

CHEMISTRY

BOOKS - NTA MOCK TESTS

SOME BASIC CONCEPTS OF CHEMISTRY

Multiple Choice Questions

1. RH_2 (ion exchange resin) can replace Ca^{2+} ions in hard water as:

 $RH_2 + Ca^{2+}
ightarrow \mathrm{Rca} + 2H^+$

If 1 L of hard water after passing through RH_2 has pH = 3, then hardness in parts per million of Ca^{2+} is :

A. 10 ppm

B. 40 ppm

C. 100 ppm

D. 20 ppm

Answer: D

2. 150 mL 0.08 M $BaCl_2$ is added to 100 mL 0.1 M $Al_2(SO_4)_3$ and it is allowed to complete the precipitation reaction. Calculate the molarity of $AICI_3$ in the final solution.

A. 0.032 M

B. 0.040 M

C. 0.120 M

D. 2.240 M

Answer: A

3. 1g silver salt of an organic dibasic acid on heating yields 0.5934 g Ag. If the weight percentage of C in acid is 8 times the weight percentage of hydrogen and one half the weight percentage of oxygen, then determine its molecular formula. $(M_{AgNO_3} = 108)$

A. $C_4H_6O_6$

 $\mathsf{B.}\, C_3 H_4 O_6$

C. $C_4 H_3 O_3$

$\mathsf{D.}\, C_4 H_6 O_3$

Answer: A

4. 2 mol N_2 and 3 mol H_2 are allowed to react in a 20 L flask at 400 K and after the complete conversion of H_2 to NH_3 , $10LH_2O$ was added and the temperature is reduced to 300 K. The pressure of gas after the reaction is $N_2 + 3 H_2
ightarrow 2 N H_3$ (assume that all the

 NH_3 formed gets dissolved in water)

A.
$$3R imesrac{300}{20}$$

B. $3R imesrac{300}{10}$
C. $R imesrac{300}{20}$
D. $R imesrac{300}{20}$

Answer: D

5. A mixture containing 28 g Cao and 20 g NaOH is treated with aqueous HCl until the reactions complete. The resulting solution is evaporated to dryness. What is the mass of the solid obtained ?

A. 169.50 g

B. 84.75 g

C. 42.37 g

D. 100.0 g

Answer: B

A. 0.2

C. 1

D. 2.5

Answer: B

7. A commercial sample of H_2O_2 is marked as 33.6 V. The molarity of H_2O_2 in the sample and the mass of O_2 available from 100 mL sample are, respectively: A. $\frac{1.5M}{2.4g}$ B. $\frac{3M}{4.8g}$ C. $\frac{2M}{3.2g}$ D. $\frac{1M}{1.6g}$

Answer: B

8. 25.4 g of iodine and 14.2 g chlorine react to give a mixture of ICl and Icl_3 . How many moles of ICl and Icl_3 are formed, respectively ?

A. ${}^{0.05}_{0.05}$

- B. ${}^{0.1}_{0.05}$
- C. $^{0.5}_{0.5}$
- D. ${}^{0.1}_{0.1}$

Answer: D

9. On subjecting 10 ml mixture of N_2 and Co to repeated electric spark to form CO_2 and NO, 7 ml of O_2 was required for combustion. What was the mole percent of co in the mixture ?

(All volumes were measured under identical conditions)

A. 4

B. 6

C. 40

D. 60

Answer: D

View Text Solution

10. 0.70 g sample consisting of CaC_2O_4 and MgC_2O_4 is heated at 300 °C to convert the salts to $CaCO_3$ and $MgCO_3$, respectively. The sample then weighs 0.47 g. When the sample is heated to 700 °C, then the products are CaO and MgO, respectively. What is the weight of mixture of the oxides?

A. 0.36 g

B. 0.14 g

C. 0.28 g

D. 1.08 g

Answer: C

11. Nitric acid is produced from NH_3 in the following three steps,

(I) $4NH_3(g)+5O_2(g)
ightarrow 4NO+6H_2O(I)$ $(II) 2NO(g)+O_2(g)
ightarrow 2NO_2(g)$

(III)

 $3NO_2(g) + H_2O(I) o 2HNO_3(aq) + NO(g)$ % yield of (I), (II) and (III) are 40%, 60% and 70% respectively, then what volume of NH_3

(g) at 1 atm and 0°C is required to produce 1075 g HNO_3 ?

A. 3413 L

B. 3500 L

C. 6826 L

D. 1750 L

Answer: A

12. The molecular formula of a commercial resin used for exchanging ions in water softening is $C_8H_7SO_3Na$ (molecular weight = 206). What would be the maximum uptake of Ca^{2+} ions by the resin if expressed in mol per gm?

A.
$$\frac{1}{412}$$

B. $\frac{1}{103}$
C. $\frac{1}{206}$
D. $\frac{2}{309}$

Answer: A

13. In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg AgBr. What is the percentage of bromine in the compound (atomic mass of Ag = 108 and atomic number of Br = 80) ?

A. 60

C. 36

D. 48

Answer: B

14. In the reaction $4A+2B+3C o A_4B_2C_3$, what will be the number moles of product formed, starting from one mole of A, 0.6 moles of B and 0.72 moles of C ?

