đ゙’ doubtnut

India's Number 1 Education App

BIOLOGY

BOOKS - NTA MOCK TESTS

PRINCIPLES OF INHERITANCE AND

VARIATION TEST

Multiple Choice Questions

1. A man with blood group A marries $A B$ blood
A. $A B$
B. B
C. A
D. More than one option is correct

Answer: B
2. When a tall plant was self pollinated, onefourth of the progeny were dwarf. The genotypes of the parent and dwarf progenies are
A. TT, Tt
B. Tt , tt
C. Tt, Tt
D. TT, TT

Answer: B
3. The following family tree traces the occurrence of a rare genetic disease. The filled symbols signify the individuals with the disease, whereas the open symbols signify healthy individuals.

Based on this information, the disease is most
likely to be
A. autosomal, dominant
B. autosomal, recessive
C. X-linked, recessive
D. X-linked, dominant

Answer: B

D View Text Solution

4. A colour - blind girl is rare because she will be born only when:
A. A Her mother and maternal grandfather
were colour blind.
B. Her father and maternal grandfather
were colour blind.
C. Her mother is colour blind and father
has normal vision.

D. Parents have normal vision but grandparents were colour blind.

Answer: B

5. The law based on the fact that the alleles do not show blending also proposes that:
(a) A gamete receives only one of the two factors.
(b) Both the characters are recovered as such in F_{2}-generation.
A. Both (A) and (B) are incorrect
B. (A) is incorrect but (B) is correct
C. Both (A) and (B) are correct

D. (B) is incorrect but (A) is correct

Answer: C

D View Text Solution

6. The phenomenon of independent assortment refers to:
A. Expression at the same stage of development.
B. When two pairs of traits are combined in
a hybrid, segregation of one pair of
character is independent of the other pair of character.
C. Independent location of genes from
each other in an interphase cell
D. Association of genes on the same chromosome

Answer: B

7. Test cross involves

A. Crossing between two F_{1} hybrids
B. Crossing the F_{1} hybrid with a double recessive genotype
C. Crossing between two genotypes with dominant trait
D. Crossing between two genotypes with

D View Text Solution

8. Phenotype of an organism is the result of
A. Cytoplasmic effects and nutrition
B. Environmental changes and sexual
dimorphism
C. Genotype and environment interactions
D. mutations and linkage

Answer: C

D View Text Solution

9. How many types of gametes will be produced by a plant having the genotype AABbcc?
A. Four
B. Nine
C. Two
D. Three

Answer: C

D View Text Solution

10. In a typical Mendelian cross which is a
dihybrid cross, one parent is homozygous for
both dominant traits and another parent is homozygous for both recessive traits. In the
F_{2} generation, both parental combinations and recombinations appear. The phenotypic ratio of parental combinations to recombinations is
A. $10: 6$
B. 12: 4
C. 9:7
D. 15: 1

Answer: A

D View Text Solution

11. If a cross between two individuals produces
offsprings with 50% dominant character (A)
and 50% recessive character (a), what are the genotypes of parents?
A. $A a \times A a$
B. $A a \times \mathrm{aa}$
C. $\mathrm{AA} \times \mathrm{aa}$
D. $\mathrm{AA} \times A a$

Answer: B

D View Text Solution
12. Which ONE of the following Mendelian
diseases is an example of X-linked recessive disorder?
A. Haemophilia
B. Phenylketonuria
C. Sickle cell anaemia
D. Beta-thalassemia

Answer: A
13. A husband and wife have normal vision, although both of their fathers are red green colour blind, which is inherited as an x-linked recessive trait.

