

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 102

Mathematics

1. Find k if

$$\sum_{i=0}^{100}{}^{150}C_i.~^{350}C_{100-i}.~(150-i)=k.~^{500}C_{100}$$

A. 50

B. 100

C. 120

D. 150

Answer: C

View Text Solution

2. If the centre, one of the foci and semimajor axis of an ellipse be (0,0), (0,3) and 5 respectively, then its equation is

A.
$$rac{x^2}{16} + rac{y^2}{25} = 1$$

$${\rm B.}\ \frac{x^2}{25}+\frac{y^2}{16}=1$$

 $\mathsf{C.} \ \frac{x^2}{9} + \frac{y^2}{25} = 1$

Answer: A

View Text Solution

3. The proposition $(p \lor q) \lor ((\neg p) \land q)$ is logically equivalent to

B. p

C. q

D. ~q

Answer: A

View Text Solution

4. If $A+B+C=\pi$, then the value of

$$egin{array}{c|cccc} \sin(A+B+C) & \sin B & \cos C \ -\sin B & 0 & \tan A \ \cos(A+B) & -\tan A & 0 \end{array}$$
 equal to.

A. 0

B. 1

C. $2\sin B \tan A \cos C$

D. None of these

Answer: A

5. In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics,19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. The number of students who have taken exactly one subject is

A. 6

B. 9

C. 7

D. 22

Answer: D

6. If e_1 is the eccentricity of the ellipse $rac{x^2}{16}+rac{y^2}{25}=1$ and e_2 is the eccentricity of the hyperbola passing through the foci of the ellipse and $e_1e_2=1$, then the equation of the hyperbola is

A.
$$rac{x^2}{9} - rac{y^2}{16} = 1$$

B.
$$\frac{x^2}{16} - \frac{y^2}{9} = -1$$

$$\text{C.} \ \frac{x^2}{9} - \frac{y^2}{25} = 1$$

D. None of these

Answer: B

View Text Solution

- **7.** Let S_n denotes the sum of n terms of S30 an arithmetic progression, then $\frac{S_{30}}{S_{20}-S_{10}}$ is equal to
 - **A.** 3
 - B. 2
 - C. 1
 - D. depends upon first term &common difference of
 - A. P

Answer: A

8. An elevator starts with m passengers and stops at n floors $(m \le n)$. The probability that no two passengers left it at the same floor is

A.
$$\frac{^nP_m}{m^n}$$

B.
$$\frac{{}^{n}P_{m}}{n^{m}}$$

C.
$$\frac{^{n}C_{m}}{m^{n}}$$

D.
$$\frac{{}^nC_m}{n^m}$$

Answer: B

9. The equation of the plane, such that image of point (1,2,3) in the plane is (1,-4,1)is

A.
$$x + y + z - 1 = 0$$

B.
$$x + y + z + 1 = 0$$

C.
$$3y + z + 1 = 0$$

D.
$$3y + z - 1 = 0$$

Answer: C

10. The set of values of p for which the points of extrema of the function,

 $f(x)=x^3-3px^2+3ig(p^2-1ig)x+1$ lie in the interval (-2,4) is:

- A. (-3, 5)
- B. (-3, 3)
- C.(-1,3)
- D. (-1, 5)

Answer: C

11. If $Z_1
eq 0$ and Z_2 be two complex numbers such

that
$$\dfrac{Z_2}{Z_1}$$
 is a purely Z1 imaginary number, then $\left|\dfrac{2Z_1+3Z_2}{2Z_1-3Z_2}\right|$ is equal to

- A. 2
- B. 5
- C. 3
- D. 1

Answer: D

12. The value of

$$\lim_{x o\infty}\ \left(rac{1^2+1}{1-n^3}+rac{2^2+2}{2-n^3}+rac{3^2+3}{3-n^3}+....\ +rac{n^2+n}{n-n^3}
ight)$$

is equal to

A.
$$\frac{1}{2}$$

$$\mathsf{B.}\,\frac{-1}{2}$$

c.
$$\frac{1}{3}$$

D.
$$\frac{-1}{3}$$

Answer: D

$$f(x)=\lim_{n
ightarrow00}rac{\left(x^2+ax+1
ight)+x^{2n}\left(2x^2+x+b
ight)}{1+x^{2n}}$$
 is

continuous for all $x \in R$, then a +b is equal to

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

14. If
$$\int \!\! e^{x^2}igg(2-rac{1}{x^2}igg)dx=e^{x^2}f(x)$$
 $+C$ and $figg(rac{1}{2}igg)=2$

then

find f (1): (where C is an arbitrary constant)

A. 1

B. - 1

C. 2

D. $\frac{1}{2}$

Answer: A

15. From any arbitrary point P on the line +y = 4, tangents PA and PB are drawn to the circle $x^2+y^2=8$. Find the equation that satisfies the locus of the midpoint of AB.

