©゙doubtnut

CHEMISTRY

BOOKS - NTA MOCK TESTS

ELECTROCHEMISTRY TEST

Single Choice

1. The standard reduction potentials at 298 K for
the following half reactions are given against
each
$Z n^{2+}(a q)+2 d e \Leftrightarrow Z n(s)-0.762$

$$
\begin{aligned}
& C r^{3+}(a q)+3 e \Leftrightarrow C r(s)-0.74 \\
& 2 H^{+}(a q)+2 e \Leftrightarrow H_{2}(g) 0.00 \\
& F e^{3+}(a q)+e \Leftrightarrow F e^{2+}(a q) 0.77
\end{aligned}
$$

Which is the stronger reducing agent ?
A. $F e^{2+}(a q)$
B. $H_{2}(g)$
C. $C r(s)$
D. $Z n(s)$

Answer: D
2. The molar conductivity of a 1.5 M solution of an electrolyte is found to be $138.9 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.

Calculate the conductivity of the solution.
A. $1.023 \mathrm{Scm}^{-1}$
B. $0.026 \mathrm{Scm}^{-1}$
C. $0.208 \mathrm{Scm}^{-1}$
D. $0.325 \mathrm{Scm}^{-1}$

Answer: C

D View Text Solution

3. How much chlorine will be liberated on passing

 one ampere current for 30 minutes through NaCl solution?A. 0.66 mole
B. 0.33 mole
C. 0.66 g
D. 0.33 g

Answer: C

D View Text Solution
4. What is the cell constant of a cell of KCl containing $N / 50$ solution, if the conductivity and resistance of cell is $0.002765 \mathrm{Scm}^{-1}$ and 400 ohm respectively.
A. $6.91 \mathrm{~cm}^{-1}$
B. $1.106 \mathrm{~cm}^{-1}$
C. $14.46 \mathrm{~cm}^{-1}$
D. $2.212 \mathrm{~cm}^{-1}$

Answer: B
5. The reduction of NO_{3}^{-}occurs as :
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 e^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}, E^{\circ}=0.96 \mathrm{~V}$
The electrons are provided by Cd till that the solution originally having $0.1 \mathrm{MNO}_{3}^{-}$and $0.4 \mathrm{MH}^{+}$shows that 80% of NO_{3}^{-}ions are converted to NO showing 1 bar pressure. The reduction potential of remaining solution. [log $8.192=0.96]$
A. 0.84 V
B. 1.36 V
C. 1.08 V

D. 1.56 V

Answer: A

- View Text Solution

6. Consider the reaction,
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
What is the quantity of electricity in coulombs needed to reduce 1 mole of $2 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$?
(Given 1F= 96500C)
A. 5.79×10^{5}
B. 5.69×10^{5}
C. 5.59×10^{5}
D. 5.49×10^{5}

Answer: A

- View Text Solution

7. Suggest a list of metals that are extracted electrolytically.
A. $\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$
B. $\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Cr}$
C. $\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Fe}$
D. $\mathrm{Na}, \mathrm{K}, \mathrm{Mg}$, Co

Answer: A

D View Text Solution

8. By diluting a weak electrolyte, specific conductivity (K_{c}) and equivalent conductivity (λ_{c}
) change as
A. Both increase
B. K increases, λ_{c} decreases
C. K_{c} decreases, λ_{c} increases
D. Both decrease

Answer: C

D View Text Solution

9. Two different electrolytic cells filled with molten
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and molten $\mathrm{AI}\left(\mathrm{NO}_{3}\right)_{3}$ respectively are connected in series. When electricity is passed
2.7 g Al is deposited on electrode. Calculate the weight of Cu deposited on cathode. [Cu = 63.5,

$$
\left.A l=27.0 \mathrm{gmol}^{-1}\right]
$$

A. 190.5 g
B. 9.525 g
C. 63.5 g
D. 31.75 g

Answer: B

- View Text Solution

10. A silver cup is plated with silver by passing 965

C of electricity. The amount of Ag deposited is
A. 107.89 g
B. 9.89 g
C. 1.0002 g
D. 1.08 g

Answer: D

- View Text Solution

11. When X amperes of current is passed through molten AlCl_{3} for 96.5 s .0 .09 g of aluminium is deposited. What is the value of X ?
A. 10
B. 20
C. 30
D. 40

Answer: A

- View Text Solution

12. The amount of silver deposited by passing
241.25 C of charge through silver nitrate solution is
A. 2.7 g
B. 2.7 mg
C. 0.27 g
D. 0.54 g

Answer: C

- View Text Solution

13. The number of coulombs required for the deposition of 107.870 g silver is
A. 96500
B. 48250
C. 1

D. 10000

Answer: A

D View Text Solution

14. During electrolysis of water the volume of O_{2}
liberated is $2.24 d \mathrm{~m}^{3}$. The volume of hydrogen
liberated, under same conditions will be
A. $2.24 d m^{3}$
B. $1.12 d m^{3}$
C. $4.48 \mathrm{dm}^{3}$
D. $0.56 d m^{3}$

Answer: C

- View Text Solution

15. H_{2} cannot be displaced by
A. Li
B. Sr
C. Al
D. Ag

Answer: D

D View Text Solution

16. For a cell reaction,
$Z n+C u^{2+}(a q) \rightarrow$ nn $^{2+}(a q)+C u$
Cell representation is
A. $C u^{2+}|C u||Z n| Z n^{2+}$
B. $C u^{2+}|C u|\left|Z n^{2+}\right| Z n$
C. $Z n\left|Z n^{2+}\right|\left|C u^{2+}\right| C u$
D. $C u^{2+}|Z n|\left|Z n^{2+}\right| C u$

