©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

AREA UNDER CURVES TEST

Single Choice

1. Let the area bounded by the x-axis curve
$y=\left(1+\frac{8}{x^{2}}\right)$ and the ordinates $\mathrm{x}=2$ and $\mathrm{x}=4$ is A
sq . Unit and if the ordinate $\mathrm{x}=\mathrm{a}$ divides the area
into two equal pairs, then the correct statement among the following is
A. $A=3$ and $a=2$
B. $A=2$ and $a=1$
C. $A=4 \sqrt{2}$ and $a=\sqrt{2}$
D. $A=4$ and $a=2 \sqrt{2}$

Answer: D
2. The area bounded by the curvs $y=|x|-1$ and $y=-|x|+1$ is (in sq. units)
A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: B

D View Text Solution
3. The values of m for which the ara of the region bounded by the curve $y=x-x^{2}$ and the line $\mathrm{y}=\mathrm{mx}$ is equal to $\frac{9}{2}$ sq.units are
A. $-5,1$
B. $-2,4$
C. $2,-4$
D. $-4,3$

Answer: B
4. The area of the region
$\left\{(x, y), 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
is
A. $\frac{23}{3}$ sq. unit
B. $\frac{23}{4}$ sq. unit
C. $\frac{23}{5}$ sq. unit
D. $\frac{23}{6}$ sq unit

Answer: D
5. If the area of the region bounded by the curve $C=y=\tan x$, the tangent drawn to C at $x=\frac{\pi}{4}$ and the x-axis is $\frac{k}{10}\left(\log 2-\frac{1}{2}\right)$, then the value of k is
A. 5
B. 10
C. 2
D. 4

Answer: A
6. The area of the region bounded by $y^{2}=4 a x$ and $x^{2}=4 a y, a>0$ in square units is
A. $\frac{16 a^{2}}{3}$ sq. units
B. $\frac{14 a^{2}}{3}$ sq.units
C. $\frac{13 a^{2}}{3}$ sq. units
D. $16 a^{2}$ sq. units

Answer: A

D View Text Solution
7. The area of the region bounded by $1-y^{2}=|x|$ and $|x|+|y|=1$ is
A. $\frac{8}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. 1

Answer: B

D View Text Solution
8. The slope of the tangent to the curve $y=f(x)$ at $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ is $2 x+1$. If the cuve passes through the point $(1,2)$ then the area of the ein bounded by the cuve the x-axis and the line $x=1$, is equal to
A. $\frac{5}{7}$ sq. units
B. $\frac{5}{6}$ sq. units
C. $\frac{1}{6}$ sq. units
D. $\frac{2}{5}$ sq. units

Answer: B

9. If area bounded by the curve $y=e^{x^{2}}, x$-axis and the line $\mathrm{x}=1$ and $x=2$ is a sq. units then are bounded by the curve $y=\sqrt{\operatorname{In} x}, \mathrm{x}$-axis and the line $\mathrm{x}=\mathrm{e}$ and $x=e^{4}$ is

$$
\text { A. }\left(e^{4}-e-a\right) \text { sq unit }
$$

B. $\left(2 e^{4}-e-2 a\right)$ sq.unit
C. $\left(2 e^{4}-e-a\right)$ sq. unit
D. $\left(2 e^{4}-2 e-a\right)$ sq.unit

Answer: C
10. Through any point $P(x, y)$ of a curve which passes through the origin, lines are drawn parallel to the coordinate axes. The curve, given that it divides the rectangle fromed by the two lines and the axes into two areas, one of which is twice the other, represents a family of
A. circles
B. parabolas
C. hyperbolas
D. straight lines
11. The are of the region $\left\{(x, y), x^{2} \leq y \leq|x|\right\}$ is
A. $1 / 3$ sq. units
B. $1 / 2$ sq. units
C. $1 / 4$ sq. units
D. None of these

