## **MATHS**

# **BOOKS - NTA MOCK TESTS**

# **NTA TPC JEE MAIN TEST 101**

**Mathematics** 

**1.** Find the coefficient of  $x^5$  in the expansion of

$$\left(1+2x+3x^2+\cdots\right)^{-\frac{3}{2}}$$
?

A. 21

B. 25

C. 26

D. None of these

## **Answer: D**



**View Text Solution** 

**2.** If a tangent of slope 'm' at a point of m the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  passes through a b (2a,

0) and if 'e' denotes the eccentricity of the ellipse, then

A. 
$$m^2+2e^2=1$$

$$\mathtt{B.}\,3m^2+e^2=1$$

$$\mathsf{C.}\,2m^2+e^2=1$$

$$\mathsf{D}.\,m^2+e^2=$$

## Answer: B



**3.** The proposition  $\neg (p \lor q) \land (p \lor q)$ 

A. 
$$( extstyle p \wedge extstyle q) ee (p ee q)$$

B. 
$$(p \lor q) \land ({ extstyle extstyle q})$$

C. 
$$( extstyle p \wedge extstyle q) \wedge (p \wedge q)$$

D. 
$$(p \wedge q) \wedge (p \vee q)$$

## **Answer: A**



**4.** If 
$$S_r = egin{array}{cccc} 2r & x & n(n+1) \ 6r^2-1 & y & n^2(2n+_3) \ 4r^3-2nr & z & n^{30}(n+1) \ \end{array}$$

then value of  $\sum_{r=1}^n S_r$  is independent of -

A. x only

B. y only

C. x, y, z, n

D. n only

#### **Answer: C**



**5.** If domain of f(x) is [1, 3], then find the domain off  $f(\log_2 \left(x^2 + 3x - 2\right))$ 

A. 
$$[-5, -4] \cup [1, 2]$$

$$\texttt{B.}\left[\,-\,13,\;-\,2\right]\cup\left[\frac{3}{2},\,5\right]$$

C. 
$$[-4,1]\cup[2,7]$$

D. 
$$[3, 2]$$

#### **Answer: A**



**6.** If A and B are two given sets, then

 $A\cap (A\cap B)^c$  is equal to

A. A

B. B

 $\mathsf{C}.\,\phi$ 

D.  $A\cap B^c$ 

**Answer: D** 



**7.** Positive integers  $a_1, a_2, a_3, \ldots$  form an arithmetic progression (A. P.). If  $a_1$  = 5 and  $a_4$  = 25, then  $a_6$  is equal to

- A.  $2a_1$
- B.  $3a_1$
- $C. a_1 + a_2$
- D.  $a_1 + a_3$

## **Answer: B**



**8.** A die is thrown three times and the sum of the three numbers thrown is 15, then the probability that the first throw was a four is

- A.  $\frac{1}{5}$
- B.  $\frac{1}{4}$
- $\mathsf{C.}\;\frac{1}{6}$
- D.  $\frac{2}{15}$

## **Answer: A**



**9.** A plane makes intercepts OA, OB, OC whose measures are a, b, c on the axes x, y, z respectively. The area of the triangle ABC is

A. 
$$\frac{1}{2}\sqrt{a^2+b^2+c^2}$$

B. 
$$rac{1}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

C. 
$$\frac{1}{2}\sqrt{ab+bc+ac}$$

D. 
$$\frac{1}{1}\sqrt{a^2b + b^2c + c^2a}$$

## **Answer: B**



**10.** The exhaustive intervals of real values of x such that

$$\sqrt{12-4x}>1+\sqrt{4x+4}$$
 is

A. 
$$\left[1 - \frac{\sqrt{31}}{8}, 1 + \frac{\sqrt{31}}{8}\right)$$

B. 
$$\left| -1, 1 + \frac{\sqrt{31}}{8} \right)$$

$$\mathsf{C.}\,[\,-1,3]$$

D. 
$$-1, 1 - \frac{\sqrt{31}}{8}$$

## **Answer: D**



**11.** If 
$$1, \omega, \omega^2, \ldots, \Omega^{n-1}$$
 are the

n roots of unity then

$$(1-\omega)ig(1-\omega^2ig)\ldots\ldots ig(1-\omega^{n-1}ig)$$

equals

B. 2

C. n

D.  $n^2$ 

**12.** 
$$\lim_{n \to \infty} II_{n=2}^n \left(1 - \frac{3}{n(n+2)}\right)$$
 is equal to

A. 1

B. 4

 $\mathsf{C.}\ \frac{1}{4}$ 

D.  $\frac{3}{4}$ 

**Answer: C** 



**13.** If f (x) = 
$$\begin{cases} \frac{2}{1+x^2} & x \neq Q \\ b & x \in Q \end{cases}$$
 has exactly two

points of continuity, then the values of b are

#### **Answer: B**



**14.** Let f (x) be a function satisfying f' (x) = f (x) with f(O) = 1 and g(I) and g (x) be a function that satisfies f (x) + g(x) =  $x^2$ . Evaluate:  $f_0^1$  f (x) g(x)dx

