© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 100

Mathematics Single Choice

1. The sum of the binomial coefficients
$\left(\frac{{ }^{50} C_{0}}{1}+\frac{{ }^{50} C_{2}}{3}+\frac{{ }^{50} C_{4}}{5}+\ldots . .+\frac{{ }^{50} C_{50}}{51}\right)$ is equal to
A. $\frac{2^{50}}{51}$
B. $\frac{2^{50}}{51}$
C. $\frac{2^{51}-1}{51}$
D. $\frac{2^{51}-1}{50}$

- View Text Solution

2. If s, s are the length of the perpendicular on a tangent from the I
foci, a, a are those from the vertices, c is that from the centre and e
is the eccentricity of the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $\frac{s s^{\prime}-c^{2}}{a a^{\prime}-c^{2}}=$
A.e
B. $\frac{1}{e}$
C. $\frac{1}{e^{2}}$
D. e^{2}

Answer: D

3. If the truth values of statements p, q, rare True, True and False respectively

Statement-1: Statement
$-(p \vee q) \wedge(p \vee \sim r) \wedge(\sim p \vee \sim q)$ is false.
Statement-2 : For given truth values
$\sim(p \vee q)$ is false, $(p \vee \sim r)$ is true, $(\sim p \vee \sim q)$ is false.
A. Statement-1 is True, Statement-2 is True: Statement-2 is NOT a correct explanation for Statement-1
B. Statement - 1 is True, Statement -2 is True: Statement-2 is a correct explanation for Statement - 1
C. Statement-1 is True, Statement-2 is False
D. Statement -1 is False, Statement -2 is True

Answer: B
4. If ω is cube root of unity, then
$\Delta=\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|=$
A. $x^{3}+1$
B. $x^{3}+\omega$
C. $x^{3}+\omega^{2}$
D. x^{3}

Answer: D

- View Text Solution

5. If $f:[0, \infty) \rightarrow[0, \infty)$ is a function with $f(0)=0$ and $f^{\prime}(x)>1 \forall x \in(0, \infty)$ then number of solution(s) of the equation $f(x)=f^{\prime}(x)$ is
A. 0
B. 1
C. 2
D. infinite

Answer: B

- View Text Solution

6. The smallest set A such that
$A \cup\{1,2\}=\{1,2,3,5,9\}$ is
A. $\{2,3,5\}$
B. $\{3,5,9\}$
C. $\{1,2,5,9\}$
D. None of these

- View Text Solution

7. Let T_{n} be $n^{\text {th }}$ term of a sequence for $n=1,2,3,4, \ldots \ldots$. If $3 T_{n+1}=T_{n}$ and $T_{4}=\frac{1}{81}$, then the value of $\sum_{n=1}^{\infty}\left(\frac{T_{n} \cdot T_{n+1}}{T_{n+2}}\right)$ is equal to
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. 0

Answer: C

8. A card is lost from a pack of 52 playing cards. From the remainder of the pack,one card is drawn and is found to be spade. The probability that the missing card is a spade is
A. $\frac{5}{17}$
B. $\frac{4}{17}$
C. $\frac{3}{17}$
D. $\frac{2}{17}$

Answer: B

- View Text Solution

9. The three lines through the origin with direction cosines
$l_{1}, m_{1}, n_{1}, l_{2}, m_{2}, n_{2}$, and l_{3}, m_{3}, n_{3} are coplanar, if
A. $l_{1}\left(l_{2}-l_{3}\right)+m_{1}\left(m_{2}-m_{3}\right)+n_{1}\left(n_{2}-n_{3}\right)=0$
B.

$$
l_{1}\left(m_{2} n_{3}-m_{3} n_{2}\right)+m_{1}\left(n_{2} l_{3}-n_{3} l_{2}\right)+n+_{1}\left(l_{2} m_{3}-l_{3} m_{2}\right)=0
$$

C. $\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|=0$
D. None of these

Answer: C

- View Text Solution

10. Let the three sides of a trapezium are equal and each equal to 6 cm . If area of trapezium is maximum, then length of fourth side of trapezium is
A. 6 cm
B. 9 cm
C. 12 cm

D. 15 cm

Answer: C

- View Text Solution

11. If $z+\frac{1}{z}=2 \cos \theta$, then the value of $\left|\left(z^{2 n}-1\right) /\left(z^{2 n}+1\right)\right|$
A. $|\tan n \theta|$
B. $\tan n \theta$
C. $|\cot n \theta|$
D. $\cot n \theta$

Answer: B

12. $\lim _{x \rightarrow 0} \frac{(1-\cos x)(3+\cos 2 x)}{x \cdot \tan 2 x}=$
A. 0
B. 1
C. $\frac{1}{2}$
D. -1

Answer: B

13. Let $f(x)=\frac{\sqrt{\operatorname{sgn}\left(\alpha x^{2}+\alpha x+1\right)}}{\cot ^{-1}\left(x^{2}-\alpha\right)}$. If $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$ then number of integers in the range of α is
A. 0
B. 4
C. 5
D. 6

