India's Number 1 Education App

## **MATHS**

# **BOOKS - NTA MOCK TESTS**

# **NTA TPC JEE MAIN TEST 109**

# **Mathematics**

#### 1. Find the sum of first 12 terms in the series:

$$^{12}C_{1}rac{.1}{3}+^{12}C_{2}rac{.1}{9}+^{12}C_{3}rac{.1}{27}+\ldots\ldots$$

A. 
$$\left(\frac{4}{3}\right)^{12}+1$$

$$\mathsf{B.}\left(\frac{3}{4}\right)^{12}-1$$

$$C. \left(\frac{3}{4}\right)^{12} + 1$$

D. 
$$\left(\frac{4}{3}\right)^{12} - 1$$

#### **Answer: D**



View Text Solution

2. The ends of the latus rectum of the conic

$$x^2 + 10x - 16y + 25 = 0$$

A. 
$$(3, -4), (13, 4)$$

B. 
$$(-3, -4), (13, -4)$$

$$C.(3,4), (-13,4)$$

D. 
$$(5, -8), (-5, 8)$$

## **Answer: C**



View Text Solution

**3.** Which of the following is the negation of the statement  $p \lor ({\scriptscriptstyle{\smallfrown}} p \lor q)$ ?

A. 
$$p \wedge q$$

B. tautology

C. fallacy

D.  $(p \wedge q) \vee \neg p$ 

# **Answer: C**



# View Text Solution

**4.** If 
$$a \neq p, b \neq q, c \neq r$$
 and  $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$ , then  $\frac{p}{a} + \frac{q}{a} + \frac{r}{a}$  is equal to-

$$rac{p}{p-a}+rac{q}{q-b}+rac{r}{r-c}$$
 is equal to-

A. 0

B. 1

C. -1

D. 2

### **Answer: D**



**View Text Solution** 

# 5. Domain and range of the function

$$f(x)=\sqrt{\sin^{-1}(3x)+rac{\pi}{3}}$$
 is  $\left[rac{a}{\sqrt{3}},rac{b}{3}
ight]$  and  $\left[c,d\sqrt{5\pi}
ight]$  respectively, then

2a + b + c + 6d is equal to-

A. 1

B.  $2\sqrt{3}$ 

 $C.\sqrt{6}$ 

D. none of these

#### **Answer: C**



**View Text Solution** 

**6.** In rule method the null set is represented by

 $B. \phi$ 

 $\mathsf{C.}\left\{x\!:\!x=x\right\}$ 

 $\mathsf{D.}\left\{x\colon\! x\neq x\right\}$ 

# **Answer: D**



# View Text Solution

# 7. Find the eccentricity for the hyperbola

$$9x^2 - 16y^2 = 144$$

A. 
$$\frac{5}{4}$$

 $\mathsf{B.}\;\frac{3}{4}$ 

 $\mathsf{C.}\,\frac{7}{4}$ 

D.  $\frac{1}{4}$ 

**Answer: A** 



**8.** If 
$$\sum_{n=1}^{360} \left( \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}} \right) = \frac{p}{q}$$
 (where p and q relatively prime integer) then |p-q| is equal to-

- A. 0
- B. 1
- C. 2
- D. 3

#### **Answer: B**



**View Text Solution** 

**9.** The equation of the curve such that the subtangent at any point of the curve is two times the abscissa of the point and curve passes through point (1,2) is:

A. 
$$y^2 = x + 3$$

B. 
$$y = x^2$$

$$\mathsf{C}.\,y^2=4x$$

D. 
$$y=2x^2$$

## Answer: C



# View Text Solution

10. If A, B, C and D are four points in space having

$$\left|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}\right|$$
, then the value = k (Area of

 $\triangle$  ABC) of k is equal to

B. 3

C. 2

D. 5

### **Answer: A**



# View Text Solution

**11.**  $\lim_{x o 0}\Bigl(rac{a^x+b^x+c^x}{3}\Bigr)^{rac{2}{1+\sin x-\cos x}}$  is equal to (where

a > 0, b > 0, c > 0

B. 
$$(abc)^{rac{3}{2}}$$

C. 
$$(abc)^{rac{2}{3}}$$

D. none of these

#### **Answer: C**



# 12. Consider function:

$$f(x)=\left\{egin{array}{ll} rac{ an\{2x-3\}}{x-2} & x\in(2,\infty) \ ig[x^2ig]+ ext{sgn}(x) & x\in(-\infty,2] \end{array}
ight.$$
 , then that x = 2

[Note: {k} & [k] denote fractional part & greatest integer function less than or equal to k respectively and sgn denotes signum part of function.]

