

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 100

Mathematics Single Choice

1. The sum of the binomial coefficients

$$\left(\frac{{}^{50}C_0}{1} + \frac{{}^{50}C_2}{3} + \frac{{}^{50}C_4}{5} + \dots + \frac{{}^{50}C_{50}}{51}\right) \text{ is equal to}$$
A. $\frac{2{}^{50}}{51}$
B. $\frac{2{}^{50}}{51}$
C. $\frac{2{}^{51} - 1}{51}$
D. $\frac{2{}^{51} - 1}{50}$

Answer: A

2. If s, s are the length of the perpendicular on a tangent from the I foci, a, a are those from the vertices, c is that from the centre and e is the eccentricity of the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $\frac{ss' - c^2}{aa' - c^2} =$

A. e

B. $\frac{1}{e}$ C. $\frac{1}{e^2}$ D. e^2

Answer: D

3. If the truth values of statements p, q, rare True, True and False respectively

Statement-1: Statement

 $-\left(pee q
ight) \wedge\left(pee \, {}^{\hspace{-0.5mm}}{}^{\hspace{-0.5mm}}{}_{\hspace{-0.5mm}}}
ight) \wedge\left({}^{\hspace{-0.5mm}}{}_{\hspace{-0.5mm}}{}^{\hspace{-0.5mm}}{}_{\hspace{-0.5mm}}}
ight)$ is false.

Statement-2 : For given truth values

~ $(p \lor q)$ is false, $(p \lor ~r)$ is true, $(~p \lor ~q)$ is false.

A. Statement-1 is True, Statement-2 is True: Statement-2 is NOT a

correct explanation for Statement-1

B. Statement - 1 is True, Statement -2 is True: Statement-2 is a

correct explanation for Statement - 1

C. Statement-1 is True, Statement-2 is False

D. Statement - 1 is False, Statement -2 is True

Answer: B

4. If ω is cube root of unity, then

Answer: D

D. x^3

View Text Solution

5. If $f:[0,\infty) \to [0,\infty)$ is a function with f(0) = 0 and $f'(x) > 1 \,\forall x \in (0,\infty)$ then number of solution(s) of the equation f(x) = f'(x) is

A. 0

B.1

C. 2

D. infinite

Answer: B

O View Text Solution

6. The smallest set A such that

 $A \cup \{1,2\} = \{1,2,3,5,9\}$ is

A. $\{2, 3, 5\}$

B. $\{3, 5, 9\}$

 $\mathsf{C}.\,\{1,\,2,\,5,\,9\}$

D. None of these

Answer: B

7. Let T_n be n^{th} term of a sequence for $n = 1, 2, 3, 4, \ldots$ If $3T_{n+1} = T_n$ and $T_4 = \frac{1}{81}$, then the value of $\sum_{n=1}^{\infty} \left(\frac{T_n \cdot T_{n+1}}{T_{n+2}}\right)$ is equal to

A. $\frac{1}{2}$ B. 1 C. $\frac{3}{2}$ D. 0

Answer: C

8. A card is lost from a pack of 52 playing cards. From the remainder of the pack,one card is drawn and is found to be spade. The probability that the missing card is a spade is

A.
$$\frac{5}{17}$$

B. $\frac{4}{17}$
C. $\frac{3}{17}$
D. $\frac{2}{17}$

Answer: B

View Text Solution

9. The three lines through the origin with direction cosines $l_1, m_1, n_1, l_2, m_2, n_2$, and l_3, m_3, n_3 are coplanar, if

A.
$$l_1(l_2-l_3)+m_1(m_2-m_3)+n_1(n_2-n_3)=0$$

Β.

$$egin{aligned} &l_1(m_2n_3-m_3n_2)+m_1(n_2l_3-n_3l_2)+n+_1(l_2m_3-l_3m_2)=0\ &c.egin{pmatrix} l_1&m_1&n_1\ l_2&m_2&n_2\ l_3&m_3&n_3 \end{bmatrix}=0 \end{aligned}$$

D. None of these

Answer: C

View Text Solution

10. Let the three sides of a trapezium are equal and each equal to 6 cm. If area of trapezium is maximum, then length of fourth side of trapezium is

A. 6 cm

B. 9 cm

C. 12 cm

D. 15 cm

Answer: C

View Text Solution

11. If
$$z+rac{1}{z}=2\cos heta$$
 , then the value of $\left|\left(z^{2n}-1
ight)/\left(z^{2n}+1
ight)
ight|$

A. $|\tan n\theta|$

 $B.\tan n\theta$

C. $|\cot n\theta|$

D. $\cot n\theta$

Answer: B

D Watch Video Solution

12.
$$\lim_{x \to 0} \frac{(1 - \cos x)(3 + \cos 2x)}{x \cdot \tan 2x} =$$

A. 0
B. 1
C. $\frac{1}{2}$
D. -1

Answer: B

Watch Video Solution

13. Let
$$f(x) = rac{\sqrt{sgn(lpha x^2 + lpha x + 1)}}{\cot^{-1}(x^2 - lpha)}.$$
 If f(x) is continuous for all

 $x \in R$ then number of integers in the range of lpha is

B. 4

C. 5

D. 6

Answer: B

View Text Solution

14. The value of
$$\sqrt{2} \int rac{\sin x dx}{\sin \left(x - rac{\pi}{4}
ight)}$$
 is equal to

$$\begin{array}{l} \mathsf{A.} x - \log \Bigl| \cos \Bigl(x - \frac{\pi}{4} \Bigr) \Bigr| + c \\ \mathsf{B.} x + \log \Bigl| \cos \Bigl(x - \frac{\pi}{4} \Bigr) \Bigr| + c \\ \mathsf{C.} x - \log \Bigl| \sin \Bigl(x - \frac{\pi}{4} \Bigr) \Bigr| + c \\ \mathsf{D.} x + \log \Bigl| \sin \Bigl(x - \frac{\pi}{4} \Bigr) \Bigr| + c \end{array}$$

