©゙" doubtnut India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 105

Mathematics

1. If $R=(\sqrt{2}+1)^{2 n+1}$ where [f] and $\mathrm{f}=\mathrm{R}-[\mathrm{R}]$ denotes the greatest integer function and fractional part of R respectively, then the value of
$[\mathrm{R}]$ is equal to:
A. $f+\frac{1}{f}$
B. $f-\frac{1}{f}$
C. $\frac{1}{f}-f$
D. None of these

Answer: C

D View Text Solution

2. The locus of the mid points of the chords of the
ellipse $x^{2} / a^{2}+y^{2} / b^{2}=k, k>0$, making equal intercepts on the coordinate axes, is:
A. $x=y$
В. $x+y=0$
C. $x / a^{2}=y / b^{2}$
D. $x / a^{2}+y / b^{2}=0$

Answer: C

D View Text Solution

3. If the boolean expression $(p \wedge-r) \Rightarrow(r \vee q)$ is false and q and r are both false, then p is
4. If A and B are square matrices of order 3×3, then which of the following is true?

$$
\begin{aligned}
& \text { A. } A B=O \Rightarrow A=O \text { or } \mathrm{B}=\mathrm{O} \\
& \text { B. } \operatorname{det}(2 \mathrm{AB})=8 \operatorname{det}(\mathrm{~A}) \operatorname{det}(\mathrm{B}) \\
& \text { C. } A^{2}-B^{2}=(A+B)(A-B) \\
& \text { D. } \operatorname{det}(\mathrm{A}+\mathrm{B})=\operatorname{det}(\mathrm{A})+\operatorname{det}(\mathrm{B})
\end{aligned}
$$

Answer: B
5. If A, B and C are non-empty sets, then $(A-B) \cup(B-A)$ equals
A. $(A \cup B)-B$
B. $A-(A \cap B)$
C. $(A \cup B)-(A \cap B)$
D. $(A \cap B) \cup(A \cup B)$

Answer: C

- View Text Solution

6. 2 C of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point R on the hyperbola If S \&

S'are the two foci of the hyperbola, then find the value of $\left(R S+R S^{\prime}\right)^{2}$
A. $4 a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)$
B. $a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)$
C. $2 a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)$
D. None of these

Answer: A

7. The sum of first 12 terms of an A.P. having its two middle terms equal to 1 and 7 respectively, is equal to:
A. 24
B. 36
C. 48
D. 96

Answer: C
8. A and B are events such that $P(A \cup B)=\frac{3}{4}$
and $\quad P(A \cap B)=\frac{1}{4}, P(\bar{A})=\frac{2}{3}, \quad$ then $P(\bar{A} \cap B)$ is:
A. $\frac{5}{12}$
B. $\frac{3}{8}$
C. $\frac{5}{8}$
D. $\frac{1}{4}$

Answer: A

D View Text Solution
9. If the image of the point $A(1,2,-3)$ in the plane $2 x+3 y-z=8$ measured parallel to the line $\frac{x}{1}=\frac{1-y}{1}=\frac{z}{2}$ is B , then AB is equal to:
A. $\sqrt{6}$
B. $\sqrt{24}$
C. $2 \sqrt{66}$
D. $\sqrt{66}$

Answer: B

10. For a given integer k, in the interval $\left[2 \pi k+\frac{\pi}{2}, 2 \pi k-\frac{\pi}{2}\right]$ the graph of $\sin \mathrm{x}$ is:
A. increasing from -1 to 1
B. decreasing from -1 to 0
C. decreasing from 0 to 1
D. None of these

Answer: A

- View Text Solution

11. Two circles C_{1} and C_{2} on Argand plane represented by $|z+1|=3$ and $|z-2|=7$ respectively. If a variable circle $\left|z-z_{0}\right|=r$ be inside circle C_{2} such that it touches circle C_{1} externally and circle C_{2} internally, then locus of z_{0} describes a conic C whose eccentricity is equal to:
A. $\frac{1}{10}$
B. $\frac{3}{10}$
C. $\frac{5}{10}$
D. $\frac{7}{10}$

- View Text Solution

12. $\lim _{x \rightarrow \infty}\left(\frac{p^{1 / x}+q^{1 / x}+r^{1 / x}+s^{1 / x}}{4}\right)^{3 x}$, where $p, q, r, s>0$ is equal to:
A. pqrs
B. $(p q r s)^{3}$
C. $(p q r s)^{3 / 2}$
D. $(p q r s)^{3 / 4}$

