

BIOLOGY

BOOKS - NTA MOCK TESTS

PRINCIPLES OF INHERITANCE AND VARIATION TEST

Multiple Choice Questions

1. A man with blood group A marries AB blood

group woman. Which type of progeny

indicates that the man is not homozygous?

A. AB

B. B

C. A

D. More than one option is correct

Answer: B

2. When a tall plant was self pollinated, onefourth of the progeny were dwarf. The genotypes of the parent and dwarf progenies are

A. TT, Tt

B. Tt, tt

C. Tt, Tt

D. TT, TT

Answer: B

3. The following family tree traces the occurrence of a rare genetic disease. The filled symbols signify the individuals with the disease, whereas the open symbols signify healthy individuals.

Based on this information, the disease is most

likely to be

- A. autosomal, dominant
- B. autosomal, recessive
- C. X-linked, recessive
- D. X-linked, dominant

Answer: B

4. A colour - blind girl is rare because she will

be born only when:

A. A Her mother and maternal grandfather

were colour blind.

B. Her father and maternal grandfather

were colour blind.

C. Her mother is colour blind and father

has normal vision.

D. Parents have normal vision but

grandparents were colour blind.

Answer: B

View Text Solution

5. The law based on the fact that the alleles do not show blending also proposes that:(a) A gamete receives only one of the two factors.

(b) Both the characters are recovered as such in ${\cal F}_2$ -generation.

A. Both (A) and (B) are incorrect

B. (A) is incorrect but (B) is correct

C. Both (A) and (B) are correct

D. (B) is incorrect but (A) is correct

Answer: C

View Text Solution

6. The phenomenon of independent assortment refers to:

A. Expression at the same stage of development.

B. When two pairs of traits are combined in a hybrid, segregation of one pair of character is independent of the other pair of character.

C. Independent location of genes from

each other in an interphase cell

D. Association of genes on the same

chromosome

Answer: B

View Text Solution

- 7. Test cross involves
 - A. Crossing between two F_1 hybrids
 - B. Crossing the F_1 hybrid with a double

recessive genotype

C. Crossing between two genotypes with

dominant trait

D. Crossing between two genotypes with

recessive trait

8. Phenotype of an organism is the result of

A. Cytoplasmic effects and nutrition

B. Environmental changes and sexual

dimorphism

- C. Genotype and environment interactions
- D. mutations and linkage

Answer: C

9. How many types of gametes will be produced by a plant having the genotype AABbcc?

A. Four

B. Nine

C. Two

D. Three

Answer: C

10. In a typical Mendelian cross which is a dihybrid cross, one parent is homozygous for both dominant traits and another parent is homozygous for both recessive traits. In the F_2 generation, both parental combinations and recombinations appear. The phenotypic ratio of parental combinations to recombinations is

A. 10:6

B. 12:4

C. 9:7

D. 15:1

Answer: A

11. If a cross between two individuals produces offsprings with 50% dominant character (A)

and 50% recessive character (a), what are the

genotypes of parents?

A. Aa imes Aa

B. Aa imes aa

C. $AA \times aa$

 $\mathsf{D.AA} imes Aa$

Answer: B

12. Which ONE of the following Mendelian diseases is an example of X-linked recessive disorder?

A. Haemophilia

B. Phenylketonuria

C. Sickle cell anaemia

D. Beta-thalassemia

Answer: A

View Text Solution

13. A husband and wife have normal vision, although both of their fathers are red green colour blind, which is inherited as an x-linked recessive trait.

What is the probability that their first child will be:

A. A normal son

B. A carrier daughter

C. A colour blind son

D. A colour blind daughter

A.
$$A=rac{1}{4}, B=rac{1}{4}, C=rac{1}{4}, D=rac{1}{4}$$

B.
$$A = \frac{1}{2}, B = \frac{1}{4}, C = \frac{1}{4}, D = \frac{0}{4}$$

C. $A = \frac{0}{4}, B = \frac{1}{2}, C = \frac{1}{4}, D = \frac{1}{4}$
D. $A = \frac{1}{4}, B = \frac{1}{4}, C = \frac{1}{4}, D = 0$

Answer: D

14. Which of the following is incorrect about

Klinefelter's syndrome?