A.
$$x^2 + y^2 + 2x + 2y = 0$$

$$B. x^2 + y^2 - 2x - 2y = 0$$

C.
$$x^2 + y^2 - 2x + 2y = 0$$

D.
$$x^2 + y^2 + 2x - 2y = 0$$

Answer: B

16. The area bounded by the parabola

$$y = 4x^2, x = 0$$
 and $y = 1, y = 4$ is

- **A.** 7
- $\mathsf{B.}\;\frac{7}{2}$
- c. $\frac{7}{3}$
- D. $\frac{7}{4}$

Answer: C

View Text Solution

17. The solution of the equation

 $an^{-1}2x+ an^{-1}3x=rac{\pi}{4}$ would be :

$$4. \ \frac{1}{6}$$

B. 1

C. -1

D.
$$\frac{-1}{6}$$

Answer: A

View Text Solution

(x+y+7)+k(x+2y+9)=0(k is a non-zero real

18. Locus of image of point (2, 3) about the line

number) is

A. straight line

B. circle with radius $=\sqrt{34}$

C. ellipse whose $e = \frac{2}{3}$

D. hyperbola whose $e=\sqrt{2}$

Answer: B

View Text Solution

19. The differential equation

$$rac{xdy}{ydx} + rac{\sin(y) + \cos(x) \ln y^x}{\sin(x) + \cos(y) \ln x^y} = 0$$
 has general

solution as

(Where C is constant of integration)

$$A. \left(\sin y\right)^x + \left(\sin x\right)^y = C$$

$$\mathsf{B.}\, y^{\sin x} + x^{\sin y} = C$$

$$\mathsf{C.} \left(\sin y \right)^x . \left(\sin x \right)^y = C$$

D.
$$y^{\sin x}$$
. $x^{\sin y} = C$

Answer: D

View Text Solution

20. For natural number $n, 2^n(n-1)! < n^n$, if

A.
$$n < 2$$

$$\mathrm{B.}\,n>2$$

$$\mathsf{C.}\, n \geq 2$$

D. Never

Answer: B

View Text Solution

21. If

$$2x=y^{rac{1}{3}}+y^{rac{-1}{3}} ext{ and } ig(x^2-1ig)rac{d^2y}{dx^2}+xrac{dy}{dx}+ky=0,$$
 then find the value of k.

22. Find the number of ways of distributing 11 pencils among 6 kids, each one receiving at least one.

23. A function f is defined as

$$f(x)=rac{1}{2}igg(rac{|\sin x|}{\cos x}+rac{\sin x}{|\cos x|}igg).$$
 If the fundamental period of function f is $m\pi,$ then the value of m is

View Text Solution

24. Consider \widehat{a} and \widehat{b} be two unit vectors such that $\widehat{a}+\widehat{b}$ is also a unit vector. If the angle between \widehat{a} and \widehat{b} is $p\pi$ then k is equal to _____

A. `

В.

C.

D.

Answer: 0.67

View Text Solution

25. Find the value of

$$\int_{-rac{\pi}{3}}^{rac{\pi}{4}}igg(rac{x^{11}-3x^9+5x^7-x^5+1}{\cos^2x}igg)dx.$$

26. Let $\pi < \alpha < \frac{3\pi}{2}$. Evaluate the expression

$$\sqrt{4\sin^4lpha+\sin^22lpha}+4\cos^2\Bigl(rac{\pi}{4}-rac{lpha}{2}\Bigr)$$

View Text Solution

27. Given that 4 cos x cos y = 1 and $\sin^2 x + \sin^2 y \geq rac{3}{2}$. Evaluate $\tan^2 x + \tan^2 y$

View Text Solution

28. If a variable takes values 0, 1, 2, 3, 4, 5 with frequencies

 $5_{C0},\,5_{C1},\,5_{C2},\,5_{C3},\,5_{C4}\,\,{
m and}\,\,5_{C5}$ respectively then evaluate A. M.

View Text Solution

29. If equations

 $x^2+ax+b=0$ $(a,b
eq R)\&x^3+3x^2+5x+3=0$ have two common roots, then value of $\frac{b}{a}$ is equal to