Answer: A

- View Text Solution

12. The area bounded by the graph $y=|[x-3]|$, above the x -axis from $x=-$ to $\mathrm{x}=3$ is ([.] denotes the greatest integer function)
A. 7 sq. units
B. 15 sq.units
C. 21 sq.units
D. 28 sq.units

Answer: B

- View Text Solution

13. The area bounded by the curve $y=f(x), y=x$ and the lines $x=1, x=t$ is $\left(t+\sqrt{1+t^{2}}\right)-\sqrt{2}-1$ sq. units for all $t>1$. If
$f(x)$ satisfying $f(x)>x$ for all $x>1$ then $f(x)$ is equal to

$$
\begin{aligned}
& \text { A. } x+1+\frac{x}{\sqrt{1+x^{2}}} \\
& \text { B. } x+\frac{x}{\sqrt{1+x^{2}}} \\
& \text { C. } 1+\frac{x}{\sqrt{1+x^{2}}} \\
& \text { D. } \frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

Answer: A
14. The area bounded by the curves
$\sqrt{|x|}=\sqrt{|y|}=\sqrt{a}$ and $x^{2}+y^{2}=a^{2}, a>0$ is
A. $\left\{\pi a^{2}-\frac{2}{3} a^{2}\right\}$ sq. units
B. $\left\{2 \pi a^{2}-\frac{a^{2}}{3}\right\}$ sq. units
C. $\left\{\pi a^{2}-\frac{3 a^{2}}{3}\right\}$ sq. units
D. None of these

Answer: A
15. The ara of the region bounded by the straight lines $\quad x=0, x=2$ and the curves
$y=2^{x}, y=2 x-x^{2}$ is
A. $\left(\frac{3}{\log 2}-\frac{4}{3}\right)$ sq.units
B. $\left(\frac{3}{\log 2}+\frac{4}{3}\right)$ sq. units
C. $\left(\frac{3}{\log 2}-\frac{2}{3}\right)$ sq. units
D. $\left(\frac{3}{\log 2}-\frac{1}{2}\right)$ sq. units

Answer: A
16. If the area above the x-axis, bounded by the
curves $y=2^{k x}, x=0$ and $x=2$ is $\frac{3}{\log 2}$ sq. units then the value of k is
A. $\frac{1}{2}$
B. 1
C. -1
D. 2

Answer: B

D View Text Solution
17. The area of the region bounded by the curves

$$
y=|x-2| \text { and } y=4-|x| \text { is }
$$

A. 2 sq. unit
B. 4 sq.unit
C. 5 sq. unit
D. 6 sq. unit

Answer: D

D View Text Solution
18. The area bounded by the curves
$y=\sin x, y=\cos x$ and y-axis in first quadrant is
A. $(\sqrt{2}-1)$ sq.unit
B. $\sqrt{2}$ sq. unit
C. $(\sqrt{2}+1)$ sq. unit
D. None of these

Answer: A

D View Text Solution
19. The area (in sq. units) of the region described
by $\left[(x, y): y^{2} \leq 2\right.$ and $\left.y \geq 4 x-1\right]$ is
A. $\frac{9}{32}$ sq. units
B. $\frac{7}{32}$ sq. units
C. $\frac{5}{64}$ sq. units
D. $\frac{15}{64}$ sq. units

Answer: A

D View Text Solution
20. Area bounded by the cruve $y=s i x$ and x-axis between $\mathrm{x}=0$ and $x=2 \pi$ is
A. 2 sq. unit
B. 4 sq.unit
C. 8 sq. unit
D. None of these

Answer: B

D View Text Solution
21. Area bounded by under the curve $y=\sqrt{3 x+4}$ and x -axis between $\mathrm{x}=0$ and $x=4$ is
A. $\frac{56}{9}$ sq. unit
B. $\frac{64}{9}$ sq. unit
C. 8 sq. unit
D. $\frac{112}{9}$ sq.unit

