

MATHS

BOOKS - NTA MOCK TESTS

MATRICES AND DETERMINANTS TEST

Mathematics

1. If $A=[(1,\ -3,),(2,k)]$ and $A^2-4A+10I=A$, then k

is equal to

A. 0

B.-4

C. 4

D. 1 or 4

Answer: C

View Text Solution

2. Matrix A is such that $A^2=2A-I$, where I is the identity matrix then for $n \geq 2, A^n$

A.
$$n(A-(n-1)I$$

B. nA - I

C. $2^{n-1}A(n-1)I$

D. $2^{n-1}A-I$

Answer: A

3. The system of equations

$$x + 2y + 3z = 1, 2x + y + 3z = 2$$
 and $5x + 5y + 9z = 5$

A. Unique solution

B. Infinite many solution

C. Inconsistent

D. None of the above

Answer: A

has

4. If
$$A=egin{bmatrix}1&-1\\2&-1\end{bmatrix}$$
 and $B=egin{bmatrix}1&a\\4&b\end{bmatrix},(A+B)^2=A^2+B^2$ Then a and b are

and

respectively

B.
$$2, -3$$

$$C. -1, 1$$

D.
$$3, -2$$

Answer: A

View Text Solution

5. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is such that |A| = 0 and $A^2-(a+d)A+kI=0$, thenk is equal to

A.
$$b+c$$

B.a+d

 $\mathsf{C}.\,ab+cd$

D. Zeo

Answer: D

View Text Solution

6. If a_1,a_2,a_3,\ldots,a_9 are in H.P and $a_4=5,a_5=4$,

then the value of

$$egin{bmatrix} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ a_7 & a_8 & a_9 \ \end{bmatrix}$$
 is

A.
$$\frac{31}{15}$$

c.
$$\frac{50}{21}$$

D. $\frac{61}{27}$

View Text Solution

7. A and B are symmetric matrices of the same order. If X+AB+BA, Y=AB-B and $(XY)^T$ is equal to

A. XY

B. YX

 $\mathsf{C.}-YX$

D. None of these

Answer: C

8. If
$$f(x)=x^2+4x-5$$
 and $A=\begin{bmatrix}1&2\\4&-3\end{bmatrix}$, then f(A) is equal to

B.
$$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$$
C.
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
D.
$$\begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$$

A. $\begin{bmatrix} 0 & -4 \\ 8 & 8 \end{bmatrix}$

Answer: D

9. If the value of a third order determinant is 11, then the value of the square of the determinant formed by the cofactors will be

- A. 11
- B. 121
- C. 1331
- D. 14641

Answer: D

View Text Solution

10. If A,B and C are n imes n matrices and |A|=2, |B|=3 and

|C|=5 then the valueof the $\left|A^2BC^{\,-\,1}
ight|$ is equal to

B.
$$\frac{12}{5}$$

D.
$$\frac{24}{5}$$

Answer: B

View Text Solution

11. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+q=0$ where q
eq 0

- then $\Delta=egin{array}{c|ccc} rac{1}{lpha} & rac{1}{eta} & rac{1}{\gamma} \ rac{1}{eta} & rac{1}{\gamma} & rac{1}{lpha} \ rac{1}{\gamma} & rac{1}{lpha} & rac{1}{eta} \ \end{array}}$ equals

 $A. - \frac{p}{q}$

$$\cdot \frac{p^2}{q}$$

D. None of these

Answer: D

View Text Solution

12. If $O(A)=2\times 3, O(B)=3\times 2$ and $O(C)=3\times 3$ which one of the following is not defined? Where O (A) represents the order of A

A.
$$BC+A$$
 '

 $\mathsf{B}.\,BAC$

C. C(A+B')

D. C(A+B')

Answer: D

View Text Solution

13. The values of λ for which the system of equations

$$x + y - 3 = 0$$

$$(1 + \lambda)x + (2 + \lambda)y - 8 = 0$$

$$x-(1+\lambda)y+(2+\lambda)=0$$
 is consistent are

A.
$$-\frac{5}{3}$$
, 1

B.
$$\frac{2}{3}$$
, -3

$$C. -\frac{1}{3}, -3$$

Answer: A

14. Let
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \ \end{vmatrix}$$
 & $\begin{vmatrix} a_1 + pb_1 & b_1 + qc_1 \end{vmatrix}$

14. Let
$$D=egin{array}{c|cccc} a_1&b_1&c_1\ a_2&b_2&c_2\ a_3&b_3&c_3 \end{array}$$
 & $D'=egin{array}{c|ccccc} a_1+pb_1&b_1+qc_1&c_1+ra_1\ a_2+pb_2&b_2+qc_2&c_2+ra_2\ a_3+pb_3&b_3+qc_3&c_3+ra_3 \end{array}$ then

A.
$$D' = D(1 + p + q + r)$$

$$\mathsf{B.}\,D' = D(1+pqr)$$

$$C.D' = D$$

D.
$$D' = D(1 - p - q)$$

Answer: B

15. If 2^{a_1} , 2^{a_2} , 2^{a_3} 2^{a_r} are in geometric progression then

$$\sim 2^5$$

B.
$$2^{3}$$

$$\mathsf{C}.\,0$$

D. None of these

Answer: C

View Text Solution

16. If the product of the matric

$$B = \left[\begin{array}{ccc} 2 & 0 & 4 \\ 1 & 0 & 1 \end{array} \right]$$

 $C=\left[egin{array}{cccc} -1 & 0 & 1 \ 1 & 1 & 3 \ 2 & 0 & 3 \end{array}
ight]$ then A^{-1} equals

