega$$

D. 
$$I_C=1.2mA$$

## **Answer: C**



उत्तर देखें

## Ncert व Ncert Exemplar के प्रश्न Ncert

- 1. जब p-n संधि पर अग्रदिशिक बायस अनुप्रयुक्त किया जाता है तब यह
  - A. रोधिका विभव बढ़ जाता है ।
  - B. बहुसंख्यक आवेश वाहक धारा घटकर शून्य हो जाती

है

- C. रोधिका धारा विभव कम हो जाता है
- D. उपरोक्त में से कोई नहीं

### **Answer: A**



## वीडियो उत्तर देखें

2. ट्रांजिस्टर क्रिया के लिए, निम्न में से सत्य कथन है

A. आधार, उत्सर्जक और संग्राहक में अपमिश्रण की मात्रा समान तथा आकृति भी समान होती है।

- B. आधार क्षेत्र बहुत पतला और कम अपमिश्रित होता है।
- C. उत्सर्जक सन्धि अग्रदिशिक बायस में तथा संग्राहक सन्धि पश्चदिशिक बायस में होती है।

D. उत्सर्जक तथा संग्राहक सन्धि दोनों ही अग्रदिशिक

बायस में होती हैं।

**Answer: B::C** 



वीडियो उत्तर देखें

3. किसी n-प्रकार के सिलिकॉन में निम्नलिखित में से कौन-सा कथन सत्य है?

A. इलेक्ट्रॉन बहुसंख्यक वाहक हैं और त्रिसंयोजी

परमाणु अपमिश्रक हैं।

B. इलेक्ट्रॉन अल्पसंख्यक वाहक हैं और पंचसंयोजी

परमाणु अपमिश्रक हैं।

C. होल अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु

अपमिश्रक हैं।

D. होल बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।

## **Answer: C**



4. कार्बन, सिलिकॉन और जर्मेनियम, प्रत्येक में चार संयोजक इलेक्ट्रॉन हैं। इनकी विशेषता ऊर्जा बैण्ड अन्तराल द्वारा पृथक्कृत संयोजकता और चालन बैण्ड द्वारा दी गई हैं, जो क्रमशः  $(E_g)_{Si}$  तथा  $(E_g)_C$  के बराबर हैं। निम्नलिखित में से कौन-सा कथन सत्य है? 1)  $\left(E_g
ight)_{Si} < \left(E_g
ight)_{Ge} < \left(E_g
ight)_{Ce}$ 2)  $\left(E_g
ight)_C < \left(E_g
ight)_{G_P} > \left(E_g
ight)_{Si}$ 3)  $\left(E_g
ight)_C > \left(E_g
ight)_{Si} > \left(E_g
ight)_{Ge}$ 4)  $ig(E_gig)_C=ig(E_gig)_{Si}=ig(E_gig)_{Ge}$ 

A. 
$$\left(E_g
ight)_{Si}<\left(E_g
ight)_{Ge}<\left(E_g
ight)_{C}$$

B. 
$$\left(E_g
ight)_C<\left(E_g
ight)_{Ge}>\left(E_g
ight)_{Si}$$

C. 
$$\left(E_g
ight)_C > \left(E_g
ight)_{Si} > \left(E_g
ight)_{Ge}$$

D. 
$$\left(E_g
ight)_C=\left(E_g
ight)_{Si}=\left(E_g
ight)_{Ge}$$

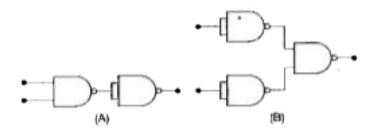
### **Answer: C**



वीडियो उत्तर देखें

5. अबायसित p-n- सन्धि में, होल p-क्षेत्र से n-क्षेत्र की ओर विसरित: 1) n-क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं 2) ये विभवान्तर के कारण सन्धि के परितः गति करते हैं 3) क्षेत्र में होल की सान्द्रता, n-क्षेत्र में इनकी सान्द्रता से अधिक है 4) उपरोक्त सभी

- A. n-क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं
- B. ये विभवान्तर के कारण सन्धि के परितः गति करते हैं
- C. क्षेत्र में होल की सान्द्रता, n-क्षेत्र में इनकी सान्द्रता से


