©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NTA MOCK TESTS

EQUILIBRIUM TEST (CHEMICAL)-1

Multiple Choice Question

1. Bromine monochloride (BrCl) decomposes into bromine and $\begin{array}{lcr}\text { chlorine } & \text { according } & \text { to } \\ 2 B r C l(g)=B r_{2}(g)+C l_{2}(g), K_{c}=32 & \text { at } 500 \mathrm{~K} \text {. If initially, }\end{array}$ pure BrCl is taken at concentration $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, what is its molar concentration in the mixture at equilibrium state?
A. $1.23 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $2.8 \times 10^{-4} M$
C. $3.54 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $4.76 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: B

- View Text Solution

2. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{-}$ion in its 0.1 M solution. How will this concentration be affected, if the solution is 0.1 M in HCl also? If the second dissociation constant of $H_{2} S$ is 1.2×10^{-13} , then calculate the concentration of S^{2-} under both conditions. Select these four answers from the choices given below.
A.

B.

C.

D. None of these

Answer: A

- View Text Solution

3. One mole of $N_{2}(\mathrm{~g})$ is mixed with 2 moles of $H_{2}(\mathrm{~g})$ in a 4 litre vessel. If 50% of $N_{2}(\mathrm{~g})$ is converted to $N H_{3}(\mathrm{~g})$ by the following reaction:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
What will be the value of K_{c} for the following equilibrium ?
$N H_{3}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g)$
A. 256
B. 16
C. $\frac{1}{16}$
D. None of these

Answer: C

- View Text Solution

4. For the equilibrium,
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, K_{c}=\frac{\alpha^{2}}{(1-\alpha) V}$
temperature remaining constant.
A. K_{c} may increase or decrease with the change in volume depending upon its numerical value
B. K_{c} will increase with the increase in volume
C. K_{c} will increase with the decrease in volume
D. K_{c} will not change with the change in volume

Answer: D

- View Text Solution

5. Which of the following is correct for the reaction?
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
A. $K_{p}=K_{c}$
B. $K_{p}<K_{c}$
C. $K_{p}>K_{c}$
D. Pressure is required to predict the correlation

Answer: B

- View Text Solution

6. In the reaction, $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{HCl}(g)$:
A. $K_{p} \neq K_{c}$
B. $K_{p}=K_{c}$
C. $K_{p}>K_{c}$
D. $K_{p}<K_{c}$

Answer: B

7. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? (K = equilibrium constant)
A. $A \Leftrightarrow B, K=0.001$
B. $M \Leftrightarrow N, K=10$
C. $X \Leftrightarrow Y, K=0.005$
D. $R \Leftrightarrow P, K=0.01$

Answer: B

- View Text Solution

8. The equilibrium constant K_{c} for the reaction $P_{4}(g) \Leftrightarrow 2 P_{2}(g)$ is 1.4 at $400^{\circ} C$. Suppose that 3 moles of P_{4}
(g) and 2 moles of $P_{2}(\mathrm{~g})$ are mixed in 2 litre container at $400^{\circ} C$.What is the value of reaction quotient (Q)?
A. $3 / 2$
B. $2 / 3$
C. 1
D. None of these

Answer: B

- View Text Solution

9. The equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ at 373 K is 50 . If 1 L of flask containing 1 mole of $A_{2}(\mathrm{~g})$ is connected to 2 L flask containing

2 moles $B_{2}(\mathrm{~g})$ at $100^{\circ} C$, the amount of AB produced at equilibrium at $100^{\circ} \mathrm{C}$ would be
A. 0.93 mol
B. 1.87 mol
C. 2.80 mol
D. 3.74 mol

Answer: B

- View Text Solution

10. The equilibrium, $\quad S O_{2} C l_{2}(g) \Leftrightarrow S O_{2}(g)+C l_{2}(g)$ is attained at 298 K in a closed container and an inert gas, He is introduced. Which of the following is/are correct?
A. Concentration of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g)$ remain unchanged
B. More $C l_{2}(g)$ is formed
C. Concentration of $\mathrm{SO}_{2}(\mathrm{~g})$ is reduced
D. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is formed

Answer: A

- View Text Solution

11. The reaction quotient (Q) predicts:
A. The direction of equilibrium to be attained.
B. The ratio of activities at equilibrium i.e., K_{c}..
C. The ratio of activities at any time.

