©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NTA MOCK TESTS

SOME BASIC CONCEPTS OF

CHEMISTRY

Multiple Choice Questions

1. $R H_{2}$ (ion exchange resin) can replace $C a^{2+}$
ions in hard water as:
$R \mathrm{H}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{Rca}+2 \mathrm{H}^{+}$

If 1 L of hard water after passing through RH_{2}
has $\mathrm{pH}=3$, then hardness in parts per million of $C a^{2+}$ is :
A. 10 ppm
B. 40 ppm
C. 100 ppm
D. 20 ppm

Answer: D

2. $150 \mathrm{~mL} 0.08 \mathrm{M} \mathrm{BaCl}_{2}$ is added to 100 mL 0.1

M $A l_{2}\left(S O_{4}\right)_{3}$ and it is allowed to complete the precipitation reaction. Calculate the molarity of AICI_{3} in the final solution.
A. 0.032 M
B. 0.040 M
C. 0.120 M
D. 2.240 M

D View Text Solution

3. 1 g silver salt of an organic dibasic acid on heating yields 0.5934 g Ag. If the weight percentage of C in acid is 8 times the weight percentage of hydrogen and one half the weight percentage of oxygen, then determine its molecular formula. $\left(M_{\mathrm{AgNO}_{3}}=108\right)$
A. $C_{4} H_{6} O_{6}$
B. $C_{3} H_{4} O_{6}$
C. $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{3}$

D. $C_{4} H_{6} O_{3}$

Answer: A

D View Text Solution

4. $2 \mathrm{~mol} N_{2}$ and $3 \mathrm{~mol} H_{2}$ are allowed to react in a 20 L flask at 400 K and after the complete conversion of H_{2} to $\mathrm{NH}_{3}, 10 \mathrm{LH}_{2} \mathrm{O}$ was added and the temperature is reduced to 300 K. The pressure of gas after the reaction is
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ (assume that all the
NH_{3} formed gets dissolved in water)

$$
\begin{aligned}
& \text { A. } 3 R \times \frac{300}{20} \\
& \text { B. } 3 R \times \frac{300}{10} \\
& \text { C. } R \times \frac{300}{20} \\
& \text { D. } R \times \frac{300}{10}
\end{aligned}
$$

Answer: D

D View Text Solution

5. A mixture containing 28 g Cao and 20 g

NaOH is treated with aqueous HCl until the reactions complete. The resulting solution is evaporated to dryness. What is the mass of the solid obtained?
A. 169.50 g
B. 84.75 g
C. 42.37 g
D. 100.0 g

Answer: B
6. On warming, $\mathrm{H}_{2} \mathrm{O}_{2}$ in aqueous solution decomposes
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(1)+\mathrm{O}_{2}(\mathrm{~g})$
If 1 mol of gas occupies a volume of 25 L under
the conditions of measurement, and 200 mL of
x M solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $5 \mathrm{~L} \mathrm{O}_{2}$, then
the value of x is:
A. 0.2
B. 2
C. 1
D. 2.5

Answer: B

D View Text Solution

7. A commercial sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is marked as
33.6 V . The molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the sample and the mass of O_{2} available from 100 mL sample are, respectively:
A. ${ }_{2.4 g}^{1.5 M}$
B. ${ }_{4.8 g}$
C. ${ }_{3.2 g}^{2 M}$
D. ${ }_{1.6 g}$

Answer: B

D View Text Solution

8. 25.4 g of iodine and 14.2 g chlorine react to give a mixture of ICl and Icl_{3}. How many moles of ICl and Icl_{3} are formed, respectively?
A. $\begin{aligned} & 0.05 \\ & 0.05\end{aligned}$
B. $\begin{aligned} & 0.1 \\ & 0.05\end{aligned}$
C. $\begin{aligned} & 0.5 \\ & 0.5\end{aligned}$
D. $\begin{aligned} & 0.1 \\ & 0.1\end{aligned}$

