©゙" doubtnut

CHEMISTRY

BOOKS - NTA MOCK TESTS

CHEMICAL KINETICS TEST -1

Multiple Choice Questions

1. For a hypothetical reaction $A \rightarrow B$ then
activation energy for forward and backward
reactions are $19 \mathrm{~kJ} / \mathrm{mol}$ and $9 \mathrm{~kJ} / \mathrm{mol}$ respectively.

The heat of reaction is
A. $9 \mathrm{kJmol}^{-1}$
B. $19 \mathrm{kJmol}^{-1}$
C. $+10 \mathrm{kJmol}^{-1}$
D. $28 \mathrm{kJmol}^{-1}$

Answer: C

D View Text Solution

2. The rate law for reaction between the substances A and B is given by Rate $=k[A]^{n}[B]^{m}$

On doubling the concentration of A and having the
concentration of B, the ratio of the new rate of the

earlier rate of reaction will be

A. $m+n$
B. $n-m$
C. $2^{(n-m)}$
D. 2^{m+n}

Answer: C

D View Text Solution
3. If a homogeneous catalytic reaction can take place through three alternative paths as depicated below, the catalytic efficiency of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ representing the relative case would be,

Reaction coordinate \rightarrow

$$
\text { A. } P>Q>R
$$

B. $Q>P>R$
C. $P>R>Q$
D. $R>Q>P$

Answer: D

- View Text Solution

4. At the point of intersection of the two curves
shown, calculate the concentration of B in the first
order reaction $A \rightarrow n B$.

A. $\frac{n A_{0}}{2}$
B. $\frac{A_{0}}{n-1}$
C. $\frac{n A_{0}}{n+1}$
D. $\left(\frac{n-1}{n=1}\right) A_{0}$

Answer: C
5. Benzene diazonium chlride in aqueous solution decomposes as:
$C_{6} H_{5}-N=N^{+} C l_{(a q)}^{-}+H_{2} O_{(a q)}$
$\rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{(a q)}+\mathrm{N}_{2(g)}+\mathrm{HCl}_{(a q)}$
The reaction follows first order kinetics. If p is the pressure of N_{2} at constant volume and temperture corresponding to time t and pf that after completion of the reaction, then which of the following graphs conforms to the kinetics of the reaction?

Answer: C

- View Text Solution

6. For the reaction mechanism of the reaction.
$2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$.
Step $1 \quad 2 N O$
$\stackrel{k_{1}}{\Longleftrightarrow} N_{2} O_{2}: \quad K_{e q}($ fast $)$
Step ll $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \xrightarrow{k_{2}} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \quad$ (slow)
Step lll $\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \xrightarrow{\mathrm{~K}_{3}} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ (fast)
Expresson of rate of reaction is
(Take $k_{e q} \times k_{2}=k$)
A. $k^{\prime} N_{2} O_{2}\left[H_{2}\right]$
B. $k^{\prime} N_{2} O\left[H_{2}\right]$
C. $k^{\prime} N_{2} O\left[H_{2}\right]$
D. $k^{\prime} N_{2} O_{2}$

D View Text Solution

7. The half-life of two samples of same compound is
0.1 s and 0.4 s . Their initial concentration is 200 M
and 50 M respectively. What is the order of reaction?
A. 0
B. 2
C. 1
D. 4

- View Text Solution

8. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \Leftrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

For the reaction above, which of the following is not the correct rate of reaction ?

$$
\begin{aligned}
& \text { A. } \frac{-d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=2 \frac{d\left[\mathrm{O}_{2}\right]}{d t} \\
& \text { B. } \frac{-2 d\left[\mathrm{~N}_{2} O_{5}\right]}{d t}=\frac{d\left[N O_{2}\right]}{d t} \\
& \text { C. } \frac{d\left[N O_{2}\right]}{d t}=4 \frac{d\left[O_{2}\right]}{d t} \\
& \text { D. } \frac{-d\left[N_{2} O_{5}\right]}{d t}=\frac{d\left[N O_{2}\right]}{d t}=4 \frac{d\left[O_{2}\right]}{d t}
\end{aligned}
$$

D View Text Solution

9. Rate of reacton depens upon
A. temperature
B. catalyst
C. concentration
D. All of these

Answer: D
10. For the two gaseous reactions following data is given,
$A \rightarrow B, k_{1}=10^{10} e^{-20,000 / T}$
$C \rightarrow D, k_{2}=10^{12} e^{-24,606 / T}$
The temperature at which k_{1} becomes equal to k_{2} is ,
A. 400 K
B. 1000 K
C. 800 K
D. 1500 K