अधिक है

D. उपरोक्त सभी

## **Answer: C**



6. नीचे दिए गए दो लॉजिक परिपथों के निर्गत् की संक्रिया होगी



A. A-AND, B-NOT

B. A-AND, B-OR

C. A-NAND, B-NOT

D. A-NOT, B-OR

**Answer: B** 

7. किसी ट्रांजिस्टर प्रवर्धक के लिए वोल्टता लब्धि

A. सभी आवृत्तियों के लिए समान रहता है।

B. उच्च और निम्न आवृत्तियों पर उच्च होता है तथा मध्य

आवृत्ति की परास में अचर रहता है।

C. उच्च और निम्न आवृत्तियों पर कम होता है तथा मध्य

आवृत्तियों पर अचर रहता है

D. उपरोक्त में से कोई नहीं

### **Answer: C**



## वीडियो उत्तर देखें

**8.** CE - ट्रांजिस्टर प्रवर्धक हेतु  $2K\Omega$  के संग्राहक प्रतिरोध के सिरों पर ध्विन वोल्टता 2 वोल्ट है । मान लीजिए कि ट्रांजिस्टर का धारा प्रवर्धन गुणक (100) है । यदि आधार प्रतिरोध  $1K\Omega$  है , तो निवेश संकेत (signal) वॉल्टता और आधार धारा परिकलित कीजिए ।

A. 
$$V_{
m in}=1$$
 वोल्ट,  $l_B=5\mu A$ 

B. 
$$V_{
m in}=0.01$$
 वोल्ट,  $l_B=10 \mu A$ 

C. 
$$V_{
m in}=1.5\,$$
 वोल्ट,  $l_B=5\mu A$ 

D. 
$$V_{
m in}=1.3$$
 वोल्ट,  $l_B=10 \mu A$ 

### **Answer: B**



वीडियो उत्तर देखें

9. एक के पश्चात् एक श्रेणीक्रम में दो प्रवर्धक संयोजित किए गए हैं। प्रथम प्रवर्धक की वोल्टता लिख्य 10 और द्वितीय प्रवर्धक की वोल्टता लिख्य 20 है। यदि निवेशी संकेत 0.01 वोल्ट है, तो निर्गत् प्रत्यावर्ती संकेत का परिकलन कीजिए। 1) 2 वोल्ट 2) 3 वोल्ट 3) 4 वोल्ट 4) 5 वोल्ट

A. 2 वोल्ट

B. 3 वोल्ट

C. 4 वोल्ट

D. 5 वोल्ट

## **Answer: A**



वीडियो उत्तर देखें

**10.** किसी नैज अर्द्धचालक में ऊर्जा अन्तराल  $E_q$  का मान 1.2 eV है। इसका कोटर गतिशील इलेक्ट्रॉन की तुलना में बहुत कम है तथा ताप पर निर्भर नहीं है। इसकी 600

केल्विन तथा 300 केल्विन पर चालकताओं का क्या

अनुपात है? यह मानिए कि नैज आवेश वाहक सान्द्रता  $n_i$  की

$$n_i = n_o \exp{-\left(rac{E_g}{2k_eta T}
ight)}$$

जहाँ, n, एक स्थिरांक है। 1)  $0.5 imes 10^2$  2)  $2.1 imes 10^3$  3)

$$1.1 imes10^5$$
 4)  $3.2 imes10^4$ 

A. 
$$0.5 imes 10^2$$

 $\mathsf{B.}\ 2.1\times10^3$ 

C. 
$$1.1 imes 10^5$$

D. 
$$3.2 imes 10^4$$

### **Answer: C**



## वीडियो उत्तर देखें

11. किसी p-n संधि डायोड में धारा को इस प्रकार व्यक्त किया जा सकता है-

$$I = I_0 \left[ \exp \left( rac{eV}{k_B T} 
ight) - 1 
ight]$$
 जहाँ  $I_0$  को उत्क्रमित संतृप्त धारा कहते हैं, V डायोड के सिरों पर वोल्टता है तथा यह अग्रदिशिक बायस के लिए धनात्मक तथा पश्चदिशिक बायस के लिए ऋणात्मक है। I डायोड से प्रवाहित धारा  $k_B$  है बोल्ट्जमैन नियतांक  $\left( 8.6 imes 10^{-5} eV / K 
ight)$  है तथा T

परम ताप है। यदि किसी दिए गए डायोड के लिए

 $I_0=5 imes10^{-12}$  A तथा T = 300K है, तब 0.6V

अग्रदिशिक वोल्टता के लिए अग्रदिशिक धारा क्या होगी?

