

MATHS

BOOKS - NTA MOCK TESTS

CONTINUITY AND DIFFERENTIABILITY TEST

Single Choice

1. Let
$$f(x)=\left\{egin{array}{ll} (x-1)\mathrm{sin}rac{1}{x-1} & x
eq 1 \ 0 & x=1 \end{array}
ight.$$
 Then

which one of the following is true?

A. f is differentiable at x=1 but not at x=0

B. f is neither differentiable at x=0 nor at

x=1

C. f is diffeentiable at x=0 and at x=1

D. f is differentiable at x=0 but not at x=1

Answer: D

2. If $f(x)=|\sin x|$ and $g(x)=x^3$ then identify which of the following is correct for the function f(g(x))

A. Discontinuous at x=0

B. Non derivable at x=0

C. Continuous & derivable at x=0

D. None of he given option

Answer: C

3. Consider the function $f(x) = x^2 \, _ \, 2x$ and

$$g(x) = -|x|$$

statement -1: The composite function

$$F(x) = f(g(x))$$
 is not derivable at x=0.

Statement 2: $F'ig(0^+ig)=2$ and

$$F'ig(0^-ig) = \,-\,2$$

A. Statement 1 is true, Statement -2 is true,

Statement 2 is correct explanation for

statement -1

B. Statement -1 is true Statement -2 is true

Statement -2 is not a corect explanation

for statement 1

C. Statement -1 is true, Statement -2 is false

D. Statement -1 is false, Statement -2 is true

Answer: A

4. Let $g(x) = \dfrac{\left(x-1
ight)^n}{\log \cos^m (x-1)}, \, 0 < x < 2$, m

and n are integes m
eq 0, n > 0 and let p be the left hand derivative of f(x) = |x-1| at

x=1. If $\lim_{x o 1^+} \, (g(x) = p \, \mathsf{then})$

A. n = 1, m = 1

B. n = 1, m = -1

 $\mathsf{C.}\, n=2, m=2$

 $\mathsf{D}.\, n>2, m=n$

Answer: C

view lext Solution

5. Let
$$(x)=\sin x, g(x)=[x+1]$$
 and $g(f(x))=H(x),$ where $[\]$ is the greatest integer function. Then $H,\left(\frac{\pi}{2}\right)$ is

A. non-existent

B. 1

C. -1

D. None of these

Answer: A

6. Let
$$f(x) = \left\{ egin{array}{ll} x^2 e^{2(x-1)} & x \leq 1 \ a\cos(2x-2) + bx^2 & x > 1 \end{array}
ight.$$

f(x) will be differentiable at x=1, if

A.
$$a = -1, b = 2$$

B.
$$a = 1, b = -2$$

C.
$$a = 1, b = 2$$

D. None of these

Answer: A

7. If
$$f(x) = p |\sin x| + q e^{|x|} + r |x|^3$$
 and if f(x)

is differentiable at x=0 then

A.
$$p=q=r=1$$

B. p+q=0, ${\sf r}$ is any real number

C. q+r=0, ${\sf r}$ is any real number

D. $r=0,\,p=0,\,q$ is any real number

Answer: B

8. If
$$f(x)=egin{cases} \sin\Bigl(rac{\pi}{2}(x-[x])\Bigr) & x<5 \ 5(b-1) & x=5 \ ab^2rac{+x^2-11x+24|}{x-3} & x>5 \end{cases}$$

continuous at $x=5,a,b\in R$ then ([.]

denotes the greatest integer function)

A.
$$a = \frac{25}{108}$$
, $b = \frac{6}{5}$

$$B. a = \frac{6}{13}b, \frac{25}{36}$$

C.
$$a = \frac{1}{2}, b = \frac{25}{36}$$

D.
$$a = \frac{23}{100}, b = \frac{6}{5}$$

Answer: A

View Text Solution

9. If the function $f(x) = \left| x^2 + a |x| + b \right|$ has exactly three points of no differentiability, then which of the following statement can be true?

A.
$$b = 0, a < 0$$

$$\mathtt{B}.\,b<0,a\in R$$

C.
$$b > 0, a \in R$$

D.
$$b < 0, a \in R^-$$

Answer: A

View Text Solution

10. Column I below gives the function while

Column II gives their behaviours at x=0. Which

of the following pair is incorectly matched?