D View Text Solution

11. The rate law for the chemical reaction
$2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{Cl}_{2}$
Rate $=k\left[\mathrm{NO}_{2} \mathrm{Cl}\right]$ is The rate determining step is
A. $2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{Cl}$
B. $\mathrm{NO}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl}$
C. $\mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{NO}_{2}+\mathrm{Cl}_{2}$
D. $\mathrm{NO}_{2} \mathrm{Cl} \rightarrow \mathrm{NO}_{2}+\mathrm{Cl}$

- View Text Solution

12. Observe the following reaction,
$2 A+B \rightarrow C$
The rate of formation of C is
$2.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{mtextn}^{-1}$, then rate of
disappearance of A is
A. $2.2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
B. $1.1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
C. $4.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
D. $5.5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$

Answer: C

D View Text Solution

13. For a reaction $\frac{1}{2} A \rightarrow 2 B$, the rate of disappearance of ' A ' is related to the rate of appearance of ' B ' by the expression-

$$
\begin{aligned}
& \text { A. }-\frac{d[A]}{d t}=\frac{1}{2} \frac{d[B]}{d t} \\
& \text { B. }-\frac{d[A]}{d t}=\frac{1}{4} \frac{d[B]}{d t} \\
& \text { C. }-\frac{d[A]}{d t}=\frac{d[B]}{d t}
\end{aligned}
$$

D. $-\frac{d[A]}{d t}=4 \frac{d[B]}{d t}$

Answer: B

- View Text Solution

14. 1 g of ${ }_{79} A u^{198}\left(t_{1 / 2}=65 h\right)$ give stable marcury
by β - emission. What amount of mercury will left after 260 h ?
A. 0.9375 g
B. $0.3758 g$
C. 0.7586 g
D. 0.9000 g

Answer: A

- View Text Solution

15. If the instantaneous rate of appearance of $\mathrm{NO}_{2}(g)$ is $0.0400 \mathrm{M} / \mathrm{s}$ at same moment of time, what is the reate of disappearence of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ in
M / s ?

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)\right] .
$$

A. 0.02
B. 0.01
C. 0.04
D. 0.08

Answer: A

- View Text Solution

16. For the reaction,
$2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)$
$+2 \mathrm{H}_{2} \mathrm{O}(g)$
The rate expression can be written in the following ways,

$$
\frac{d\left[N_{2}\right]}{d t}=k_{1}[N O]\left[H_{2}\right], \frac{d\left[H_{2} O\right]}{d t}=k_{2}[N O]\left[H_{2}\right]
$$

The relationship between $k_{1}, k_{2}, k_{3}, k_{4}$ is,
A. $k_{2}=k_{1}=k_{3}=k_{4}$
B. $k_{2}=2 k_{1}=k_{3}=k_{4}$
C. $k_{2}=2 k_{3}=k_{1}=k_{4}$
D. $k_{2}=k_{1}=k_{3}=2 k_{4}$

Answer: B

D View Text Solution

17. The reaction
$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{~N}_{2} F$, occurs in the following
steps given below,
$\mathrm{NO}_{2}+\mathrm{F}_{2} \xrightarrow{\text { slow }} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$
$\mathrm{NO}_{2}+\mathrm{F} \xrightarrow{\text { fast }} \mathrm{NO}_{2} \mathrm{~F}$
Thus rate expression of the above reaction can be written as,

$$
\begin{aligned}
& \text { A. } r=K\left[N O_{2}\right]^{2}\left[F_{2}\right] \\
& \text { B. } r=K\left[N O_{2}\right] \\
& \text { C. } r=K\left[N O_{2}\right]\left[F_{2}\right] \\
& \text { D. } r=K\left[F_{2}\right]
\end{aligned}
$$

Answer: C

- View Text Solution

18. By what factor does the rate of reaction increases when the temperature is increased from

$$
30^{\circ} C \text { to } 60^{\circ} C \text { ? }
$$

A. 16
B. 8
C. 32
D. 64

Answer: B

D View Text Solution

19. For reaction $A+2 B \rightarrow C+D$ rate law $R=k[A]^{1}[B]^{2}$. By what factor would the rate change if concentration of A is doubled \& that of B is halved?
A. 2
B. 4
C. 5
D. $1 / 2$

