©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

APPLICATION OF DERIVATIVES TEST

Single Choice

1. A window is in the form of a rectangle with
length L and breadth B sumounted by a semi
cricle. If the totla perimeter of the window is

30 m , then the dimensions of the window so
that maximum light is admitted would be

$$
\begin{aligned}
\text { A. } L & =\frac{30}{\pi+4} m \\
B & =\frac{30}{\pi+4} m \\
\text { B. } L & =\frac{15}{\pi+4} m \\
b & =\frac{30}{\pi+4} m \\
\text { C. } L & =\frac{30}{\pi+4} m \\
B & =\frac{60}{\pi+4} m \\
\text { D. } L & =\frac{60}{\pi+4} m \\
B & =\frac{30}{\pi+4} m
\end{aligned}
$$

Answer: D

D View Text Solution

2. An open box with a square base is to be made out of a given quantity of cardboard of area c^{2} square units. What would be the maximum volume of the box?
A. $\frac{c^{3}}{10 \sqrt{5}}$ cubic units
B. $\frac{c^{3}}{6 \sqrt{3}}$ cubic units
C. $\frac{c^{3}}{5 \sqrt{8}}$ cubic units
D. b

Answer: B

D View Text Solution

3. The equation of a tangent to the curve
$y=\sqrt{3 x-2}$ which parallel to the line
$4 x-2 y+5=0$ would be:

$$
\begin{aligned}
& \text { A. } y=2 x-\frac{24}{23} \\
& \text { B. } x=2 y-\frac{23}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } y=2 x-\frac{23}{24} \\
& \text { D. } y=2 x+\frac{23}{24}
\end{aligned}
$$

Answer: C

D View Text Solution

4. The number of tangents to the curves
$y=\cos (x+y),|x| \leq 2$, that are parallel t
the line $x+2 y=0$ is
A. 2
B. 1
C. 0
D. 3

Answer: A

D View Text Solution

5. The positive real number x when added to its reciprocal gives the minimum value of the sum at x equal to:
A. 1
B. -1
C. -2
D. 2

Answer: A

D View Text Solution

6. If $f^{\prime}(x)=|x|=\{x\}$ where $\{x\}$ denotes the fractional part function of x then $f(x)$ is decreasing in
A. $\left(\frac{-1}{2}, 0\right)$
B. $\left(\frac{-1}{2}, 2\right)$
C. $\left(\frac{-1}{2},-2\right)$
D. $\left(\frac{1}{2}, \infty\right)$

Answer: A

D View Text Solution

7. A ladder 10 m long rests against a vertical
wall with the lower end on the horizontal ground. The lower end of the ladder is pulled
aln the ground away from the wall at the rate
fo $3 \mathrm{~cm} / \mathrm{s}$. The height of the upper and while
it is descending at the rate of $4 \mathrm{~cm} / \mathrm{s}$ is
A. $4 \sqrt{3} m$
B. $5 \sqrt{3} m$
C. $8 m$
D. $6 m$

Answer: D

D View Text Solution
8. A particle moves along a straight line with the law of motion given by
$s^{2}=a t^{2}+2 b t+c$, then the accelerationn
varies as (wher as : displacement and t , time)

$$
\begin{aligned}
& \text { A. } \frac{1}{s^{3}} \\
& \text { B. } \frac{1}{s} \\
& \text { C. } \frac{1}{s^{4}} \\
& \text { D. } \frac{1}{s^{2}}
\end{aligned}
$$

Answer: A

D View Text Solution
9. A sphereical iron ball of radius 10 cm , coated with a layer of ice of uniform thickness, melts at a rate of $100 \pi \mathrm{~cm}^{3} / \mathrm{min}$. The rate at which the thickness of ice deceases when the thickness of ice is 5 cm , is
A. $\frac{1}{54} \pi \mathrm{~cm} / \mathrm{min}$
B. $\frac{1}{9} \pi \mathrm{~cm} / \mathrm{min}$
C. $\frac{1}{36} \mathrm{~cm} / \mathrm{min}$
D. $\frac{1}{9} \mathrm{~cm} / \mathrm{min}$

Answer: D

D View Text Solution

10. A equation of the tangent to the curve
$x=2 \cos ^{3} \theta$ and $y=3 \sin ^{3} \theta$ at the point
$\theta=\frac{\pi}{4}$ is
A. $2 x+3 y=3 \sqrt{2}$
B. $2 x-3 y=3 \sqrt{2}$
C. $3 x+2 y=3 \sqrt{2}$
D. $3 x-2 y=3 \sqrt{2}$

Answer: C

D View Text Solution

11. The two cuves $x^{3}-3 x y^{2}+2=0$ and
$3 x^{2} y-y^{3}-2=0$
A. cut at right angle
B. touch each other
C. cut an an angle $\frac{\pi}{3}$
D. cut at an angle $\frac{\pi}{4}$

Answer: A

D View Text Solution

12. The minimum value of $f(x)=e^{\left(x^{4}-x^{3}+x^{2}\right)}$ is
A. e
B. $-e$
C. 1
D. -1

Answer: C

D View Text Solution

13. The denominator of a fraction exceeds the square of the numerator by 16 , then the least
value the fraction is

$$
\begin{aligned}
& \text { A. }-\frac{1}{4} \\
& \text { B. }-\frac{1}{8} \\
& \text { C. } \frac{1}{12} \\
& \text { D. } \frac{1}{16}
\end{aligned}
$$