- A. 0.063 एम्पियर
- B. 0.832 एम्पियर
- C. 0.0763 एम्पियर
- D. इनमे से कोई नहीं

## **Answer: A**



वीडियो उत्तर देखें

## 12. एक होल है

- A. इलेक्ट्रॉन का प्रतिकण
- B. जब इलेक्ट्रॉन सहसंयोजन बंध तोड़कर आता है, तो

वहाँ पर एक रिक्तिका बनती है

- C. मुक्त इलेक्ट्रॉनों की अनुपस्थिति
- D. एक कृत्रिम निर्मित कण

### **Answer: B**



वीडियो उत्तर देखें

## Ncert व Ncert Exemplar के प्रश्न Ncert Exemplar

- 1. ताप में वृद्धि से किसी अर्द्धचालक की चालकता में वृद्धि का कारण यह है कि मुक्त धारावाहकों का-
  - A. संख्या घनत्व बढ़ जाता है
  - B. विश्रांति काल बढ़ जाता है
  - C. संख्या घनत्व तथा विश्रांति काल दोनों बढ़ जाते हैं
  - D. संख्या घनत्व बढ़ जाता है और विश्रांति काल घट
    - जाता है, लेकिन विश्रांति काल में घटाव का प्रभाव,
    - संख्या घनत्व में बढाव से कम होता है।

#### **Answer: D**



## वीडियो उत्तर देखें

2. चित्र में डायोडों को आदर्श मानें, तो

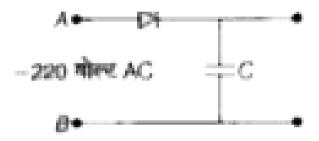
- A.  $D_1$  अग्रदिशिक बायस है और  $D_2$  पश्चदिशिक बायस है, अतः धारा A से B की ओर प्रवाहित होती है
- B.  $D_2$  अग्रदिशिक बायस और  $D_1$  पश्चदिशिक बायस  $\hat{B}$ , अतः B से A की और अथवा A से B की ओर कोई

धारा प्रवाहित नहीं होती है

C.  $D_1$  एवं  $D_2$  दोनों अग्रदिशिक बायस हैं, अतः धारा A

से B की ओर प्रवाहित होती है

D.  $D_1$  एवं  $D_2$  दोनों पश्चदिशिक बायस हैं, अतः A से B


की ओर कोई धारा प्रवाहित नहीं होती है

## **Answer: B**



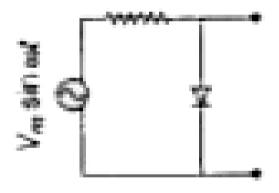
3. चित्र में बिन्दुओं A और B के बीच 220 वोल्ट AC को जोड़ा जाता है |

B संधारित्र C के परितः विभवान्तर क्या होगा?



A. 220 वोल्ट

B. 110 वोल्ट


C. शून्य

D.  $220\sqrt{2}$  वोल्ट

### **Answer: D**



## 4. चित्र में दिए गए परिपथ का निर्गत् होगा



A. प्रत्येक समय शून्य होगा

B. किसी अर्द्धतरंग दिष्टकारी की भाँति निर्गत् में धनात्मक अर्द्धचक्र होंगे

C. किसी अर्द्धतरंग दिष्टकारी की भाँति निगत् में ऋणात्मक अर्द्धचक्र होंगे

D. किसी पूर्ण तरंग दिष्टकारी के निर्गत् की भाँति होगा

## **Answer: B**



5. दर्शाए गए परिपथ में, यदि डायोड की अग्रदिश वोल्टता पतन 0.3 वोल्ट है, तो A एवं B के बीच विभवान्तर होगा



- A. 1.3 वोल्ट
- B. 2.3 वोल्ट
- C. शून्य
- D. 0.5 वोल्ट

### **Answer: B**



- 6. डायोड की अवक्षय परत में,
- ।. कोई गतिमान आवेश नहीं होता है।
  - II. समान मात्रा में इलेक्ट्रॉन और होल उपस्थित होते हैं।
  - III. इलेक्ट्रॉन और कोटरों का संयुग्मन होता हैं।

IV. अगतिमान आवेश होते हैं।

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को चुनिए।

- A. I, II तथा III
- B. II, III तथा IV
- C. I, II तथा IV

### D. I, III तथा IV

### **Answer: C**



- 7. दिष्टकारी परिपथ में उर्मिका (ripples) को कम करने के
- लिए किया जाता है
- ।. $R_L$  को बढ़ाना पड़ेगा।
  - II. निवेशी आवृत्ति कम करनी पड़ेगी।
  - III. निवेशी आवृत्ति बढ़ानी पड़ेगी।
- IV. अधिक धारिता के संधारित्र का उपयोग करना चाहिए।

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

A. I, II तथा III

चुनिए।

B. I, III तथा IV

C. II, III तथा IV

D. I, II तथा IV

# **Answer: B**



- 8. जीनर डायोड के नियामक प्रक्रिया के दौरान:-
- (a) जीनर डायोड से धारा तथा उसके सिरों पर वोल्टता समान बनी रहती है।
- (b) श्रेणीक्रम में लगे प्रतिरोध से धारा बदलती है।
- (c) जीनर प्रतिरोध नियत होता है।
- (d) जीनर डायोड द्वारा दिया प्रतिरोध बदलता है।
  - A. । तथा IV
  - B. II तथा III
  - C. II तथा IV
  - D. I तथा IV

