©゙"doubtnut

CHEMISTRY

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 56

Chemistry

1. Which molecule has same structure as that of CO_{2} ?
A. SO_{2}
B. NO_{2}
C. KO_{2}
D. $B e F_{2}$

Answer: D

- View Text Solution

2. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?
A. $A l^{3+}<M g^{2+}<N a^{+}<F$ (increasing ionic size)
B. $B<C<N<O$ (increasing first ionisation enthalpy)
C. $I<B r<F<C l$ (increasing electron gain enthalpy)
D. $L i<N a<K<R b$ (increasing metallic radius)

Answer: B

- View Text Solution

3. The carbon-based reduction method is NOT used for the extraction of
(a) tin from SnO_{2}
(b) iron from $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(c) aluminium from alumina
(d) magnesium from $\mathrm{MgCO}_{3} . \mathrm{CaCO}_{3}$
A. a, b
B. c, d
C. a,b,c
D. b, c, d

Answer: B
4. The hardness of water can be determined titrimetrically, and the commonly used reagent for this is:
A. Oxalic acid
B. Sodium thiosulphate
C. Sodium citrate
D. Disodium salt of EDTA

Answer: D

- View Text Solution

5. Identify d-block element?
A. $[X e] 4 f^{14} 5 d^{1} 6 s^{2}$
B. $[R s] 5 f^{14} 6 d^{1} 7 s^{2}$
C. $[X e] 4 f^{14} 5 d^{10} 6 s^{2}$
D. $[R s] 6 d^{2} 7 s^{2}$

Answer: C

- View Text Solution

6. Identify the compound showing linkage isomerism.
A. $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
C. $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{NO}_{2} \mathrm{Cl}\right] \mathrm{Br}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2}$

Answer: C

7. Not correctly matched ?
A. $B F_{3}<B C l_{3}$ (Lewis acidic strength)
B. o-nitrophenol $<$ p-nitrophenol (Acidic strength)
C. o-nitrophenol > p-nitrophenol (volatile nature)
D. $L i F>N a F$ (Solubility)

Answer: D

- View Text Solution

8. The compound that gives secondary alcohol as a major product on reaction with $\mathrm{CH}_{3} \mathrm{MgBr}$ followed by $\mathrm{H}_{2} \mathrm{O}$ is
A. $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
B.
C.

D.

Answer: D

- View Text Solution

9. Which of the can be a reactant for Cannizzaro reaction?

B.

C. $\mathrm{CH}_{3}-\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{CH}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$
10. Which of the following compound will not give test with Tollen's reagent:
A.

B.

C.

D.

Answer: A
11.
B is a major product

B.

Answer: C

- View Text Solution

12.

product is

A.

B. ${ }^{\mathrm{Br}}$

Answer: B

- View Text Solution

13. The IUPAC name of the following structure is

$$
\mathrm{CH}_{3}-\underset{\substack{\| \\ O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{COOH} ?
$$

A. 3-ketobutanoic acid
B. 2-ketobutanoic acid
C. 4-ketobutanoic acid
D. 3-oxobutanoic acid
14. In Cannizzaro reaction RDS involves:
A. transfer of H^{\oplus}
B. transfer of $H R^{\Theta}$
C. transfer of H.
D. transfer of: CCl_{2}

Answer: B

- View Text Solution

15. Which gas is used in anaesthetics?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO
C. NCl
D. NO_{2}

Answer: A

- View Text Solution

16. The standard reduction potentials of some half cell reactions are given below:
$\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 e^{-}=\mathrm{Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{OE}_{0}=1.455 \mathrm{~V}$
$\mathrm{MnO}_{4}^{+}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{OE}_{0}=1.51 \mathrm{~V}$
$C e^{4+}+e^{-} \Leftrightarrow C e^{3+} E_{0}=1.61 V$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{OE}_{0}=1.71 \mathrm{~V}$
Pick out the Incorrect statement :
A. Ce^{+4} will oxidise Pb^{2+} to PbO_{2}
B. MnO_{4}^{-}will oxidise Pb^{2+} to PbO_{2}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$ will oxidise Mn^{+2} to MnO_{4}^{-}
D. PbO_{2} will oxidise Mn^{+2} to MnO_{4}^{-}