Answer: B

D View Text Solution

14. A point on the curve $x^{3}-8 a^{2} y=0$, where
the slope of the normal is $-\frac{2}{3}$ is
A. (a, a)
B. $(2 a, 2 a)$
C. $(2 a, a)$
D. None of these

D View Text Solution

15. The function $f(x)=\frac{x}{1+|x|}$ is
A. strictly increasing
B. strictly decreasing
C. neithe increasing nor decreasing
D. not differentiable at $x=0$

Answer: A
16. The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$ has
A. no maxima and minima
B. One maximum and one minimum
C. Two maxima
D. Two minima

Answer: B
17. The equation of the tangent to the curve
$\left(1+x^{2}\right) y=2-x$, where it crosses the x -axis
is
A. $x+5 y=2$
B. $x-5 y=2$
C. $5 x-y=2$
D. $5 x+y-2=0$
18. The acute angle of intersection between
the curves $y=\sin x$ and $y=\cos x^{\prime}$ is
A. $\tan ^{1}(2 \sqrt{2})$
B. $\tan ^{-1}(3 \sqrt{3})$
C. $\tan ^{-1}(3 \sqrt{3})$
D. $\tan ^{-1}(5 \sqrt{2})$

Answer: A
19. The acute angle between the curve $y=x^{2}$ and $x=y^{2}$ at there common point other than origin is
A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}(1)$
C. 90°

$$
\text { D. } \tan ^{-1}\left(\frac{3}{4}\right)
$$

20. IF $y=4 x-5$ is tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$ then (p, q) is
A. $(2,7)$
B. $(-2,7)$
C. $(-2,-7)$
D. $(2,-7)$

Answer: D
21. If $f(x)=\frac{x^{2}-1}{x^{2}+1}$ for evey real number x then the minimum value of f
A. does not exist because f is unbounded.
B. is not attained even thorugh f is
bounded
C. is equal ot 1
D. is equal to -1

Answer: D
22. If $f(x)=x \cdot e^{x(1-x)}$ then $\mathrm{f}(\mathrm{x})$ ।
A. increasing on $\left(-\frac{1}{2}, 1\right)$
B. decreasing on R
C. increasing on R
D. deceasing on $\left(-\frac{1}{2}, 1\right)$

Answer: A

D View Text Solution
23. If M be the greatest value and m be the
least value of $f(x)=2 x^{3}-3 x^{2}-12 x+1$,
for $-1 \leq x \leq 3 / 2$, then the ordered pair (M, m) is
A. $(8,-19)$
B. $(8,-17)$
C. $(-17,-19)$
D. None of these

Answer: B
24. If $f(x)=\tan ^{-1}(g(x))$ \{where $g(\mathrm{x})$ is monotonically increasig for $\left.0<x<\frac{\pi}{2}\right\}$ then $f(x)$ is
A. increasing on $\left(0, \frac{\pi}{2}\right)$
B. deceasig on $\left(0, \frac{\pi}{2}\right)$
C. increasing on $\left(0, \frac{\pi}{4}\right)$
D. decreasing on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
25. Let $f(x)=\left\{\begin{array}{ll}|x| & 0<|x| \leq 2 \\ 1 & x=0\end{array}\right.$ then at $x=0 f$ has
A. a local maximum

B. no local maximum

C. a local minimum
D. no extremum

Answer: A
26. If $f(X)=\frac{x}{\sin x}$ and $g(x)=\frac{x}{\tan x}$ where
$0<x \leq 1$, then in this interval
A. $f(x)$ and $g(x)$ are increasing functions
B. both $f(x)$ and $g(x)$ are decreasign
functions
C. $f(x)$ is an increasing function
D. $g(x)$ is an increasing function

Answer: C
27. The function $y=f(x)$ is represented paamatrically by $x=t^{5}-5 t^{3}-20 t+7$ and $y=5 t^{3}-3 t^{2}-18 t+3,(-2<t<2)$.

The minimum of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ occurs at
A. $t=-1$
B. $t=0$
C. $t=\frac{1}{2}$
D. $t=\frac{3}{2}$

Answer: D

D View Text Solution

28. The set of values of b for which local extremum values of the function $f(x)$ are positive where
$f(x)=\frac{2}{3} a^{2} x^{3}-\frac{5 a}{2} x^{2}+3 x+b$
and
maxima occurs at $x=\frac{1}{3}$ is
A. $(-4, \infty)$
B. $\left(-\frac{3}{8}, \infty\right)$
C. $\left(-10, \frac{3}{8}\right)$
D. None of these

Answer: B

D View Text Solution
29. If $a<0$ then the function $\left(e^{a x}+e^{-a x}\right)$ is
a decreasing function for all
A. $x<0$
B. $x>0$
C. $x<1$
D. $x>1$

Answer: A

D View Text Solution

30. The triangle formed by the tangent to the
curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$
and the coordinate axes lies in the first quadrant. If its area is 2 sq . Units, then the value of b is
A. -1
B. 3
C. -3
D. 1

Answer: C

- View Text Solution