D. All of these

Answer: D

D View Text Solution

12. $K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below.

What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
A. 7.24 atm
B. 3.62 atm
C. 1 atm
D. 1.5 atm

- View Text Solution

13. The equilibrium constant K_{c} for $A(g) \Leftrightarrow B(g)$ is 1.1 , gas B will have a molar concentration greater than 1 if:
A. $[A]=0.91$
B. $[A]>0.91$
C. $[A]>1$
D. All of these

Answer: D

14. $X_{2}+X^{-} \Leftrightarrow X_{3}^{-} \quad(\mathrm{x}=$ iodine $)$ This reaction is set up in aqueous medium. We start with 1 mol of X_{2} and 0.5 mol of X^{-} in 1L flask. After equilibrium is reached, excess of AgNO_{3} gave 0.25 mol of yellow ppt. equilibrium constant is
A. 1.33
B. 2.66
C. 2.00
D. 3.00

Answer: A

D View Text Solution

15. The partial pressure of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{CO}_{(\mathrm{g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$ in equilibrium mixture for the reaction,
$\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}$ are 2.0, 1.0 and 0.1 atm respectively at $427^{\circ} C$. The value of K_{p} for decomposition of $\mathrm{CH}_{3} \mathrm{OH}$ to CO and H_{2} is:
A. $10^{2} \mathrm{~atm}^{2}$
B. $2 \times 10^{2} \mathrm{~atm}^{-2}$
C. $50 \mathrm{~atm}^{2}$
D. $5 \times 10^{-3} \mathrm{~atm}^{2}$

Answer: D

- View Text Solution

16. 0.2 mole of NH 4 Cl are introduced into an empty container of 10 litre and heated to $327^{\circ} \mathrm{C}$ to attain equilibrium as :
$\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \rightarrow \mathrm{NH}_{3(g)}+\mathrm{HCl}_{3(g)}+\mathrm{HCl}_{(g)},\left(K_{P}=0.36 \mathrm{~atm}^{2}\right)$ The quantity of solid $\mathrm{NH}_{4} \mathrm{Cl}$ left is:
A. 0.078 mole
B. 0.02 mole
C. 0.095 mole
D. 0.035 mole

Answer: A

- View Text Solution

17. For the reaction :
$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$, Which of the $(\Delta H=-170.8 k J / \mathrm{mol})$
following statements is not true?
A. Addition of $\mathrm{CH}_{4(\mathrm{~g})}$ or $\mathrm{O}_{2(\mathrm{~g})}$ at equilibrium will cause a shift to right
B. The reaction is exothermic
C. At equilibrium, the concentration of

$$
\mathrm{CO}_{2(g)} \text { and } \mathrm{H}_{2} \mathrm{O}_{(l)} \text { are not equal }
$$

D. The equilibrium constant for the reaction is given by

$$
K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}
$$

Answer: D

- View Text Solution

18. In which of the following reactions, increase in the volume at constant temperature does not affect the number of moles at equilibrium?
A. $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
B. $C_{(g)}+(1 / 2) O_{2(g)} \rightarrow C O_{(g)}$
C. $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})}$
D. None of these

Answer: D

- View Text Solution

19. For the reversible reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at $500^{\circ} C$, the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmosphere.

The corresponding value of K_{c}, with concentration in mole litre -1 , is -
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
C. $\frac{1.44 \times 10^{-5}}{(8.314 \times 500)^{-2}}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Answer: D

- View Text Solution

20. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction $N_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ is expressed by $K_{p}=\frac{4 x^{2}}{1-x^{2}} P$, where $\mathrm{P}=$ pressure, $\mathrm{x}=$ extent of decomposition. Which one of the following statements is true?
A. K_{p} remains constant with change in P and x
B. K_{p} increases with increase of P
C. K_{p} increases with decrease of x .
D. K_{p} increases with increase of x .