([x] represents the greatest iteger less than or equal to x)

Column I Column II
$$[\cos x] \qquad \lim_{y \to 0} f(x) \text{ exists}$$

Column I Column II
$$[-x]$$
 $[1+x]$ Right Continuous at $x=0$

Answer: D

View Text Solution

11. If the function

$$f(x) = \left\{egin{array}{ll} x + a\sqrt{2}six & 0 \leq x < rac{\pi}{4} \ 2x\cot x + b & rac{\pi}{4} \leq x \leq rac{\pi}{2} \ a\cos 2x - b\sin x & rac{\pi}{4} < x \leq \pi \end{array}
ight.$$
 is

continuous in $[0,\pi]$ then the values of a and b

respectively are

A.
$$\frac{\pi}{6}$$
, $-\frac{\pi}{12}$

$$\mathsf{B.}-\frac{\pi}{6},\,\frac{\pi}{4}$$

$$\mathsf{C.}-\frac{\pi}{3},\,\frac{\pi}{12}$$

D. None of these

Answer: A

12. The function $f(x)=1rac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defied at $x=\pi.$ The value of $f(\pi)$ so that f(x) is continous at $x=\pi$ is

$$\mathsf{A.}-\frac{1}{2}$$

B.
$$\frac{1}{2}$$

$$C. -1$$

Answer: C

13. The points of discontinuity of tan x aee

A.
$$n\pi, n \in I$$

B.
$$2n\pi,\,n\in I$$

C.
$$(2n+1)rac{\pi}{2}, n\in I$$

D. None of these

Answer: C

14. If
$$f(x)=egin{cases} mx+1 & x\leq rac{\pi}{2} \ \sin x+n & x>rac{\pi}{2} \end{cases}$$

is

continuous at $x=\frac{\pi}{2}$ then

A.
$$m = 1, n = 0$$

B.
$$m=rac{n\pi}{2}+1$$

$$\mathsf{C.}\, n = m\frac{\pi}{2}$$

$$D. m = n = \frac{\pi}{2}$$

Answer: C

15. If
$$f(x)=\left\{egin{array}{ll} x^p\cos\left(rac{1}{x}
ight) & x
eq 0 \ 0 & x=0 \end{array}
ight.$$

is

differentiable at x=0 then

A.
$$p < 0$$

B.
$$0$$

$$C. p = 1$$

D.
$$p > 1$$

Answer: D

16. Let
$$f(x) = x^3 - x^{20_3 x - 1, g(x) = (x+1)a}$$

and
$$h(x)=rac{f(x)}{g(x)}$$
 where h(x) is a rational

function such that

(i) it is continous everywhere except when x=-1

(ii)
$$\lim_{x o\infty}h(x)=o$$
 and (iii) $\lim \ (x o-1)h(x)=rac{1}{2}$

The value of h(1) is

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{4}$$

$$\mathbf{C.} - \frac{1}{2}$$

D. 1

Answer: C

View Text Solution

17. If f is an even function such that $\lim_{h \to 0} rac{f(h) - f(0)}{h}, h > 0$ some finite non zero value then

A. f is continuous and derivable at x=0

B. f is continuous but not necessarily derivable at x=0

C. f may be discontinous at x=0

D. None of these

Answer: B

View Text Solution

18. If $f(x)=\dfrac{1}{1-x}$, then the points of discontinuity, of the function $f^{3n}(x)$ is /are (where $f^n=fof$of(n times))

A. x = 2

$$\mathbf{B.}\,x=\{0,1\}$$

$$\mathbf{C.} x = -1$$

D. continuous everywheer

Answer: B

View Text Solution

19. A point where function $f(x)=[\sin[x]]$ is discontinuous of $(0,2\pi)$ lies in (where [.] denotes greatest integer $\leq x$) is