Answer: D
13.
$f(x)=p x^{2}+q x+r, p>0, q<0, r>0, \quad$ and
$q^{2}>4 p r$, then number of points where $|f(|x|)|$ is not differentiable is:
A. 1
B. 3
C. 5
D. 7

Answer: C
14. If $\int \frac{1-2019 \cos ^{2} x}{(\sin x)^{2019} \cos ^{2} x} d x=\tan x . f(x)+C$
where ' C ' is an integral constant then $f\left(\frac{\pi}{2}\right)+f^{\prime}\left(\frac{\pi}{2}\right)+f\left(-\frac{\pi}{2}\right)$ is equal to:
A. 3
B. 1
C. 0
D. -1

Answer: C

15. The circle passing through (1,-2) and touching

 the axis of x at $(3,0)$. Then which of the following points lie on the circle.A. $(5,-2)$
B. $(-2,5)$
C. $(-5,2)$
D. $(2,-5)$

Answer: A
16. The area of the region bounded by two parabolas $y=x^{2}$ and $x=y^{2}$ is:
A. $\frac{1}{4}$ sq. unit
B. $\frac{1}{3}$. Sq unit
C. 4 sq. unit
D. 3 sq. unit

Answer: B

D View Text Solution
17. Find the value of $\sin ^{-1}\left(\frac{\sin (4 \pi)}{3}\right)$
A. $\frac{\pi}{6}$
B. $\frac{4 i}{5}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{5}$

Answer: D

D View Text Solution
18. A ray of light coming along the line $x+y-2=0$ gets reflected from the line $2 x-y+1=0$ and goes along the line $a x+b y-12=0$ then
A. $a+b=6$
B. $b-a=8$
C. $a / b=7$
D. $b \times a=7$

Answer: D
19. The differential equation:
$(x \cot y+\ln (\cos x)) d y+(\ln (\sin y)-y \tan x) d x=0$
general solution as :
A. $(\sin x)^{y}(\cos y)^{x}=c$
B. $(\sin y)^{x}(\cos y)^{y}=c$
C. $(\sin x)^{y}(\sin y)^{x}=c$
D. $(\cot x)^{y}(\cot y)^{x}=c$

Answer: B
20. $3^{n}>n^{3}$ is true for (where $n \in N$)
A. $n>2$
B. $n \geq 3$
C. $n \geq 4$
D. $n<4$

Answer: C

D View Text Solution
21. The differentiable functions f, g and h such that:

$$
f^{\prime}(x)=g(x), g^{\prime}(x)=h(x), h^{\prime}(x)=f(x)
$$

$f(0)=1, g(0)=0=h(0)$ find:
$[f(x)]^{3}+[g(x)]^{3}+[h(x)]^{3}-3 f(x) g(x) h(x)$ at x
$=7$.

- View Text Solution

22. Consider the word ALLAHABAD. Let p and q represent the number of words formed from the letters of the word ALLAHABAD in which vowels occupy the even positions and the words in which two L are not together, respectively. Find $\frac{q}{p}$
23. If -9 is a root of the equation $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$,
then find the sum of other two roots.

D View Text Solution

24. A continuous function f satisfies
$x^{2}+(f(x)-4 \sqrt{2}+2) x+6-2 \sqrt{2}-\sqrt{2} f(x)=0$
$x \in R-\{\sqrt{2}\}$, then the value of $|f(3 \sqrt{2})|$ is:

- View Text Solution

25. Consider the a, b and c be three non-zero vectors such that c is a unit vector perpendicular to both a and b . If the angle between a and b be $\frac{\pi}{2}$ and $[a b c]^{2}=k|a|^{2}|b|^{2}$ then k is equal to:

D View Text Solution

26. Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{ll}{[x]} & x \leq 2 \\ 0 & x>2\end{array}\right.$, where $[\mathrm{x}]$ denotes the greatest integer
function.
If
$I=\int_{-1}^{2} \frac{x f\left(x^{2}\right)}{2+f(x+1)} \mathrm{dx}$, then find the value of 2 I
27. In a right angled triangle
$\triangle A B C, C=\frac{\pi}{2}, s-a=10, s-b=3$ find s .

- View Text Solution

28. Evaluate: $\frac{1}{\sin \left(\frac{1}{4} \frac{\sin ^{-1} \sqrt{63}}{8}\right)}$, taking $\sqrt{2}=1.41$

- View Text Solution

29. The A.M. of the series $1,5,9,13, \ldots,(4 n-3)$ is 29 .

Find the value of n.
30.
$4\left(x^{2}+\frac{1}{x^{2}}\right)+16\left(x+\frac{1}{x}\right)-57=0$, then the
positive integral value of \# is equal to:

D View Text Solution