Answer: B

- View Text Solution

14. The value of $\sqrt{2} \int \frac{\sin x d x}{\sin \left(x-\frac{\pi}{4}\right)}$ is equal to
A. $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
B. $x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
C. $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
D. $x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$

Answer: D
15. If tangents be drawn to the circle $x^{2}+y^{2}=12$ at its points of intersection with the circle $x^{2}+y^{2}-5 x+3 y-2=0$, then the tangents intersect at the point
A. $\left(-6, \frac{18}{5}\right)$
B. $\left(6, \frac{18}{5}\right)$
C. $\left(-6,-\frac{18}{5}\right)$
D. $\left(6,-\frac{18}{5}\right)$

Answer: D

(D) Watch Video Solution

16. Let the area bounded by the x - axis, curve $y=\left(1+\frac{8}{x^{2}}\right)$ and the ordinates $x=2$ and $x=4$ is "A" sq. unit and if the ordinate $x=a$ divides the area into two equal parts, then the correct statement among the following is
A. $A=3$ and $a=2$
B. A = 2 and $a=1$
C. $A=4 \sqrt{2}$ and $a=\sqrt{2}$
D. A=4 and $a=2 \sqrt{2}$

Answer: D

- View Text Solution

17. In an examination, a pupil's average marks were 63 per paper. If he had obtained 20 more marks for his geography paper and 2 more marks for his History paper, his average per paper would have been 65 , then the number of papers in the examination are
A. 8
B. 9
C. 10
D. 11

Answer: D

D Watch Video Solution

18. The equation of image of pair of lines $y=|x-1|$ in y-axis is :
A. $x^{2}+y^{2}+2 x+1=0$
B. $x^{2}-y^{2}+2 x-1=0$
C. $x^{2}-y^{2}+2 x+1=0$
D. None of these

Answer: C

- View Text Solution

19. If e_{1} and e_{2} are the roots of the equation $x^{2}-a x+2=0$ where e_{1}, e_{2} are the eccentricities of an ellipse and hyperbola respectively then the value of a belongs to
A. $(3, \infty)$
B. $(2, \infty)$
C. $(1, \infty)$
D. $(-\infty, 1) \cup(1,2)$

Answer: A

- View Text Solution

20. For every natural number n
A. $n>2^{n}$
B. $n<2^{n}$
C. $n \geq 2^{n}$
D. $n \leq 2^{n}$

Answer: B

- View Text Solution

Mathematics Subjective Numerical

1. Let $g(x)=\log f(x)$ where $\mathrm{f}(\mathrm{x})$ is twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=x f(x)$. Find $g^{\prime \prime}\left(\frac{3}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)$

- View Text Solution

2. Between two junction stations A and B, there are 12 intermediate stations. Find the number of ways in which a train can be made to
halt at 4 of these stations so that no two of these are consecutive

- View Text Solution

3. If $A=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right]$ and $A^{64}=\left[\begin{array}{cc}1 & 2^{\lambda} \\ 0 & 1\end{array}\right]$. Find the value of λ.

- View Text Solution

4. Tangents are drawn to the hyperbola $x^{2}-9 y^{2}=9$ from $(3,2)$.

Find the area of the triangle that these tangents form with their chord of contact.

- View Text Solution

5. Let O be an interior point of $\triangle A B C$ satisfying
$\overrightarrow{O A}+2 \overrightarrow{O B}+3 \overrightarrow{O C}=\overrightarrow{0}$, then the ratio of the areas of $\triangle A B C$ to

$\triangle A O C$ is

- View Text Solution

$$
\begin{aligned}
& \text { 6. } \begin{array}{c}
\text { If } \\
f(x)=p e^{2 x}+q e^{x}+r x
\end{array} \\
& f(0)=-1, f^{\prime}(\log 2)=31, \int_{0}^{\log 4}\left(p e^{2 x}+q e^{x}\right) d x=\frac{39}{2},
\end{aligned}
$$ evaluate $p+q+2 r$

- View Text Solution

7. Evaluate
$\cos ^{2} 88^{\circ}+\cos ^{2} 28^{\circ}-\cos 88^{\circ} \cos 28^{\circ}$

- View Text Solution

8. Consider the equation
$\sin x \sin \left(x+\frac{\pi}{3}\right) \sin \left(x-\frac{\pi}{3}\right)+\frac{1}{4}=0$,. The $x \in[0,3 \pi]$
sum of the values of r that satisfy the equation is $\left(\frac{m}{n}\right) \pi$, where G.C.D $(\mathrm{m}, \mathrm{n})=1$ Find $\left[\frac{m}{n}\right]$ (where [] represents the greatest integer function.)

- View Text Solution

9. Let $x^{2}+y^{2}+z^{2}=r^{2}$. If $\tan ^{-1}\left(\frac{x y}{z r}\right)+\tan ^{-1}\left(\frac{y z}{x r}\right)$ then evaluate $+\tan ^{-1}\left(\frac{z x}{y r}\right)=m \pi$
m.

- View Text Solution

10. Find the degree of differential equation which satisfies
$\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$

D View Text Solution