A. f(x) is continuous

B. f(x) is discontinuous

C. f(x) is differentiate, but f'(x) is discontinuous

D. None of these

#### **Answer: B**



**View Text Solution** 

13.

$$\lim(n o\infty)igg\{rac{1}{(n+1)(n+2)}+rac{1}{(n+2)(n+4)}+\ldots\ldots+rac{1}{6n^2}igg\}$$
 =

A. log (3/2)

C. 
$$\frac{1}{3}\log 2$$

D. 
$$\frac{1}{2}\log 3$$

# Answer: A



View Text Solution

**14.** Let  $\phi(x,y)=0$  be the equation of a circle if  $\phi(0,\lambda)=0$  has equal roots.  $\lambda=2,2$  and  $\phi(\lambda,0)$  has roots  $\lambda=\frac45,5$ , then, find the centre of the circle.

$$A.\left(2,\frac{29}{10}\right)$$

$$\mathsf{B.}\left(\frac{29}{10},2\right)$$

$$\mathsf{C.}\left(-2,\frac{29}{10}\right)$$

D. None of these

# Answer: B

**15.** If  $\sec \theta - \tan \theta = 3$ , then the value of sin 30 is equal to-

$$\mathrm{A.}-\frac{108}{125}$$

B. 
$$\frac{108}{125}$$

c. 
$$\frac{44}{125}$$

$$\mathrm{D.}-\frac{44}{125}$$

#### **Answer: D**



**View Text Solution** 

**16.** If f (x, y) satisfies the equation  $1+4x-x^2=\sqrt{9{
m sec}^2y+4\ {
m cosec}^2y},$  then the value of  $x+3\tan^2y$  is equal to-

A. 4

B. 2

c.  $\frac{2}{3}$ 

D. 1

# View Text Solution

$$\sin^{-1}\!\left(x-rac{x^2}{2}+rac{x^3}{4}-\ldots \infty
ight)+\cos^{-1}\!\left(x^2-rac{x^4}{2}+rac{x^6}{4}-\ldots
ight)$$

If

and 
$$0 < x < \sqrt{2}$$
, then x =

A. 
$$\frac{1}{2}$$

17.

B. 1

C. 
$$-\frac{1}{2}$$

D. -1

**Answer: B** 

**18.** When the values of mean, median and mode coinicides then the distribution is known as

A. symmetric distribution

B. negatively skewed distribution

C. moderately skewed distribution

D. positively skewed distribution

#### **Answer: A**



**View Text Solution** 

19. Which of the following is the general solution of the equation

$$\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y} = ?$$

A. 
$$y\sin y = x^2\log x + \frac{x^2}{2} + c$$

B. 
$$y \cos y = x^2 (\log x + 1) + c$$

C. 
$$y\cos y = x^2\log x + \frac{x^2}{2} + c$$

D.  $y \sin y = x^2 \log x + c$ 

#### **Answer: D**



View Text Solution

**20.** If x and y are digits such that 17! = 3556xy428096000, then x + y equals:

A. 15

B. 6

C. 12

D. 13

# **Answer: A**



**21.** A grandfather with 8 grandchildren, takes 3 at a time to a park as often as he can, without taking the same 3 grandchildren together more than once. Let p and q represent the number of times the grandfather goes to the park and each child goes to the park respectively. Evaluate p + q



# View Text Solution

**22.** Let X denotes the number of times heads occur in n tosses of a fair coin. If P(X = 4), P(X = 5) and P(X = 6) are in A. P., then find the sum of possible values of n.



**23.** ABC is a triangle in a plane with vertices A(1,a,0), B(0,1,-1) and C(2,1,0). If the median through A is equally inclined to the co-ordinate axes, then find the value of  $\alpha^3+8\beta^3+4$ 



**24.** If the area of bounded by the curve  $y=x^2+1$  and the tangents to it drawn from the origin is A, then the value of  $\frac{27}{8}$  A is:



**View Text Solution** 

**25.** If A is the area and 2s is the sum of the sides of a triangle, and  $s^2=A\sqrt{m}$ , then m is equal to:



**26.** Let  $S=\{a\mid a\in N, a\leq 100\}$ . Number of  $a\in S$  for which equation  $\left[\tan^2x\right]-\tan x-a=0$  has real roots (where [.] GIF)