Answer: C

D View Text Solution

17. The standard reduction potential E for the half
reactions are as:
$Z n^{2+}+2 e^{-} \rightarrow Z n \quad E^{\circ}=-0.76 V$
$C u^{2+}+2 e^{-} \rightarrow C u, E^{\circ}=0.34 V$
The standard cell voltage for the cell reaction is?
$Z n+C u^{2+} \rightarrow$ nn $^{2+}+C u$
A. 0.42 V
B. -0.42 V
C. -1.1 V
D. 1.10 V

Answer: D

- View Text Solution

18. When 9.65 C of electricity is passed through a
solution of silver nitrate (atomic weight of $\mathrm{Ag}=$
107.87 taking as 108), the amount of silver
deposited is
A. 5.8 mg
B. 10.8 mg
C. 15.8 mg
D. 20.8 mg

Answer: B

19. On passing 0.1 F of electricity through molten

solution of. $\mathrm{Al}_{2} \mathrm{O}_{3}$ amount of aluminium metal deposited at cathode is ($\mathrm{Al}=27$)
A. 0.3 g
B. 0.6 g
C. 0.9 g
D. 1.2 g

Answer: C

D View Text Solution
20. On passing 3 A of electricity for $50 \mathrm{~min}, 1.8 \mathrm{~g}$ metal deposits. The equivalent mass of metal is
A. 9.3
B. 19.3
C. 38.3
D. 39.9

Answer: B

- View Text Solution

21. 3 Faradays of electricity was passed through an aqueous solution of iron (II) bromide. The
weight of iron metal (at. wt. = 56) deposited at the cathode (in g) is
A. 65
B. 84
C. 112
D. 168

Answer: B
22. Standard reduction electrode potentials of
three metals A, B and C are respectively +0.5 V ,
-3.0 V and -1.2 V . The reducing powers of these metals are:
A. $A>B>C$
B. $C>B>A$
C. $A>C>B$
D. $B>C>A$

Answer: D
23. Which of the following is not correct?
A. he metallic conduction is due to the movement of electrons in the metal
B. The electrolytic conduction is due to the movement of ions in the solution
C. The current carrying ions are not necessarily discharged at the electrodes
D. The metallic conduction increases with the increase in temperature, whereas that of
electrolytic conduction decreases with temperature.

Answer: D

D View Text Solution

24. In which of the following electrochemical cell overall cell reaction is :

$$
H g O(s)+H_{2}(g) \rightarrow H g(I)+H_{2} O(l)
$$

$$
\text { A. } P t\left|H_{2}(g)\right| H^{+}(a q)|H g O(s)| H g(l) \mid P t
$$

$$
\text { B. } P t\left|H_{2}(g)\right| N a O H(a q)|H g O(s)| H g(l) \mid P t
$$

C.

$$
\begin{aligned}
& \quad P t\left|H_{2}(g)\right| H^{+}|N a O H(a q)| H g O(s)|H g(l)| P t \\
& \text { D. } P t\left|H_{2}(g)\right| H^{+}| | H g O(s)|H g(l)| P t
\end{aligned}
$$

Answer: B

- View Text Solution

25. The equivalent conductivity of 0.1 M weak acid is 100 times lesser than that at infinite dilution.

The degree of dissociation of weak electrolyte at 0.1 M is -
A. 100
B. 10
C. 0.01
D. 0.001

Answer: C

- View Text Solution

26. Which reaction is not feasible ?
A. $2 \mathrm{KI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$
B. $2 \mathrm{KBr}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}+B r_{2}$
C. $2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
D. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}$

Answer: B

- View Text Solution

27. At 298 K , the molar conductivities at infinite dilution (\wedge_{m}°) of $\mathrm{NH}_{4} \mathrm{CI}, \mathrm{KOH}$ and KCl are 152.8, 272.6 and $149.8 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ respectively.

The \wedge_{m}° of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ and \% dissociation of $0.01 \mathrm{MNH}_{4} \mathrm{OH}$
with
$\wedge m=25.1 S c m^{2} \mathrm{~mol}^{-1}$

temperature are

A. 275.6, 0.91
B. 275.6, 9.1
C. 266.6, 9.6
D. 30, 84

Answer: B

D View Text Solution
28. Suppose that gold is being plated on to another metal in an electrolytic cell. The half-cell reaction producing the $\mathrm{Au}(\mathrm{s})$ is $A u C l_{4}^{-}+3^{-} \rightarrow A u(s)+4 \mathrm{Cl}^{-}$. If a 0.30 A current runs for 15 min , what mass of $\mathrm{Au}(\mathrm{s})$ will be plated, assume all the electrons are used in the reduction of $A u \mathrm{Cl}_{4}^{-}$? The Faraday constant is $96485 \mathrm{C} / \mathrm{mol}$ and molar mass of Au is 197.
A. 0.184 g
B. 0.551 g
C. 1.84 g
D. 0.613 g

Answer: A

D View Text Solution

29. The products obtained at the cathode and anode respectively during the electrolysis of aqueous $K_{2} S O_{4}$ solution using platinum electrodes are
A. O_{2}, H_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{H}_{2}, \mathrm{SO}_{2}$
D. $\mathrm{K}, \mathrm{SO}_{2}$

Answer: B

D View Text Solution

30. A conductance cell when filled with 0.5 M KCl solution (conductivity $=6.67 \times 10^{-3} \Omega \mathrm{~cm}^{-1}$) registers a -3 resistance of 243Ω. What will be the cell constant?
A. 1.62 cm
B. $1.62 \mathrm{~cm}^{-1}$
C. $1.62 d m^{-1}$
D. $1.62 m^{-1}$

Answer: B

- View Text Solution

