

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 111

Mathematics

1. The value of
$$\frac{d}{dx}\left[\tan^{-1}\left(\frac{\sqrt{x}(3-x)}{1-3x}\right)\right]$$
 is , if
 $\in R - \left\{\frac{1}{3}\right\}$
A. $\frac{1}{2(1+x)\sqrt{x}}$
B. $\frac{3}{(1+x)\sqrt{x}}$
C. $\frac{2}{(1+x)\sqrt{x}}$

D.
$$rac{3}{2(1+x)\sqrt{x}}$$

Answer: D

2. The angle between the tangents drawn from the point (1, 4)

to the parabola

$$y^2=4x$$
 is
A. $rac{\pi}{6}$
B. $rac{\pi}{4}$
C. $rac{\pi}{3}$
D. $rac{\pi}{2}$

Answer: C

3. Negation of ~ $s \lor (~r \land s)$ is

A. $s \wedge extsf{-}r$

B. $s \land (r \land {\mathsf{\neg}} s)$

C. $g \lor (r \lor {\mathsf{~}} s)$

D. $s \wedge r$

Answer: D

4. In a third order determinant, each element of the first column consists of sum of two terms, each element of the

second column consists of sum of three terms and each element of third column consists of sum of four terms. Then, it can be decomposed in n determinants, where n has the value

A. 24

B. 16

C. 9

D. 1

Answer: A

View Text Solution

5. Let n(A) = 4 and n(B) = 6, then number of one-one functions

from A to Bis

A. 120

B. 360

C. 24

D. none of these

Answer: B

6. Which set is the subset of all given sets

- A. $\{1, 2, 3, 4, \ldots \}$
- $\mathsf{B}.\left\{1\right\}$
- C. {0}
- $\mathsf{D}.\left\{\right\}$

Answer: D

7. A straight line touches the rectangular hyperbola $9x^2 - 9y^2 = 8$ and the parabola $y^2 = 32x$. An equation of the line is

A.
$$9x+3y-8=0$$

$$\mathsf{B}.\,9x - 3y + 8 = 0$$

$$\mathsf{C}.\,9x - 3y + 4 = 0$$

$$\mathsf{D}.\,9x-3y-8=0$$

Answer: B

8. A bag contains 5 white and 8 red balls, two draws of 3 balls are made without replacement. Then, the probability that first draw gives 3 white but second draw gives no white ball, is

A.
$$\frac{7}{429}$$

B. $\frac{1076}{2145}$
C. $\frac{140}{(143)^2}$
D. $\frac{1041}{2145}$

Answer: A

9. If a vector has direction cosines $\left(\frac{1}{2}, m, \frac{1}{2}\right)$ and makes an obtuse angle θ with the y-axis , then θ is equal to

A. $\pi/4$

B. $3\pi/2$

C. $3\pi/4$

D. $\pi/6$

Answer: C

View Text Solution

10. The value of the limit

$$\left\{ \frac{\left(1 - \cos\frac{1}{n}\right)}{\sqrt{\left(1 - \cos\frac{1}{n}\right)\sqrt{\left(1 - \cos\frac{1}{n}\dots\infty\right)}}} \right\}$$

A.
$$\frac{1}{2}$$

 $\mathsf{B.}-2$

C. 2

$$\mathsf{D.}-rac{1}{2}$$

Answer: A

View Text Solution

11. Let f (x) is continuous on [a,c] and differentiable in (a,c) where a,b,c are real numbers : a < b < c. Iff'(x) is strictly increasing function and

$$(c-b)f(a)+(b-a)f(c)=k,$$
 then

A. k > (c - a)f(b)

B.
$$k < (c - a)f(b)$$

$$\mathsf{C}.\,k=(c-a)f(b)$$

D. $k \leq 2(c-a)f(b)$

Answer: A

12. If the function

 $f(x)=Pe^{2x}+Qe^x+Rx$ satisfies the conditions $f(0)=-1, f'(\log_e 2)=31 ext{ and } \int_0^{\log_e 4}(f(x)-Rx)dx=rac{39}{2},$ then