### **Answer: C**



- 9. p-n सन्धि डायोड की पश्चदिशिक बायस में भंजन होने का कारण है
- यदि अपिमश्रण कम है, तब अल्पसंख्यक आवेश वाहकों का वेग अधिक होता है।
- ॥. यदि अपमिश्रण अधिक है, तब अल्पसंख्यक आवेश वाहकों का ५ वेग कम होता है।
- III. यदि अपमिश्रण की सान्द्रता अल्प है, तब प्रबल विद्युत क्षेत्र बनता है।

IV. यदि अपमिश्रण की सान्द्रता अधिक है, तब प्रबल विद्युत

क्षेत्र बनता है।

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

चुनिए।

A. । तथा IV

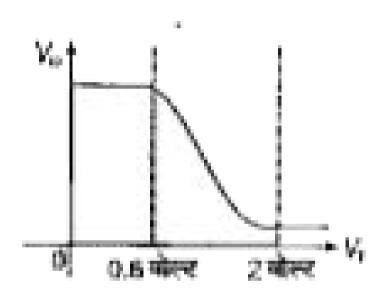
B. II तथा III

C.। तथा III

D. II तथा IV

### **Answer: A**




10. एक n-p-n ट्रांजिस्टर जिसकी आधार-उत्सर्जक सन्धि अग्र अभिनत तथा संग्राहक आधार सन्धि पश्च अभिनत है, पर विचार करते हैं। निम्नलिखित में से कौन-से कथन सत्य हैं?

- A.। तथा III
- B. I तथा II
- C. । तथा IV
- D. II तथा III

### **Answer: A**

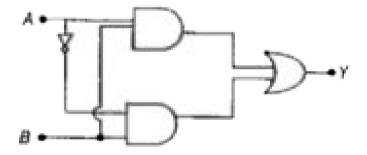


11. चित्र में आधार बायसित CE ट्रांजिस्टर के अन्तरण अभिलक्षण दर्शाए गए हैं।



उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को चुनिए।

।.  $V_i = 0.4$  वोल्ट पर ट्रांजिस्टर सक्रिय अवस्था में है।


II.  $V_i=1$  वोल्ट पर यह प्रवर्धक की भाँति उपयोग किया जा

सकता है। III.  $V_i=0.5$  वोल्ट पर इसे बन्द स्विच करने के रूप में उपयोग किया जा सकता है। IV.  $V_i = 2.5$  वोल्ट पर इसे खुले स्विच के रूप में उपयोग किया जा सकता है। उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को चुनिए। A. I, II तथा III B. II, III तथा IV C. I, II तथा IV D. I, III तथा IV

### **Answer: B**



# 12. दिए गए परिपथ की सत्यता सारणी है



|    | A | 8 | Y |
|----|---|---|---|
|    | 0 | 0 | 1 |
|    | 0 | 1 | 0 |
|    | 1 | C | 1 |
|    | 1 | 1 | 0 |
| A. |   |   |   |

| A | B | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

C

| A   | B | Y |
|-----|---|---|
| 0   | 0 | 0 |
| D   | 1 | 1 |
| 1., | 0 | 1 |
| 1   | 1 | 0 |

**Answer: C** 

D.



**13.** n-p-n ट्रांजिस्टर के CE अभिविन्यास में  $I_C=10~{\rm mA}$  है, यदि 95% इलेक्ट्रॉन उत्सर्जक से संग्राहक पर पहुँचता है, तो निम्न में से सत्य है ।

I.  $I_E=8\,\mathrm{mA}$ 

II.  $I_E=10.53\,$  mA

III.  $I_B~=0.53~\mathrm{mA}$ 

IV.  $I_B=2\,\mathrm{mA}$ 

उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को

चुनिए।

A. I तथा IV

B. II तथा IV

C. II तथा III

D. I तथा III

# **Answer: C**



14. जब एक अर्द्धचालक के परितः विद्युत क्षेत्र लगाया जाता

है, तब

I. 'चालन बैण्ड में इलेक्ट्रॉन निम्न ऊर्जा स्तर से उच्च ऊर्जा

स्तर में जाते हैं।

II. चालन बैण्ड में इलेक्ट्रॉन उच्च ऊर्जा स्तर से निम्न ऊर्जा स्तर में जाते हैं। III. संयोजी बैण्ड में कोटर उच्च ऊर्जा स्तर से निम्न ऊर्जा स्तर में जाते हैं। IV. संयोजी बैण्ड में कोटर निम्न ऊर्जा स्तर से उच्च ऊर्जा स्तर में जाते हैं। उपरोक्त कथनों के आधार पर निम्न में से सही विकल्प को चुनिए। A. । तथा III B. I तथा II C. II तथा IV

D. I तथा IV

**Answer: A** 