Answer: D

D View Text Solution

9. On subjecting 10 ml mixture of N_{2} and Co to repeated electric spark to form CO_{2} and $\mathrm{NO}, 7$ ml of O_{2} was required for combustion. What
was the mole percent of co in the mixture ?
(All volumes were measured under identical conditions)
A. 4
B. 6
C. 40
D. 60

Answer: D

D View Text Solution
10. 0.70 g sample consisting of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and
$\mathrm{MgC} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated at $300^{\circ} \mathrm{C}$ to convert the
salts to CaCO_{3} and MgCO_{3}, respectively. The
sample then weighs 0.47 g . When the sample is heated to $700^{\circ} \mathrm{C}$, then the products are CaO and MgO , respectively. What is the weight of mixture of the oxides?
A. 0.36 g
B. 0.14 g
C. 0.28 g
D. 1.08 g

Answer: C

D View Text Solution

11. Nitric acid is produced from NH_{3} in the following three steps,
(I) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$(I I) 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
(III)
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
\% yield of (I), (II) and (III) are $40 \%, 60 \%$ and
70% respectively, then what volume of NH_{3}
(g) at 1 atm and $0^{\circ} \mathrm{C}$ is required to produce $1075 \mathrm{~g} \mathrm{HNO}_{3}$?
A. 3413 L
B. 3500 L
C. 6826 L
D. 1750 L

Answer: A

D View Text Solution
12. The molecular formula of a commercial
resin used for exchanging ions in water
softening is $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \mathrm{Na}$ (molecular weight =
206). What would be the maximum uptake of
$C a^{2+}$ ions by the resin if expressed in mol per
gm?
A. $\frac{1}{412}$
B. $\frac{1}{103}$
C. $\frac{1}{206}$
D. $\frac{2}{309}$

Answer: A

D View Text Solution

13. In Carius method of estimation of
halogens, 250 mg of an organic compound gave 141 mg AgBr . What is the percentage of bromine in the compound (atomic mass of Ag
$=108$ and atomic number of $\mathrm{Br}=80)$?
A. 60
B. 24
C. 36
D. 48

Answer: B

D View Text Solution

14. In the reaction $4 A+2 B+3 C \rightarrow A_{4} B_{2} C_{3}$
, what will be the number moles of product
formed, starting from one mole of $\mathrm{A}, 0.6$ moles of B and 0.72 moles of C ?
A. 0.25
B. 0.3
C. 0.24
D. 2.32

Answer: C

- View Text Solution

15. Study the following table.

Compound (Molecular weight)	Weight of compound (taken in g)
(a) $\mathrm{CO}_{2}(44)$	4.4
(b) $\mathrm{NO}_{2} \quad(46)$	2.3
(c) $\mathrm{H}_{2} \mathrm{O}_{2}(34)$	6.8
(d) $\mathrm{SO}_{2} \quad(64)$	1.6

Which of these two compounds have the least

weight of oxygen in them ?

A. ${ }_{d}^{b}$
B. ${ }_{c}^{a}$
C. ${ }_{b}^{a}$
D. ${ }_{d}^{c}$

Answer: A

D View Text Solution

16. For the reaction,
$\mathrm{CX}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{X}_{2} \mathrm{O}$
$0.9 g C X_{4}$ completely reacts with 1.74 g oxygen. The approximate molar mass of X is:
A. 20
B. 40
C. 60

D. 80

Answer: D

D View Text Solution

17. A carbon compound contains 12.8% of carbon, 2.1% of hydrogen and 85.1% of bromine. The molecular weight of the compound is 187.9. Calculate the molecular formula of the compound. (Atomic wts: $\mathrm{H}=$ 1.008, $\mathrm{C}=12.0, \mathrm{Br}=79.9)$
A. $\mathrm{CH}_{3} \mathrm{Br}$
B. $\mathrm{CH}_{2} \mathrm{Br}_{2} \mathrm{I}$
C. $C_{2} H_{4} B r_{2}$
D. $C_{2} H_{4} B r_{3}$

Answer: C

D View Text Solution

18. If 6.3 g of NaHCO_{3} are added to 15.0 g
$\mathrm{CH}_{3} \mathrm{COOH}$ solution. The residue is found to
weigh 18.0 g . What is the mass of CO_{2} released in this reaction.
A. 1.3 g
B. 8.3 g
C. 3.3 g
D. 10.3 g