Answer: D

- View Text Solution

22. The area included between the parabola $y=\frac{x^{2}}{4 a}$ and the curve $y=\frac{8 a^{3}}{\left(x^{2}+4 a^{2}\right)}$ is $\{a>0\}$ (in sq. units)

$$
\begin{aligned}
& \text { A. } a^{2}\left(2 \pi+\frac{2}{3}\right) \\
& \text { B. } a^{2}\left(2 \pi-\frac{8}{3}\right) \\
& \text { C. } a^{2}\left(\pi+\frac{4}{3}\right) \\
& \text { D. } a^{2}\left(2 \pi-\frac{4}{3}\right)
\end{aligned}
$$

Answer: D

23. Area enclosed by the curve $y=f(x)$ defined
parametrically as $\quad x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}} \quad$ is equal to (where t is parameter)
A. π sq. units
B. $\frac{\pi}{2}$ sq.units
C. $\frac{3 \pi}{4}$ sq.units
D. $\frac{3 \pi}{2}$ sq. units

Answer: A
24. The area of the region enclosed by the cuves
$y=x \log x$ and $y=2 x-2 x^{2}$ is
A. $\frac{7}{12}$ sq. units
B. $\frac{1}{2}$ sq. units
C. $\frac{5}{12}$ sq. units
D. None of these

Answer: A

D View Text Solution
25. The area of the closed region boundedby $y=\sec ^{-1} x, y=\operatorname{cosec}{ }^{-1} \quad \mathrm{x} \quad$ and the line $x-1=0$ is
A. $\left\{\log _{e}(3+2 \sqrt{2})-\frac{\pi}{2}\right\}$ sq. units
B. $\left\{\frac{\pi}{2}-\log _{e}(3+2 \sqrt{2})\right\}$ sq. units
C. $\pi-3 \log _{e} 3$ sq.units
D. None of these

Answer: A

D View Text Solution

26. The are of the closed region whose boundaries are defined by the curves $y=2 \cos x, y=3 \tan x$ and the y-axis is
A. $\left\{1+3 \log \left(\frac{2}{\sqrt{3}}\right)\right\}$ sq. units
B. $\left\{1+\frac{3}{2} \log 3-3 \log 2\right\}$ sq. units
C. $\left\{1+\frac{3}{2} \log 3+\log 2\right\}$ sq. units
D. $\{\log 3-\log 2\}$ sq.units

Answer: B

- View Text Solution

27. The area bounded by the curve
$a^{2} y=x^{2}(x+a)$ and the x-axis is
A. $\frac{a^{2}}{3}$ sq. units
B. $\frac{a^{2}}{4}$ sq. units
C. $\frac{3 a^{2}}{4}$ sq. units
D. $\frac{a^{2}}{12}$ sq. units

Answer: D

D View Text Solution
28. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $\left(1, \frac{1}{2}\right)$ and (4,2) is
A. $\frac{9}{8}$ sq.units
B. $\frac{3}{8}$ sq. units
C. $\frac{3}{2}$ sq. units
D. $\frac{9}{4}$ sq.units

Answer: A

29. The are of the closed figure bounded by
$x=-1, x=2$ and $y=\left\{\begin{array}{ll}-x^{2}+2 & x \leq 1 \\ 2 x-1 & x>1\end{array}\right.$ and the x-axis is
A. $\frac{16}{3}$ sq. units
B. $\frac{10}{3}$ sq. units
C. $\frac{13}{3}$ sq.units
D. $\frac{7}{3}$ sq. units

Answer: A

D View Text Solution
30. The value of the parameter a such that the aea bounded by $\quad y=a^{2} x^{2}+a x+1,(a \neq 0)$,
coordinate axes and the line $\mathrm{x}=1$ attains its least value, is equal to

$$
\begin{aligned}
& \text { A. }-\frac{1}{4} \\
& \text { B. }-\frac{1}{2} \\
& \text { C. }-\frac{3}{4} \\
& \text { D. }-1
\end{aligned}
$$

Answer: C