What is the probability that their first child
will be:
A. A normal son
B. A carrier daughter
C. A colour blind son
D. A colour blind daughter

$$
\text { A. } A=\frac{1}{4}, B=\frac{1}{4}, C=\frac{1}{4}, D=\frac{1}{4}
$$

> B. $A=\frac{1}{2}, B=\frac{1}{4}, C=\frac{1}{4}, D=\frac{0}{4}$
> C. $A=\frac{0}{4}, B=\frac{1}{2}, C=\frac{1}{4}, D=\frac{1}{4}$
> D. $A=\frac{1}{4}, B=\frac{1}{4}, C=\frac{1}{4}, D=0$

Answer: D

D View Text Solution

14. Which of the following is incorrect about Klinefelter's syndrome?
A. A chromosomal disorder

B. Karyotype of $44+\mathrm{XXY}$

C. Gynaecomastia

D. Fertile males

Answer: D

D View Text Solution

15. In a Mendelian dihybrid cross, the probability of getting seeds with genotype Rryy, RrYy, rrYy, and RrYY in F_{2} generation is respectively
A. $\frac{2}{16}: \frac{4}{16}: \frac{1}{8}: \frac{1}{8}$
B. $\frac{2}{16}: \frac{2}{16}: \frac{2}{16}: \frac{2}{16}$
C. $\frac{4}{16}: \frac{4}{16}: \frac{2}{16}: \frac{2}{16}$
D. $\frac{1}{8}: \frac{1}{4}: \frac{2}{8}: \frac{1}{16}$

Answer: A

D View Text Solution

16. A cross was carried out between two individuals heterozygous for two pairs of genes was carried out. Assuming segregation
and independent assortment, the number of different genotypes and phenotypes obtained respectively would be
A. 4 and 9
B. 6 and 3
C. 9 and 4
D. 11 and 4

Answer: C

D View Text Solution
17. Read the following statements and state true (T) or False (F):
A. T. H. Morgan worked with tiny fruit flies

Drosophila melanogaster.
B. Morgan studied genes that were sex-linked.
C. Morgan observed that two genes did not segregate independently of each other and F2 ratio was deviated from 9: 3:3:1.
A. $(A-T),(B-F),(C-T)$
B. $(A-T),(B-T),(C-T)$
C. $(A-T),(B-F),(C-F)$

$$
\text { D. }(A-F),(B-T),(C-T)
$$

Answer: B

D View Text Solution

18. A plant with genotype $A A B B C C$ is crossed
with another plant with aabbcc genotype. How
many different genotypes of pollens is
possible in an F_{1} plant if these three loci
follow an independent assortment?
A. 8
B. 4
C. 2
D. 1

Answer: A

D View Text Solution
19. Phenylketonuria (PKU) is an inherited disease that refers to
A. Decrease in phenylalanine in tissue and blood
B. Increase in phenylpyruvic acid in tissue and blood
C. Elimination of sugar in urine
D. Elimination of homogentisic acid in
urine

Answer: B

20. Fill in the blanks and select the correct option:
(i) ____ A ___ could trace a specific nuclear structure, all through spermatogenesis in a few insects.
(ii) Grasshopper is an example of \qquad B type of sex determination.
(iii) Male bird is

(iv) Rest of the chromosomes, except sex chromosomes, are known as \qquad D
A. (A - Henking), (B -XO), (C Heterogametic), (D - Autosomes)
B. $(\mathrm{A}-\mathrm{Morgan})$, $\quad(\mathrm{B}-\mathrm{XY})$, $(\mathrm{C}-$ Homogametic), (D - Autosomes)
C. (A - Hugo de Vries), (B - YO), (C Heterogametic), (D - Autosomes)
D. $(\mathrm{A}-\mathrm{Henking}), \quad(\mathrm{B}-\mathrm{Xo})$, $(\mathrm{C}-$ Homogametic), (D - Autosomes)

Answer: D

21. If enough crosses are made between male flies of the genotype 'Aa' and the female flies of the genotype 'aa' to produce about 1000 offsprings. Which one of the following is the most likely distribution of genotypes in the offsprings?
A. 250 Aa : 750 aa
B. $750 \mathrm{Aa}: 250 \mathrm{aa}$
C. 243 AA: 517 Aa : 240 aa

D. 481 Aa : 519 aa

Answer: D

D View Text Solution

22. In a monohybrid cross, 120 plants are obtained. What is the ratio of homozygous and heterozygous?
A. $40: 80$
B. $60: 60$
C. $20: 100$
D. 10: 110

Answer: B

D View Text Solution
23. The inheritance of flower colour in

Antirrhinum (dog flower) is an example of

A. incomplete dominance
B. codominance
C. multiple alleles
D. linkage

Answer: A

D View Text Solution

24. If map distance between genes P and Q is 4
units, between P and R is 11 units, and between
Q and R is 7 units, the order of genes on the linkage map can be traced as follows:

B.