A. 0.25

B. 0.3

C. 0.24

D. 2.32

Answer: C

15. Study the following table.

Compound (Molecular	Weight of compound (taken in
weight)	g)
(a) CO_2 (44)	4.4
(b) NO_2 (46)	2.3
(c) H_2O_2 (34)	6.8
(d) SO_2 (64)	1.6

Which of these two compounds have the least

weight of oxygen in them ?

A. $\frac{b}{d}$

 $\mathsf{B.}^{a}_{c}$

 $\mathsf{C}.\,^a_b$

D. $\frac{c}{d}$

Answer: A

16. For the reaction,

 $CX_4+2O_2
ightarrow CO_2+2X_2O$

 $0.9gCX_4$ completely reacts with 1. 74 g

oxygen. The approximate molar mass of X is:

A. 20

B.40

D. 80

Answer: D

View Text Solution

17. A carbon compound contains 12.8% of carbon, 2.1% of hydrogen and 85.1% of bromine. The molecular weight of the compound is 187.9. Calculate the molecular formula of the compound. (Atomic wts: H = 1.008, C = 12.0, Br = 79.9)

A. CH_3Br

$\mathsf{B.}\, CH_2Br_2I$

 $\mathsf{C.}\, C_2 H_4 B r_2$

D. $C_2H_4Br_3$

Answer: C

18. If 6.3 g of $NaHCO_3$ are added to 15.0 g CH_3COOH solution. The residue is found to

weigh 18.0g . What is the mass of CO_2

released in this reaction.

A. 1.3 g

- B. 8.3 g
- C. 3.3 g
- D. 10.3 g

Answer: C

19. How many carbon atoms are present in $C_{6}H_{12}O_{6}$? (Given: $N_{A}=6.023 imes10^{23}$)

A. $1.26 imes 10^2$ carbon atoms

B. $1.26 imes 10^{24}$ carbon atoms

C. $1.26 imes 10^{14}$ carbon atoms

D. $1.26 imes 10^{48}$ carbon atoms

Answer: B

20. The vapour density of a mixture containing NO_2 and N_2O_4 is 38.3 at 27°C. Calculate the mole of NO_2 in 100 g mixture.

A. 0.437 mole

B. 0.7 mole

C. 0.37 mole

D. 0.27 mole

Answer: A

View Text Solution

21. P and Q are two elements which form P_2Q_3 , PQ_2 molecules. If 0.15 mole of P_2Q_3 and PQ_2 weighs 15.9 g and 9.3 g, respectively, what are atomic weighs of P and Q respectively.

- A. 26,48
- B. 16,18
- C. 26,28
- D. 26,18

Answer: D

22. Calculate the weight of lime (Cao) obtained by heating 300 kg of 90% pure limestone. $(CaCO_3)$.

A. 159.20 kg

B. 181.20 kg

C. 191.20 kg

D. 151.20 kg

Answer: D

23. Calculate the percentage composition in terms of mass of a solution obtained by mixing 300 g of a 25% and 400 g of a 40% solution by mass.

A. 0.4357

B. 0.2357

C. 0.3357

D. 0.6357

24. Calculate normality of mixture obtained by mixing : 100 mL of 0.1 N $H_2SO_4 + 50$ mL of 0.25 N NaOH.

A. 0.167

B. 0.0167

C. 0.17

D. 0.067

Answer: B

25. How many mL of 2.0 M $Pb(NO_3)_2$, contains 600 mg Pb^{2+} .

A. 1.14 mL

B. 1.94 mL

C. 1.34 mL

D. 1.44 mL

Answer: D

26. A sample of NaOH weighing 0.38 g is dissolved in water and the solution is made to 50.0 mL in a volumetric flask. What is the molarity of the resulting solution ?

A. 0.29

B. 0.19

D. 0.9

Answer: B

View Text Solution

27. A solution of glucose in water is labelled as 10 percent $\frac{W}{W}$. If the density of the solution is $1.2gmL^{-1}$, then what shall be the molarity of the solution ?

A. 0.17 M

B. 0.67 M

C. 0.6 M

D. 0.76 M

Answer: B

View Text Solution

28. If a pure compound made of X_2Y_3 molecules consists 60% X by weight, then the atomic weight of Y is:

- A. 2. 25 times the atomic weight of X.
- B. 44% of the atomic weight of X.
- C. 4.0 times the atomic weight of X
- D. 25% of the atomic weight of X.

Answer: B

29. Equal weight of 'X' (atomic weight=36) and 'Y' (atomic weight= 24) react to form the compound, X_2Y_3 . If that is the case, then

- A. X is the limiting reagent
- B. Y is the limiting reagent.

C. no reactant is left over and the mass of

 X_2Y_3 formed is double the mass of 'X'

taken.

D. none of these apply

Answer: C

View Text Solution

30. The following process has been used to obtain iodine from oil-field brines in California. $NaI + AgNO_3
ightarrow AgI + NaNO_3$ $2AqI + Fe
ightarrow FeI_2 + 2Aq$ $2FeI_2 + 3Cl_2
ightarrow 2FeCl_3 + 2I_2$ How many grams of $AgNO_3$ are required in the first step for every 254 kg I_2 produced in the third step ?

A. $340 imes10^4$

 $\texttt{B.340}\times10^3$

 $\mathsf{C.}\,34 imes10^3$

D. $34 imes 10^5$

Answer: B

View Text Solution