Answer: A

- View Text Solution

21. In which of the following equilibrium, change in the volume of the system does not alter the number of moles -
A. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$

Answer: C

22. The equilibrium constant for the disproportionation of
HgCl^{+}and HgCl_{3}^{-}is \ldots
Given, $\mathrm{HgCl}^{+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{HgCl}_{2}, \mathrm{~K}_{1}=3 \times 10^{6}$

$$
\mathrm{HgCl}_{2}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{HgCl}_{3}^{-}, \mathrm{K}_{2}=9
$$

A. 27×10^{6}
B. 3.3×10^{-7}
C. 3.3×10^{-6}
D. 3×10^{-6}

Answer: D

- View Text Solution

23. Change in volume of the system does not alter the number of moles in which of the following equilibrium?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
D. $S O_{2} C l_{2(g)} \Leftrightarrow S O_{2(g)}+C l_{2(g)}$

Answer: A

- View Text Solution

24. For the following three reaction (i), (ii) and (iii) equilibrium constants are given
(i) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \mathrm{K}_{1}$
(ii) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow C O_{(g)}+3 \mathrm{H}_{2(g)} K_{2}$
(iii) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow C O_{2(g)}+4 \mathrm{H}_{2(\mathrm{~g})} K_{3}$

Which of the following relation is correct ?
A. $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$
B. $K_{2} \cdot K_{3}=K_{1}$
C. $K_{1} \sqrt{K_{2}}=K_{3}$
D. $K_{3}=K_{1} K_{2}$

Answer: D

- View Text Solution

25. The $p K_{a}$ of a weak acid, HA , is 4.80 . The $p K_{b}$ of a weak base, BOH is 4.78. The pH of an aqueous solution of the corresponding salt, BA , will be
B. 9.58
C. 4.79
D. 7.01

Answer: D

D View Text Solution

26. Which of the following buffer solutions turns invalid on addition of 10 mL of 1.0 M HCl ?
A. 100 mL of buffer solution having 0.15 M
NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ each
B. 100 mL of buffer solution having $0.2 \mathrm{M} \mathrm{NH}_{3}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ each
C. 100 mL of buffer solution having 0.2 M
NH_{3} and $0.1 \mathrm{MNH}_{4} \mathrm{Cl}$
D. 100 mL of buffer solution having 0.5 M

NH_{3} and $0.1 \mathrm{MNH} \mathrm{H}_{4} \mathrm{Cl}$

Answer: D

- View Text Solution

27. The
two
equilibrium,
$A B \Leftrightarrow A^{+}+B^{-}$and $A B+B^{-} \Leftrightarrow A B_{2}^{-}$
simultaneously maintained in a solution with equilibrium constants, K_{1} and K_{2} respectively. The ratio of A^{+}to $A B_{2}^{-}$in the solution is
A. Directly proportional to the concentration of B^{-}
B. Inversely proportional to the concentration of B^{-}
C. Inversely proportional to the square of the concentration
of B^{-}
D. Directly proportional to the square of the concentration of B^{-}

Answer: C

- View Text Solution

28. An equilibrium mixture at 300 K has $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28
atm and 1.10 atm pressures. If the volume of container doubled at same temperature. Calculate the new equilibrium pressures for the gases.
A. $0.095,0.64$ atm
B. $1.095,2.64$ atm
C. 1.250, 2.30 atm
D. $3.250,1.50 \mathrm{~atm}$

Answer: A

- View Text Solution

29. The Henderson's equation for acetic acid and sodium acetate buffer is given by the expression.
A. $p H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
B. $p H=p K_{a}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
C. $p O H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
D. $p O H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}$

Answer: B

- View Text Solution

30. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm. pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rise to 0.84 atm . The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is
A. $0.30 \mathrm{~atm}^{2}$
B. $0.18 \mathrm{~atm}^{2}$
C. $0.17 \mathrm{~atm}^{2}$
D. $0.11 \mathrm{~atm}^{2}$