A. A chromosomal disorder

B. Karyotype of 44 + XXY

C. Gynaecomastia

D. Fertile males

Answer: D

View Text Solution

15. In a Mendelian dihybrid cross, the probability of getting seeds with genotype Rryy, RrYy, rrYy, and RrYY in F_2 generation is respectively

A.
$$\frac{2}{16} : \frac{4}{16} : \frac{1}{8} : \frac{1}{8}$$

B. $\frac{2}{16} : \frac{2}{16} : \frac{2}{16} : \frac{2}{16} : \frac{2}{16}$
C. $\frac{4}{16} : \frac{4}{16} : \frac{2}{16} : \frac{2}{16}$
D. $\frac{1}{8} : \frac{1}{4} : \frac{2}{8} : \frac{1}{16}$

Answer: A

16. A cross was carried out between two individuals heterozygous for two pairs of genes was carried out. Assuming segregation

and independent assortment, the number of

different genotypes and phenotypes obtained

respectively would be

A. 4 and 9

B. 6 and 3

C. 9 and 4

D. 11 and 4

Answer: C

View Text Solution

17. Read the following statements and state true (T) or False (F):

A. T. H. Morgan worked with tiny fruit flies Drosophila melanogaster.

B. Morgan studied genes that were sex-linked.

C. Morgan observed that two genes did not

segregate independently of each other and F2

ratio was deviated from 9: 3:3 : 1.

C. (A - T), (B - F), (C - F)

Answer: B

View Text Solution

18. A plant with genotype AABBCC is crossed with another plant with aabbcc genotype. How many different genotypes of pollens is possible in an F_1 plant if these three loci follow an independent assortment? **B.**4

C. 2

D. 1

Answer: A

View Text Solution

19. Phenylketonuria (PKU) is an inherited disease that refers to

A. Decrease in phenylalanine in tissue and

blood

B. Increase in phenylpyruvic acid in tissue

and blood

- C. Elimination of sugar in urine
- D. Elimination of homogentisic acid in

urine

Answer: B

View Text Solution

20. Fill in the blanks and select the correct option:

 (i) ____A___ could trace a specific nuclear structure, all through spermatogenesis in a few insects.

(ii) Grasshopper is an example of ____B____
type of sex determination.
(iii) Male bird is ____C____
(iv) Rest of the chromosomes, except sex

chromosomes, are known as ____D____.

Answer: D

21. If enough crosses are made between male flies of the genotype 'Aa' and the female flies of the genotype 'aa' to produce about 1000 offsprings. Which one of the following is the most likely distribution of genotypes in the offsprings?

A. 250 Aa : 750 aa

B. 750 Aa : 250 aa

C. 243 AA: 517 Aa : 240 aa

D. 481 Aa : 519 aa

Answer: D

View Text Solution

22. In a monohybrid cross, 120 plants are obtained. What is the ratio of homozygous and heterozygous?

A. 40:80

B. 60: 60

C. 20: 100

D. 10:110

Answer: B

23. The inheritance of flower colour in Antirrhinum (dog flower) is an example of

P generation

A. incomplete dominance

B. codominance

C. multiple alleles

D. linkage

Answer: A

24. If map distance between genes P and Q is 4 units, between P and R is 11 units, and between Q and R is 7 units, the order of genes on the linkage map can be traced as follows:

D.
$$\stackrel{\longleftarrow}{\stackrel{p}{\longrightarrow} Q} \stackrel{\longleftarrow}{\stackrel{p}{\longrightarrow} R} \stackrel{\longleftarrow}{\stackrel{Q}{\longleftarrow} R}$$