Answer: C

D View Text Solution

19. How many carbon atoms are present in
0.35
mole
of
$C_{6} H_{12} O_{6}$?
(Given:
$\left.N_{A}=6.023 \times 10^{23}\right)$
A. 1.26×10^{2} carbon atoms
B. 1.26×10^{24} carbon atoms
C. 1.26×10^{14} carbon atoms
D. 1.26×10^{48} carbon atoms

Answer: B

D View Text Solution
20. The vapour density of a mixture containing
$N O_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2} in 100 g mixture.
A. 0.437 mole
B. 0.7 mole
C. 0.37 mole
D. 0.27 mole

Answer: A

D View Text Solution
21. P and Q are two elements which form
$P_{2} Q_{3}, P Q_{2}$ molecules. If 0.15 mole of $P_{2} Q_{3}$
and $P Q_{2}$ weighs 15.9 g and 9.3 g , respectively,
what are atomic weighs of P and Q respectively.
A. 26,48
B. 16,18
C. 26,28
D. 26,18

Answer: D
22. Calculate the weight of lime (Cao) obtained
by heating 300 kg of 90% pure limestone.
$\left(\mathrm{CaCO}_{3}\right)$.
A. 159.20 kg
B. 181.20 kg
C. 191.20 kg
D. 151.20 kg
23. Calculate the percentage composition in terms of mass of a solution obtained by mixing 300 g of a 25% and 400 g of a 40% solution by mass.
A. 0.4357
B. 0.2357
C. 0.3357
D. 0.6357

D View Text Solution

24. Calculate normality of mixture obtained by
mixing : 100 mL of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}+50 \mathrm{~mL}$ of
0.25 N NaOH.
A. 0.167
B. 0.0167
C. 0.17
D. 0.067

Answer: B

D View Text Solution

25. How many mL of $2.0 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, contains $600 \mathrm{mg} \mathrm{Pb}^{2+}$.
A. 1.14 mL
B. 1.94 mL
C. 1.34 mL
D. 1.44 mL

Answer: D

D View Text Solution

26. A sample of NaOH weighing 0.38 g is dissolved in water and the solution is made to
50.0 mL in a volumetric flask. What is the molarity of the resulting solution ?
A. 0.29
B. 0.19
C. 0.39

D. 0.9

Answer: B

D View Text Solution

27. A solution of glucose in water is labelled as

10 percent $\frac{W}{W}$. If the density of the solution is
$1.2 g m L^{-1}$, then what shall be the molarity of
the solution?
A. 0.17 M
B. 0.67 M
C. 0.6 M
D. 0.76 M

Answer: B

D View Text Solution

28. If a pure compound made of $X_{2} Y_{3}$ molecules consists $60 \% \mathrm{X}$ by weight, then the atomic weight of Y is:
A. 2.25 times the atomic weight of X.
B. 44% of the atomic weight of X.
C. 4.0 times the atomic weight of X
D. 25% of the atomic weight of X.

Answer: B

D View Text Solution

29. Equal weight of ' X ' (atomic weight=36) and
' Y ' (atomic weight= 24) react to form the compound, $X_{2} Y_{3}$. If that is the case, then
A. X is the limiting reagent
B. Y is the limiting reagent.
C. no reactant is left over and the mass of
$X_{2} Y_{3}$ formed is double the mass of ' X '
taken.

D. none of these apply

Answer: C

D View Text Solution
30. The following process has been used to obtain iodine from oil-field brines in California.
$\mathrm{NaI}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3}$
$2 \mathrm{AgI}+\mathrm{Fe} \rightarrow \mathrm{FeI}_{2}+2 \mathrm{Ag}$
$2 \mathrm{FeI}_{2}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{I}_{2}$

How many grams of AgNO_{3} are required in the first step for every $254 \mathrm{~kg} I_{2}$ produced in the third step ?
A. 340×10^{4}
B. 340×10^{3}
C. 34×10^{3}
D. 34×10^{5}

Answer: B

D View Text Solution