Answer: D

- View Text Solution

Single Choice

1. Bromine monochloride (BrCl) decomposes into bromine and chlorine according to reaction $2 B r C l(g)=B r_{2}(g)+C l_{2}(g), K_{c}=32$ at 500 K. If initially, pure BrCl is taken at concentration $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, what is its molar concentration in the mixture at equilibrium state?
A. $1.23 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $2.8 \times 10^{-4} M$
C. $3.54 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $4.76 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: B

D View Text Solution

2. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{-}$ion in its 0.1 M solution. How will this concentration be affected, if the solution is 0.1 M in HCl also? If the second dissociation constant of $H_{2} S$ is 1.2×10^{-13} , then calculate the concentration of S^{2-} under both conditions. Select these four answers from the choices given below.

$\left[\mathrm{HS}^{-}\right]$	$\left[\mathrm{HS}^{-}\right] 0.1 \mathrm{M} \mathrm{HCl}$	$\left[\mathrm{s}^{2-}\right]$	$\left[\mathrm{s}^{2}\right] \mathrm{l} .1 \mathrm{M}$ 和
9.54	9.1×10^{-1}	1.2×10^{-15}	1.092
$\times 10^{-5} \mathrm{M}$	M	M	$\times 10^{-19} \mathrm{M}$

B.

C.

D. None of these

- View Text Solution

3. One mole of $N_{2}(\mathrm{~g})$ is mixed with 2 moles of $H_{2}(\mathrm{~g})$ in a 4 litre vessel. If 50% of $N_{2}(\mathrm{~g})$ is converted to $N H_{3}(\mathrm{~g})$ by the following reaction:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
What will be the value of K_{c} for the following equilibrium ?
$\mathrm{NH}_{3}(g) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} H_{2}(g)$
A. 256
B. 16
C. $\frac{1}{16}$
D. None of these

- View Text Solution

4. For the equilibrium,
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, K_{c}=\frac{\alpha^{2}}{(1-\alpha) V}$
temperature remaining constant.
A. K_{c} may increase or decrease with the change in volume depending upon its numerical value
B. K_{c} will increase with the increase in volume
C. K_{c} will increase with the decrease in volume
D. K_{c} will not change with the change in volume

Answer: D

5. Which of the following is correct for the reaction?

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g)
$$

A. $K_{p}=K_{c}$
B. $K_{p}<K_{c}$
C. $K_{p}>K_{c}$
D. Pressure is required to predict the correlation

Answer: B

D View Text Solution

6. In the reaction, $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{HCl}(g)$:
A. $K_{p} \neq K_{c}$
B. $K_{p}=K_{c}$
C. $K_{p}>K_{c}$
D. $K_{p}<K_{c}$

Answer: B

- View Text Solution

7. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? ($\mathrm{K}=$ equilibrium constant)
A. $A \Leftrightarrow B, K=0.001$
B. $M \Leftrightarrow N, K=10$
C. $X \Leftrightarrow Y, K=0.005$
D. $R \Leftrightarrow P, K=0.01$

Answer: B

D View Text Solution

8. The equilibrium constant K_{c} for the reaction $P_{4}(g) \Leftrightarrow 2 P_{2}(g)$ is 1.4 at $400^{\circ} C$. Suppose that 3 moles of P_{4} (g) and 2 moles of $P_{2}(\mathrm{~g})$ are mixed in 2 litre container at $400^{\circ} C$.What is the value of reaction quotient (Q)?
A. $3 / 2$
B. $2 / 3$
C. 1
D. None of these

Answer: B

- View Text Solution

9. The equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ at 373 K is 50 . If 1 L of flask containing 1 mole of $A_{2}(\mathrm{~g})$ is connected to 2 L flask containing

2 moles B_{2} (g) at $100^{\circ} C$, the amount of $A B$ produced at equilibrium at $100^{\circ} \mathrm{C}$ would be
A. 0.93 mol
B. 1.87 mol
C. 2.80 mol
D. 3.74 mol

- View Text Solution

10. The equilibrium, $\quad \mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+C l_{2}(g)$ is attained at 298 K in a closed container and an inert gas, He is introduced. Which of the following is/are correct?
A. Concentration of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ remain unchanged
B. More $C l_{2}(g)$ is formed
C. Concentration of $\mathrm{SO}_{2}(\mathrm{~g})$ is reduced
D. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is formed

Answer: A

- View Text Solution

11. The reaction quotient (Q) predicts:
A. The direction of equilibrium to be attained.
B. The ratio of activities at equilibrium i.e., K_{c}..
C. The ratio of activities at any time.
D. All of these

Answer: D

- View Text Solution

12. $K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below.