Answer: D

- View Text Solution

17. A solution containing one mole per litre each of $A X$, $B X_{2}, C X_{2}$ and $D X_{2}$ is electrolysed using inert electrodes. The values of the standard potentials for reduction reactions of $A^{+}\left|A, B^{2+}\right| B, C^{2+} \mid C$ and $D^{2+} \mid$ Dare $+0.80,+0.34,-0.76$ and -1.66 volts respectively. The correct sequence in which these metals will be deposited on the cathode is:
A. A,B,C,D
B. D,C,B,A
C. A,C,B,D
D. $\mathrm{D}, \mathrm{B}, \mathrm{C}, \mathrm{A}$

Answer: A

(D) View Text Solution

18. An element X crystallises in BCC lattice. The edge length of unit cell is $5 \AA$ If molar mass of X is $125 \mathrm{~g} \mathrm{~mol}^{-7}$, then calculte density of crystal.
A. $5 \mathrm{gcm}^{-3}$
B. $2.66 \mathrm{gcm}^{-3}$
C. $1.5 \mathrm{gcm}^{-3}$
D. $3.33 \mathrm{gcm}^{-3}$

Answer: D

19. Rate of reaction at $[A]=0.2 \mathrm{M}$ is $10^{-2} \mathrm{~mol} \mathrm{litr}^{-1} \mathrm{~min}^{-1}$. If reaction is of first order then its half life will be:
A. 832 sec
B. 416 sec
C. 440 sec
D. 14 sec

Answer: A

- View Text Solution

20. Given the bond energies of $\mathrm{N}=\mathrm{N}, \mathrm{H}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds are 945 , 436 and $391 \mathrm{~kJ} \mathrm{~mol}^{-7}$ respectively, the enthalpy of the reaction
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ is :
A. -93 kJ
B. 102 kJ
C. -93 kJ
D. 105 kJ

Answer: A

- View Text Solution

21. Electrons ocupying $t_{2_{g}}$, orbitals in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complex will be \qquad .

- View Text Solution

22. Select the number of species having bond with fractional bond order (Indicated bond)
$\mathrm{N}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}, \mathrm{ClO}_{3}^{-}, \mathrm{O}_{3}, \mathrm{CO}_{2},\left(\mathrm{BF}_{3}, \mathrm{Al}_{2} \mathrm{Cl}_{6}, \mathrm{CH}_{3} \mathrm{COOHC}-\mathrm{O}\right.$ bond)
23. Find the value of ' x ' where ' x ' is the number of the oxygen atom(s) in solid state of $N_{2} O_{5}$ which exists as $\left[\mathrm{NO}_{X}\right]^{+}\left[\mathrm{NO}_{Y}\right]^{-}$.

- View Text Solution

24. How many of the following compounds can be categorized as secondary amines?

Propan-2-amine, diphenylamine, N isopropylaniline, dibenzylamine, ethylmethylamine, N methylisopropylamine, p-tert butylaniline.

- View Text Solution

25. Alcohol + Lucas reagent \rightarrow Immediate turbidity

How many of the following will give above test positive?

2-Methylpropan-2-ol, butan-1 ol, 2-methylpropan-1-OI, 2, 2-dimethylpropan-1-OI, 2,4 - dimethylpentan-2-ol, propan 1,3-diol

- View Text Solution

26. A one-litre vessel containing 0.015 moles of $N_{2(g)}$ and 0.02 moles of $P C l_{5(g)}$ are heated at $227^{\circ} \mathrm{C}$, where the total pressure was found to be 1.843 atm. Assuming nitrogen to be inert, determine K_{p} for the following decomposition reaction:
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
(Put your answer by multiplying with 100)

- View Text Solution

27. $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$

The concentration of a mixture of HNO_{3} and $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ can be expressed similar to oleum. Initially we have a mixture containing

23g of HNO_{3} and 27g of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$. Find the percentage labelling if 100 g of this mixture is mixed with 4.5 g of $\mathrm{H}_{2} \mathrm{O}$.

- View Text Solution

28. An excess of AgNO_{3} solution is added to 100 mL of a 0.2 M solution of dichloridotetraaquachromium(III) chloride. The number of millimoles of AgCl precipitated will be \qquad

- View Text Solution

29. An ideal gas ' X ' has same density at 1 bar pressure as that of dinitrogen at 2 bar at 298 K . What is the molar mass of the gas ' X '?

- View Text Solution

30. Determine $\frac{Z}{6}$ If the atomic number of an inert gas atom in which the total number of d-electrons is equal to the difference in the number of total p and s electrons is Z .