- A. (0,1)
- B. (1,2)
- C. (2,3)
- D. None of these

Answer: D

20. Let f(x) be defined as follows

$$f(x) = egin{pmatrix} (\cos x - \sin x)^{\cos ecx} & -rac{\pi}{2} < x < 0 \ a & x = 0 \ rac{e^{1/x} + e^{2/x} + e^{3/x}}{ae^{rac{2}{x}}be^{3/x}} & 0 < x < rac{\pi}{2} \end{pmatrix}$$

if f(x) is continuous at x=0 then (a,b)=

$$\mathbf{A}\left(e, \frac{1}{e}\right)$$

$$\mathbf{B.}\left(\frac{1}{e},e\right)$$

D.
$$(e^{-1}, e^{-1})$$

Answer: B

21. If
$$f(x) = \sin^{-1}\!\left(\frac{2x}{1+x^2}\right)$$
, then f(x) is differentiable on

A.
$$[-1, 1[$$

B.
$$R - \{-1, 1\}$$

C.
$$R - (-1, 1)$$

D. None of these

Answer: B

22.

If

$$f(x) = egin{cases} -4\sin x + \cos x & x < -rac{\pi}{2} \ a\sin x + b & -rac{\pi}{2} \le x < rac{\pi}{2} \ \cos x + 2 & x \ge rac{\pi}{2} \end{cases}$$

is continous then a and b are

A.
$$a = -1, b = 3$$

B.
$$a = 1, b = -3$$

C.
$$a = 1, b - 3$$

D.
$$a = -1, b = -3$$

Answer: A

23. The set of all points where time function

$$f(x) = \sqrt{1 - e^{\,-x^2}}$$
 is differentiable is

A.
$$(0, \infty)$$

B.
$$(-\infty,\infty)$$

$$\mathbf{C.}\,(\,-\infty,\infty)-\{0\}$$

$$\mathbf{D.}\,(\,-1,\infty)$$

Answer: C

View Text Solution

24. Let
$$f(x) = \max \{x+1, |x|+1\}$$
. Then

f(x) is non differentiable at

- A.0.5
- **B.** 1.0
- $\mathbf{C}.0$
- **D.** 2.0

Answer: C

25. If
$$f(x)=\left\{egin{array}{cc} rac{\sqrt{4+ax}-\sqrt{4-ax}}{x} & -1\leq x<0 \ rac{3x+2}{x-8} & 0\leq x\leq 1 \end{array}
ight.$$

is continuous in [-1,1] then the value of a is

A. 1

B. -1

$$\mathbf{C.} \ \frac{1}{2}$$

$$\mathbf{D.} - \frac{1}{2}$$

Answer: D

26.
$$f(x)=\left\{egin{array}{ll} \left(x^2+e^{rac{1}{2-x}}
ight)^{-1} & x
eq 2 \ k & x=2 \end{array}
ight.$$
 is

continous from right at the point x=2, then k equals

B.
$$\frac{1}{4}$$

C.
$$-\frac{1}{4}$$

D. None of these

Answer: B

27. The function
$$f(x) = \left[x\right]^2 - \left[x^2\right]$$
 (where [y] is the greatest integer less than or equal to y)

, is discontinuous at

A. all integers

B. All integers except 0 and 1

C. All integers except 0

D. All integers except 1

Answer: D

28. If the function
$$f(x) = rac{(128a + ax)^{rac{1}{8}} - 2}{(32 + bx)^{rac{1}{5}} - 2}$$

is continuous at x=0, then the value of $\frac{a}{b}$ is

A.
$$\frac{3}{5}f(0)$$

B.
$$2^{rac{8}{5}}f(0)$$

c.
$$\frac{64}{5}f(0)$$

D. None of these

Answer: C

29. The number of points at which the functin

$$f(x) = |x-0.5| + |x-1| + an x$$
 is not

differentiable in the interval (0,2) is/are

A. 1

B. 2

C. 3

D. 4

Answer: C

30. Let
$$f(x)=egin{cases} x^2ig|\cosrac{\pi}{x}ig| & x
eq 0\ 0 & x=0 \end{cases}, x\in R$$
 then f(x) is

A. differentiable both at x=0 and x=2

B. differentiable at x=0 but not

differentiable at x=2

C. not differentiable at x=0 but differentiable at x=2

D. differentiable neither at x=0 not at x=2

Answer: B