What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
$C_{2} H_{6}(g) \rightarrow C_{2} H_{4}(g)+H_{2}(g)$
A. 7.24 atm
B. 3.62 atm
C. 1 atm
D. 1.5 atm

Answer: B

- View Text Solution

13. The equilibrium constant K_{c} for $A(g) \Leftrightarrow B(g)$ is 1.1 , gas B will have a molar concentration greater than 1 if:
A. $[A]=0.91$
B. $[A]>0.91$
C. $[A]>1$

D. All of these

Answer: D

D View Text Solution

14. $X_{2}+X^{-} \Leftrightarrow X_{3}^{-} \quad(\mathrm{x}=$ iodine $)$ This reaction is set up in aqueous medium. We start with 1 mol of X_{2} and 0.5 mol of X^{-} in 1L flask. After equilibrium is reached, excess of AgNO_{3} gave 0.25 mol of yellow ppt. equilibrium constant is
A. 1.33
B. 2.66
C. 2.00
D. 3.00

- View Text Solution

15. The partial pressure of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{CO}_{(\mathrm{g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$ in equilibrium mixture for the reaction,
$\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}$ are 2.0, 1.0 and 0.1 atm respectively at $427^{\circ} C$. The value of K_{p} for decomposition of $\mathrm{CH}_{3} \mathrm{OH}$ to CO and H_{2} is:
A. $10^{2} \mathrm{~atm}^{2}$
B. $2 \times 10^{2} \mathrm{~atm}^{-2}$
C. $50 \mathrm{~atm}^{2}$
D. $5 \times 10^{-3} \mathrm{~atm}^{2}$
16. 0.2 mole of NH 4 Cl are introduced into an empty container of

10 litre and heated to $327^{\circ} \mathrm{C}$ to attain equilibrium as :
$\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \rightarrow \mathrm{NH}_{3(g)}+\mathrm{HCl}_{3(g)}+\mathrm{HCl}_{(g)},\left(K_{P}=0.36 \mathrm{~atm}^{2}\right)$
The quantity of solid $\mathrm{NH}_{4} \mathrm{Cl}$ left is:
A. 0.078 mole
B. 0.02 mole
C. 0.095 mole
D. 0.035 mole

Answer: A

17. For the reaction :
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$, Which of the $(\Delta H=-170.8 k J / \mathrm{mol})$ following statements is not true?
A. Addition of $\mathrm{CH}_{4(\mathrm{~g})}$ or $O_{2(\mathrm{~g})}$ at equilibrium will cause a shift to right
B. The reaction is exothermic
C. At equilibrium, the
$\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are not equal
D. The equilibrium constant for the reaction is given by

$$
K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}
$$

Answer: D
18. In which of the following reactions, increase in the volume at constant temperature does not affect the number of moles at equilibrium ?
A. $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
B. $C_{(g)}+(1 / 2) O_{2(g)} \rightarrow C O_{(g)}$
C. $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})}$
D. None of these

Answer: D

- View Text Solution

19. For the reversible reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at $500^{\circ} C$, the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmosphere.

The corresponding value of K_{c}, with concentration in mole litre -1 , is -
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
C. $\frac{1.44 \times 10^{-5}}{(8.314 \times 500)^{-2}}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Answer: D

- View Text Solution

20. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ is expressed by $K_{p}=\frac{4 x^{2}}{1-x^{2}} P$, where $\mathrm{P}=$ pressure, $\mathrm{x}=$ extent of decomposition. Which one of the following statements is true?
A. K_{p} remains constant with change in P and x
B. K_{p} increases with increase of P
C. K_{p} increases with decrease of x .
D. K_{p} increases with increase of x .