Answer: C

View Text Solution

25. In his classic experiments on pea plants, Mendel did not use:

A. Pod length

B. Seed shape

C. Flower position

D. Seed colour

Answer: A

View Text Solution

26. Study the given pedigree chart for sicklecell anaemia and select the most appropriate option for the genotypes.

description in Column-ll and choose the

27. Match the terms in Column-l with their

View Text Solution

Answer: D

	Genotypes of	Genotypes of 1^{st} and
	parents	$3^{\mbox{\scriptsize rd}}$ child in F_1
_	Hb ^A Hb ^S ,	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}},$
D.	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}}$	$\mathrm{Hb}^{\mathrm{S}}\mathrm{Hb}^{\mathrm{S}}$
- •		

	Genotypes of parents	Genotypes of $1^{ ext{st}}$ and $3^{ ext{rd}}$ child in F_1
_	$Hb^{\Lambda} Hb^{\Lambda}$,	$\mathrm{Hb}^{\Lambda}\mathrm{Hb}^{\Lambda},$
C	Hb ^A Hb ^s	$\mathrm{Hb}^{\mathrm{S}}\mathrm{Hb}^{\mathrm{S}}$

	Genotypes of parents	Genotypes of 1^{st} and 3^{rd} child in F_1
_	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}},$	$Hb^{A}Hb^{A}$,
В.	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}}$	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{A}}$

	Genotypes of parents	Genotypes of $1^{\mbox{st}}$ and $3^{\mbox{rd}}$ child in F_1
-	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}},$	$Hb^A Hb^A$,
Α.	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{A}}$	$\mathrm{Hb}^{\mathrm{A}}\mathrm{Hb}^{\mathrm{S}}$

correct option:

Column – I	Column – II	
(a) Dominance	(i) Many genes govern a	
	single character	
	(ii) In a heterozygous	
(b) Codominance	organism, only one	
Codominance	allele expresses itself	
	(iii) In a heterozygous	
(a) Disistrany	organism, both alleles	
(c) Pleiotropy	express themselves	
	fully	
(d) Dolygonia	(iv) A single gene	
(d) Polygenic	influences many	
inheritance	characters	

A.
$$a-ii, b-i, C-iv, d-iii$$

B.
$$a-ii, b-iii, C-iv, d-i$$

$$\mathsf{C}.\,a-iv,b-i,C-ii,d-iii$$

D.
$$a-iv, b-iii, C-i, d-ii$$

Answer: B

View Text Solution

28. Read the following statements with respect to thalassemia and state true (T) and false (F):

A. It is qualitative problem of synthesizing an incorrectly functioning globin.

B. Alpha thalassemia is due to mutation of

HBA1 and HBA2.

C. Beta thalassemia is controlled by a single gene HBB present on chromosome 11.D. Caused by defects in the synthesis of globin polypeptide in RBC.

A. (A - F), (B - T), (C - T), (D - T)

B. (A - F), (B - F), (C - F), (D - T)

C. (A - T), (B - F), (C – T), (D - F)

D. (A - T), (B - T), (C - T), (D - F)

Answer: A

29. Match column I with column II and select

the correct option.

	Column – I		Column – II
(A)	Sickle cell anaemia	(i)	Mental retardation
(B)	Down's syndrome	(ii)	Absence of sex chromosome
(C)	Klinefelter syndrome	(iii)	Point mutation
(D)	Turner's syndrome	(iv)	Trisomy of allosome

A.
$$A(iv), B(ii), C(iii), D(i)$$

B.
$$A(iii), B(i), C(iv), D(ii)$$

 $\mathsf{C}.\,A(ii),B(iv),C(i),D(ii)$

 $\mathsf{D}.\,A(iii),\,B(iv),\,C(ii),\,D(i)$

Answer: B

30. Which ONE of the following is the most likely ratio of blood groups (A :B : AB) among the progeny from heterozygous parents with B and AB blood groups?

A. 0.5: 0.25: 0.25

B. 0.25: 0.25: 0.5

 $\mathsf{C}.\, 0.25 \colon 0.5 \colon 0.25$

D. 0: 0.25: 0.75

Answer: C

View Text Solution