- View Text Solution

20. For a gaseous reaction, following data is given:
$A \rightarrow B, k_{1}=10^{15} e^{-200 / T}$
$C \rightarrow D, k_{2}=10^{14} e^{-100 / T}$
The temperatuer at which $k_{1}=k_{2}$ is:
A. 1000 K
B. 2000 K
C. $868.82 K$
D. $434.2 K$

D View Text Solution

21. At 500 K , the half life period of a gaseous
reactio at an initia pressrue of 80 kPa is 350 s .
When the pressure is 40 kPa , the half life period id
175 s , the order of the reaction is :
A. zero
B. one
C. two
D. three

Answer: A

D View Text Solution

22. For the zero order reaction, $A \rightarrow B+C$, initial concentration of A is 0.1 M If $[\mathrm{A}]=0.08 \mathrm{M}$ after 10 minutes, then it's half life and completion time are respectively
A. $10 \mathrm{~min}, 20 \mathrm{~min}$
B. $25 \mathrm{~min}, 50 \mathrm{~min}$
C. $2 \times 10^{-3} \mathrm{~min}, 4 \times 10^{-3} \mathrm{~min}$
D. $250 \mathrm{~min}, 500 \mathrm{~min}$

Answer: B

D View Text Solution

23. A catalyst is a substance which
A. increases the equilibrium concentration of
the product.
B. changes the equilibrium constant of the
reaction.
C. shortens the time to reach equilibrium.
D. supplies energy to the reaction.

Answer: C

- View Text Solution

24. The half-life period for catalytic decomposition of $A B_{3}$ at 50 mm of Hg is found to be 4 hrs and at

100 mm of Hg it is 2 hrs . The order of the reaction is :
A. 3
B. 1
C. 2
D. 0

Answer: C

- View Text Solution

$\mathbf{2 5 . 9 9}$ \% of a first order reaction was completed in
32 min. When will 99.9% of the reaction complete

?

A. 24 min
B. 8 min
C. 4 min
D. 48 min

Answer: D

- View Text Solution

26. The rate constant (K^{\prime}) of one reaction is double the rate constant ($\mathrm{K}^{\prime \prime}$) of another reaction. Then the relationship between the corresponding activation energies of the two reactions
$\left(E_{a}^{\prime}\right.$ and $\left.E_{a}{ }^{\prime \prime}\right)$ will be -
(Assume the pre-exponential factor \& temperature to be same)
A. $E_{a}{ }^{\prime}>E_{a}{ }^{\prime \prime}$
B. $E_{a}{ }^{\prime}=E_{a}{ }^{\prime \prime}$
C. $E_{a}{ }^{\prime}<E_{a}{ }^{\prime \prime}$
D. $E_{a}{ }^{\prime}<4 E_{a}{ }^{\prime \prime}$

Answer: C

- View Text Solution

27. Which of the following curve represent zero order reaction of $A \rightarrow$ products ?

C.
D.

Answer: D

- View Text Solution

28. When $\log _{e} \mathrm{k}$ is plotted against $\frac{1}{T}$ using the

Arrhenius equation a straight line is expected with
a slope equal to ,
A. $\frac{E_{a}}{R}$
B. $\frac{-E_{a}}{R}$
C. $-\frac{E_{a}}{2.303 R}$
D. $-\frac{R}{E_{a}}$

Answer: B

- View Text Solution

29. By 10 K increase in temperature, the rate of reaction becomes double. How many times the rate
of reaction will be if the temperature is increased from 303 K to 353 K ?
A. 32
B. 6
C. 8
D. 4

Answer: A

D View Text Solution
30. Consider the following reaction in aquous solution.

$$
\begin{aligned}
& 5 \mathrm{Br}^{-}(a q)+\mathrm{BrO}_{3}^{-}(a q)+6 \mathrm{H}^{+}(a q) \\
& \quad \rightarrow 3 \mathrm{Br}_{1}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

If the rate of appearance of $B r_{2}$ at a particular time during the reaction is $0.025 \mathrm{M} \mathrm{sec}^{-1}$, what is
the rate of disppearance (in Msec^{-1}) of Br^{-}at that time?

$$
\text { A. } 0 .-25 \mathrm{M} \mathrm{sec}^{-1}
$$

B. $0.042 \mathrm{M} \mathrm{sec}^{-1}$
C. $0.075 \mathrm{M} \mathrm{sec}^{-1}$
D. $0.125 \mathrm{M} \mathrm{sec}^{-1}$

Answer: B

- View Text Solution