A. $\begin{bmatrix} -3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 6 \end{bmatrix}$ B. $\begin{bmatrix} -3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16 \end{bmatrix}$ C. $\begin{bmatrix} -3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6 \end{bmatrix}$ D. $\begin{bmatrix} -3 & -3 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6 \end{bmatrix}$

17. Matrix
$$A=egin{bmatrix} x&3&2\1&y&4\2&2&z \end{bmatrix}$$
. If $xyz=60$ and

$$8x+4y+3z=20$$
, then A(adjA) is equal to

A.
$$\begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix}$$
B.
$$\begin{bmatrix} 88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88 \end{bmatrix}$$
C.
$$\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$$
D.
$$\begin{bmatrix} 34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34 \end{bmatrix}$$

18. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1, five of these entries are 1 and foru of them are zero. Then the number of matrices in A is

A. 3

B. 6

 $\mathsf{C}.\,9$

D. 12

Answer: D

View Text Solution

19. Let P be a non singular matix such that $I+P+P^2+\ldots\ldots+P^n=O \ \mbox{(Where O denotes the null matrix), then } P^{-1} \mbox{ is}$

A. P^n

 $B.-P^n$

 $C. - (1 + P + P^2 + \dots + P^n)$

D. None of these

Answer: A

View Text Solution

20. If
$$A=egin{bmatrix}1&rac{1}{2}\0&1\end{bmatrix}$$
 then A^{64} is

A.
$$\begin{bmatrix} 1 & 32 \\ 32 & 1 \end{bmatrix}$$

$$\mathsf{B.}\begin{bmatrix}1&0\\32&1\end{bmatrix}$$

$$\mathsf{C.} \begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}$$

D. None of these

Answer: C

21. Let
$$A=\begin{bmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$$
 be a matrix then

$$|A|adj(A^{-1})$$
 is equal to

A.
$$O_{3 imes3}$$

B.
$$\begin{bmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$$

 $\mathsf{C}.\,I_3$

D.
$$\begin{bmatrix} -3 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & -3 \end{bmatrix}$$

Answer: B

22. A skew symmetric matrix S satisfies the relation $S^2+I=0$, where I is a unit matrix then SS' is

A. I

B. 21

 $\mathsf{C}.-I$

D.-2I

Answer: A

View Text Solution

23. If $A^2-A+I=0$ then the inverse of A is

A. A+I

$$\mathsf{B}.\,A$$

$$\mathsf{C}.\,A-I$$

D.
$$I-A$$

Answer: D

View Text Solution

24. If
$$A = \begin{bmatrix} 2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix}$$
 is expressed as the sum of a

symmetric and skew symmetric matrix then the symmetric matrix is

A.
$$\begin{bmatrix} 2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix}$$
B.
$$\begin{bmatrix} 4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4 \end{bmatrix}$$

C.
$$\begin{bmatrix} 2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

View Text Solution

matrix, then A^5 , is equal to

25. If A is a matrix such that $A^2=A+I$. Where I is the unit

A.
$$5A+I$$

B.
$$5A+2I$$

$$\mathsf{C.}\,5A+3I$$

D.
$$5A+4I$$

26. If

$$D = egin{array}{c|ccccc} x^2 + x + 2 & 2x^2 + 3x + 1 & 3x^2 + 5x + 3 \ 20x^2 + 20x + 59 & 40x^2 + 60x + 20 & 60x^2 + 100x + 70 \ 2x^2 + 2x + 6 & 4x^2 + 6x + 2 & 6x^2 + 0x + 7 \end{array}$$

 $=a^2+bx+c$, then the value of a is

A.
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

B. 1 1 1 2 0 1 1 2 3

C. 1 0 1 2 0 1 1 2 3

D. $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$

View Text Solution

27. If $A^2=A$ then $\left(I+A\right)^4$ is equal to

A.
$$I+15A$$

B.
$$I + 7A$$

$$\mathsf{C}.\,I + 8A$$

$$D.I + 11A$$

Answer: A

$${f 28.}\, \Delta = egin{array}{cccc} b+c & q+r & y+z \ c+a & r+p & z+x \ a+b & p+q & x+y \ \end{pmatrix} ext{ and } \Delta_1 = egin{array}{cccc} x & a \ y & b & q \ z & c & r \ \end{pmatrix} ext{Then}$$

A.
$$\Delta=2\Delta_1$$

 $B.\Delta = -2\Delta_1$

C.
$$\Delta=4\Delta_1$$

D.
$$\Delta=-4\Delta_1$$

Answer: A

29. If
$$\alpha,\beta,\gamma$$
 are three real numbers such that $\alpha+\beta+\gamma=0$ then

$$\Delta = egin{array}{c|ccc} 1 & \cos y & \cos eta \ \cos y & 1 & \cos lpha \ \cos eta & \cos lpha & 1 \ \end{array}$$
 equals

$$A. - 1$$

D.
$$\cos \alpha \cos \beta \cos \gamma$$

Answer: B

View Text Solution

30. Let
$$a_2, a_3 \in R$$
 be such that $|a_2 - a_3| = 6$,

Let
$$f(x)=egin{array}{ccc|c}1&a_3&a_2\\1&a_3&2a_2-x\\1&2a_3-x&a_2\end{array}, x\in R.$$

Then find least value of L such that $f(x) \leq L \, orall \, x \in R$

C. 12

D. 36

Answer: B