A. 
$$e + \frac{e^2}{2} - \frac{3}{2}$$
B.  $e - \frac{e^2}{2} - \frac{3}{2}$ 
C.  $e + \frac{e^2}{2} + \frac{5}{2}$ 
D.  $e - \frac{e^2}{2} - \frac{5}{2}$ 

## Answer: B



**15.** If the pair of tangents are drawn from 0 (0, 0) to the circle  $x^2+y^2-6x-8y=-21$  meets the circle in A and B, then length of BA is

$$\mathrm{B.}\ \frac{4}{5}\sqrt{21}$$

$$\mathsf{C.}\ \sqrt{\frac{17}{3}}$$

$$\text{D.}\ \frac{\sqrt{21}}{5}$$

## Answer: B

**16.** Area of the region bounded by the curve  $y = \tan x$ , tangent drawn to the curve at  $x = \frac{\pi}{4}$  and the x-axis is

A. 
$$\log \sqrt{2}$$

B. 
$$\log \sqrt{2} + \frac{1}{4}$$

C. 
$$\log \sqrt{2} - rac{1}{4}$$

D. 
$$\frac{1}{4}$$

17. The mean and median of a moderately skewed distribution are 5 and 6 respectively. Then the value of mode in such a situation is approximately equal to

A. 8

B. 11

C. 16

D. None of these

## **Answer: A**



# **View Text Solution**

**18.** A ray travelling along the line 3x - 4y = 5 after being reflected from a line I travels along the line 5x + 12y = 13. Then, the equation of the line I is

A. 
$$x+8y=0$$

$$C. X + 4y = 65$$

D. 
$$32x - 4y = -65$$

**Answer: B** 



**View Text Solution** 

**19.** The roots of the equation  $x^5-40x^4+px^3+qx^2+rx+s=0$  are in geometric progression and the sum of their reciprocals is 10. Then  $|\mathbf{s}|$  is equals to

A. 64

B. 16

C. 32

D. None of these

## **Answer: C**



**View Text Solution** 

**20.** For each  $n \in N$ , the correct statement is

A.  $2^n < n$ 

 $\mathsf{B.}\,n^2>2n$ 

C. 
$$n^4 < 10^n$$

D. 
$$2^{3n} > 7n + 1$$

## **Answer: C**



**View Text Solution** 

**21.** If f (x) =  $x^3 + e^{\frac{x}{2}}$  and g (x) is the inverse of f (x), then find g'(l)



**22.** A polygon has 44 diagonals. Find the number of sides.



# **View Text Solution**

**23.** If a, b, care positive real numbers and the system of equations (a - 1) x = y + z, (b - 1) y = z + x and (c - 1)z = x + y has a non trivial solution, then find the minimum value of  $\frac{abc}{10}$ .



24. If x = 9 is the chord of contact of the hyperbola  $x^2 - y^2 = 9$ , then the equation of the pair of tangents forming the chord of contact is  $ax^2 - by^2 - 18x + 9 = 0$ . Find the value of a+ b.



# View Text Solution

**25.** Let  $\overrightarrow{p}$ ,  $\overrightarrow{q}$ ,  $\overrightarrow{r}$  be three mutually perpendicular unit vectors. If a vector  $\overrightarrow{x}$ satisfies the equation

$$\overrightarrow{p} imes\left(\left(\overrightarrow{x}-\overrightarrow{q}
ight) imes\overrightarrow{p}
ight)+$$

$$\overrightarrow{q} imes \left(\left(\overrightarrow{x}-\overrightarrow{r}
ight) imes \overrightarrow{q}
ight)+ \ \overrightarrow{r} imes \left(\left(\overrightarrow{x}-\overrightarrow{p}
ight) imes \overrightarrow{r}
ight)=\overrightarrow{0} ext{ then} \ \overrightarrow{x}. \overrightarrow{x} ext{ is}$$



# **View Text Solution**



**26.** If  $\cos x = \tan y$ ,  $\cos y = \tan z$ ,  $\cos z$  then =  $\tan z$ 



**27.** Consider the inequation  $\cos x - \cos 3x$ 

$$\ge 0x \in [0,2\pi].$$
 If the solution set is

 $[0,a\pi]\cup[b\pi,2\pi]$  , then find b - a



## **View Text Solution**

**28.** If  $\tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{m}$ where  $\cos^{-1}\left(\frac{p}{q}\right)$ 

G.C.D (p, q) = 1, then find q - mp.



**29.** m  $\in$  R. The substitution y = um transforms the differential equation  $2x^4y\frac{dy}{dx}+y^4=4x^6$  into a homogeneous equation. Find the value of 2m.