Answer: D

15. If tangents be drawn to the circle $x^2 + y^2 = 12$ at its points of intersection with the circle $x^2 + y^2 - 5x + 3y - 2 = 0$, then the tangents intersect at the point

A.
$$\left(-6, \frac{18}{5}\right)$$

B. $\left(6, \frac{18}{5}\right)$
C. $\left(-6, -\frac{18}{5}\right)$
D. $\left(6, -\frac{18}{5}\right)$

Answer: D

Watch Video Solution

16. Let the area bounded by the x- axis, curve $y = \left(1 + \frac{8}{x^2}\right)$ and the ordinates x = 2 and x = 4 is "A" sq. unit and if the ordinate x = a divides the area into two equal parts, then the correct statement among the following is

A. A = 3 and a = 2

B. A = 2 and a = 1

C.
$$A=4\sqrt{2}$$
 and $a=\sqrt{2}$

D. A=4 and $a=2\sqrt{2}$

Answer: D

17. In an examination, a pupil's average marks were 63 per paper. If he had obtained 20 more marks for his geography paper and 2 more marks for his History paper, his average per paper would have been 65, then the number of papers in the examination are

A. 8

B. 9

C. 10

Answer: D

Watch Video Solution

18. The equation of image of pair of lines y=|x-1| in y-axis is :

A.
$$x^2 + y^2 + 2x + 1 = 0$$

B.
$$x^2 - y^2 + 2x - 1 = 0$$

C.
$$x^2 - y^2 + 2x + 1 = 0$$

D. None of these

Answer: C

19. If e_1 and e_2 are the roots of the equation $x^2 - ax + 2 = 0$ where e_1, e_2 are the eccentricities of an ellipse and hyperbola respectively then the value of a belongs to

A. $(3,\infty)$ B. $(2,\infty)$ C. $(1,\infty)$ D. $(-\infty,1)\cup(1,2)$

Answer: A

View Text Solution

20. For every natural number n

A.
$$n>2^n$$

 $\mathsf{B.}\, n < 2^n$

 $\mathsf{C.}\,n\geq 2^n$

D. $n \leq 2^n$

Answer: B

View Text Solution

Mathematics Subjective Numerical

1. Let $g(x) = \log f(x)$ where f(x) is twice differentiable positive function on $(0,\infty)$ such that f(x+1) = xf(x). Find $g''\left(\frac{3}{2}\right) - g''\left(\frac{1}{2}\right)$

View Text Solution

2. Between two junction stations A and B, there are 12 intermediate stations. Find the number of ways in which a train can be made to

halt at 4 of these stations so that no two of these are consecutive

3. If
$$A = \begin{bmatrix} 1 & rac{1}{2} \\ 0 & 1 \end{bmatrix}$$
 and $A^{64} = \begin{bmatrix} 1 & 2^\lambda \\ 0 & 1 \end{bmatrix}$. Find the value of λ .

View Text Solution

4. Tangents are drawn to the hyperbola $x^2 - 9y^2 = 9$ from (3,2). Find the area of the triangle that these tangents form with their chord of contact.

5. Let O be an interior point of ΔABC satisfying

 $\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow{0}$, then the ratio of the areas of ΔABC to

ΔAOC is

6. If
$$f(x) = pe^{2x} + qe^x + rx$$
 satisfies

$$f(0)=-1, f'(\log 2)=31, \int_{0}^{\log 4} \left(pe^{2x}+qe^{x}
ight) dx=rac{39}{2},$$
 then

 $\mathsf{evaluate}\; p+q+2r$

View Text Solution

7. Evaluate

 $\cos^2 88^\circ + \cos^2 28^\circ - \cos 88^\circ \cos 28^\circ$

View Text Solution

8. Consider the equation

$$\sin x \sin \Bigl(x+rac{\pi}{3}\Bigr) \sin \Bigl(x-rac{\pi}{3}\Bigr) + rac{1}{4} = 0$$
,. The $x \in [0,3\pi]$

sum of the values of r that satisfy the equation is $\left(\frac{m}{n}\right)\pi$, where G.C.D (m,n) =1 Find $\left[\frac{m}{n}\right]$ (where [] represents the greatest integer function.)

View Text Solution

9. Let
$$x^2 + y^2 + z^2 = r^2$$
. If $\tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right)$ then evaluate $+\tan^{-1}\left(\frac{zx}{yr}\right) = m\pi$

m.

View Text Solution

10. Find the degree of differential equation which satisfies

$$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$$