C.

D. $\longleftrightarrow \vec{R} \longleftrightarrow \vec{R}$

Answer: C

D View Text Solution

25. In his classic experiments on pea plants,

Mendel did not use:
A. Pod length
B. Seed shape
C. Flower position

D. Seed colour

Answer: A

D View Text Solution

26. Study the given pedigree chart for sickle-
cell anaemia and select the most appropriate option for the genotypes.

B.
Genotypes of Genotypes of $1^{\text {st }}$ and

parents	$3^{\text {rd }}$ child in F_{1}
$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{S}}$,	$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{A}}$,
$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{S}}$	$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{A}}$

C.

Genotypes of parents	Genotypes of $1^{\text {st }}$ and $3^{\text {rd }}$ child in F_{1}
$\mathrm{Hb}^{\Lambda} \mathrm{Hb}^{A}$,	$\mathrm{Hb}^{\Lambda} \mathrm{Hb}^{A}$,
$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{s}}$	$\mathrm{Hb}^{\mathrm{S}} \mathrm{Hb}^{\mathrm{S}}$

Answer: D

D View Text Solution

27. Match the terms in Column-I with their

correct option:

Column - I	Column - II
(a) Dominance	(i) Many genes govern a single character
(b)	
Codominance	(ii) In a heterozygous organism, only one allele expresses itself
(c) Pleiotropy	(iii) In a heterozygous organism, both alleles express themselves fully
(d) Polygenic	(iv) A single gene influences many inheritance

$$
\begin{aligned}
& \text { A. } a-i i, b-i, C-i v, d-i i i \\
& \text { B. } a-i i, b-i i i, C-i v, d-i \\
& \text { C. } a-i v, b-i, C-i i, d-i i i
\end{aligned}
$$

$$
\text { D. } a-i v, b-i i i, C-i, d-i i
$$

Answer: B

D View Text Solution

28. Read the following statements with respect to thalassemia and state true (T) and
false (F):
A. It is qualitative problem of synthesizing an incorrectly functioning globin.
B. Alpha thalassemia is due to mutation of

HBA1 and HBA2.
C. Beta thalassemia is controlled by a single gene HBB present on chromosome 11.
D. Caused by defects in the synthesis of globin polypeptide in RBC.

$$
\begin{aligned}
& \text { A. }(A-F),(B-T),(C-T),(D-T) \\
& \text { B. }(A-F),(B-F),(C-F),(D-T) \\
& \text { C. }(A-T),(B-F),(C-T),(D-F) \\
& \text { D. }(A-T),(B-T),(C-T),(D-F)
\end{aligned}
$$

Answer: A

29. Match column I with column II and select

 the correct option.| | Column - I | | Column - II |
| :--- | :--- | :--- | :--- |
| (A) | Sickle cell anaemia | (i) | Mental retardation |
| (B) | Down's syndrome | (ii) | Absence of sex chromosome |
| (C) | Klinefelter syndrome | (iii) | Point mutation |
| (D) | Turner's syndrome | (iv) | Trisomy of allosome |

A. $A(i v), B(i i), C(i i i), D(i)$
B. $A(i i i), B(i), C(i v), D(i i)$
C. $A(i i), B(i v), C(i), D(i i)$
D. $A(i i i), B(i v), C(i i), D(i)$

Answer: B

D View Text Solution

30. Which ONE of the following is the most
likely ratio of blood groups ($\mathrm{A}: \mathrm{B}: \mathrm{AB}$) among
the progeny from heterozygous parents with B and $A B$ blood groups?
A. $0.5: 0.25: 0.25$
B. $0.25: 0.25: 0.5$
C. $0.25: 0.5: 0.25$
D. $0: 0.25: 0.75$

Answer: C

D View Text Solution