Answer: A

- View Text Solution

21. In which of the following equilibrium, change in the volume of the system does not alter the number of moles -
A. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
B. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
D. $S O_{2} C l_{2} \Leftrightarrow S O_{2}(g)+C l_{2}(g)$

Answer: C

D View Text Solution

22. The equilibrium constant for the disproportionation of
HgCl^{+}and HgCl_{3}^{-}is
Given, $\mathrm{HgCl}^{+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{HgCl}_{2}, \mathrm{~K}_{1}=3 \times 10^{6}$
$\mathrm{HgCl}_{2}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{HgCl}_{3}^{-}, \mathrm{K}_{2}=9$
A. 27×10^{6}
B. 3.3×10^{-7}
C. 3.3×10^{-6}
D. 3×10^{-6}

- View Text Solution

23. Change in volume of the system does not alter the number of moles in which of the following equilibrium?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $S O_{2} C l_{2(g)} \Leftrightarrow S O_{2(g)}+C l_{2(g)}$

Answer: A

- View Text Solution

24. For the following three reaction (i), (ii) and (iii) equilibrium constants are given
(i) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} K_{1}$
(ii) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(\mathrm{~g})} \mathrm{K}_{2}$
(iii) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)} \mathrm{K}_{3}$

Which of the following relation is correct ?
A. $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$
B. $K_{2} \cdot K_{3}=K_{1}$
C. $K_{1} \sqrt{K_{2}}=K_{3}$
D. $K_{3}=K_{1} K_{2}$

Answer: D

25. The $p K_{a}$ of a weak acid, HA, is 4.80 . The $p K_{b}$ of a weak base, BOH is 4.78. The pH of an aqueous solution of the corresponding salt, BA , will be
A. 9.22
B. 9.58
C. 4.79
D. 7.01

Answer: D

- View Text Solution

26. Which of the following buffer solutions turns invalid on addition of 10 mL of 1.0 M HCl ?
A. 100 mL of buffer solution having 0.15 M
NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ each
B. 100 mL of buffer solution having 0.2 M NH 3 and $\mathrm{NH}_{4} \mathrm{Cl}$ each
C. 100 mL of buffer solution having 0.2 M
NH_{3} and 0.1 MNH 4 Cl
D. 100 mL of buffer solution having 0.5 M
NH_{3} and $0.1 \mathrm{MNH}_{4} \mathrm{Cl}$

Answer: D

- View Text Solution

27. The two equilibrium,
$A B \Leftrightarrow A^{+}+B^{-}$and $A B+B^{-} \Leftrightarrow A B_{2}^{-}$
simultaneously maintained in a solution with equilibrium constants, K_{1} and K_{2} respectively. The ratio of A^{+}to $A B_{2}^{-}$in the solution is
A. Directly proportional to the concentration of B^{-}
B. Inversely proportional to the concentration of B^{-}
C. Inversely proportional to the square of the concentration
of B^{-}
D. Directly proportional to the square of the concentration of B^{-}

Answer: C

- View Text Solution

28. An equilibrium mixture at 300 K has $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28 atm and 1.10 atm pressures. If the volume of container doubled at same temperature. Calculate the new equilibrium pressures for the gases.
A. $0.095,0.64$ atm
B. $1.095,2.64$ atm
C. 1.250, 2.30 atm
D. $3.250,1.50$ atm

Answer: A

- View Text Solution

29. The Henderson's equation for acetic acid and sodium acetate buffer is given by the expression.
A. $p H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
B. $p H=p K_{a}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
C. $p O H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
D. $p O H=p K_{a}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}$

Answer: B

- View Text Solution

30. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm. pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rise to 0.84 atm . The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is
A. $0.30 \mathrm{~atm}^{2}$
B. $0.18 \mathrm{~atm}^{2}$
C. $0.17 \mathrm{~atm}^{2}$
D. $0.11 \mathrm{~atm}^{2}$

Answer: D

- View Text Solution