A. P = 5, Q = -6, R = 3

B. P = -5, Q = 6, R = 3

C. P = 5, Q = 6, R = 3

D. P = 3, Q = 2, R = 3

Answer: A

13. If a circle passes through the points (0, 0) (a, 0) and (0, b), then its centre will be

A.
$$(a, b)$$

B. $\left(\frac{a}{2}, \frac{b}{2}\right)$
C. $\left(-\frac{a}{2}, -\frac{b}{2}\right)$
D. $(-a, -b)$

Answer: B

14. If $3\sin\theta - 4\cos\theta = 5$ and $4\sin\theta + 3\cos\theta = k$. then k^2

is equal to

A. 0

B. 1

C. 4

D. 25

Answer: A

15. Let
$$heta\in\left(0,rac{\pi}{2}
ight)$$
 is solution of equation
 $3\sin x+4\cos x=4(\sin18^\circ+\cos36^\circ)^2$ then $\sin heta+\cos heta,$
is equal to

A. 3/5

B.4/5

C.7/5

 $\mathsf{D.}\,1/5$

Answer: C

View Text Solution

16. $\cos^{-1} \{ \cos (2 \cot^{-1} (\sqrt{2} - 1)) \}$ is equal to

A.
$$\sqrt{2} - 1$$

B. $\frac{\pi}{4}$
C. $\frac{3\pi}{4}$

D. 0

Answer: C

17. Let L_1 be a straight line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0 on L_1$ and L_2 are equal, then which of the following equation can represent L_1 ?

A. x + 7y = 0

B. x - y = 0

C. x - 7y = 0

D. Both (a) and (b)

Answer: D

D View Text Solution

18. The roots α and β of the quadratic equation $px^2 + qx + r = 0$ are real and of opposite signs. The roots of $\alpha(x - \beta)^2 + \beta(x - \alpha)^2 = 0$ are

A. positive

B. negative

C. of opposite signs

D. non-real

Answer: C

View Text Solution

19. The sum $S_n=n^3+3n^2+5n+3$ is divisible by

A. $3\,orall\,n\in N$

 $\mathsf{B.4}\,\forall n\in N$

C. $5\,\forall n\in N$

D. Can't be determined

Answer: A

View Text Solution

20. If
$$1 + \frac{1}{3^2} + \frac{1.4}{1.2} \cdot \frac{1}{3^4} + \frac{1.4.7}{1.2.3} \cdot \frac{1}{3^6} + \dots$$
 then $= (a)^{\frac{1}{3}}$,

find the value of a.

21. Words are formed from the letters of the word BHARAT. If p and qrepresent the number of words having bothA's together

and the number of words having two A's never together respectively, then evaluate $\frac{p}{q}$

View Text Solution

22. If
$$A = \begin{bmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$$
 be a matrix such that $|A|adj(A^{-1}) = KA$, then find the value of K.

View Text Solution

23.
$$0 < A, B, C < \pi$$
, find the minimum value of II $\left(rac{\sin^2 A + \sin A + 1}{\sin A}
ight)$

View Text Solution

24. For certain curve y = f (x) satisfying $rac{d^2y}{dx^2}=6x-4,\,$ a relative minimum value dx2 of 5, occurs at ct = 1. Find the global maximum value of function f, for $x\in[0,2]$

26. If

$$\int \sin^2 x \cos^4 x dx = \frac{p}{32} \left[\frac{\sin 6x}{m} = \frac{\sin 4x}{n} + \frac{\sin 2x}{k} + qx \right] + c$$
then $\pm + knq =$ ____.

View Text Solution

View Text Solution

28. For a series, the value of mean deviation is 21. Find the value of its quartile deviation (O D)

value of its quartile deviation (Q.D.).

29. Consider the differential equation

$$\left(rac{2+\sin x}{y+1}
ight)rac{dy}{dx}=-\cos x.$$
 If $y(0)=1,$ then evaluate $6y\Big(rac{\pi}{2}\Big)+5$

View Text Solution