

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 113

Mathematics

1. Let y=f(x) be a bijective function and y=g(x) be a function such that $g(x)=f^{-1}(x).$ Let y=h(x) be a function

defined as

$$h(x)=xf(x)+g(x).$$
 IF $y=f(x)$ and $y=g(x)$ be differentiable function $f(1)=2,\,f'(1)=2$ and $f(3)=f'(3)=1$ then h'(1)equals

A. 3

B. 2

D. $\frac{9}{2}$

C. 5

Answer: C

<u> View Text Solution</u>

2. The normal at the point $\left(bt_1^2, 2bt_1\right)$ on a parabola meets the pparabola again in the point $\left(bt_2^2, 2bt_2\right)$ then

A.
$$t_2 = -t_1 + rac{2}{t_1}$$

$$\mathtt{B.}\, t_2 = t_1 - \frac{2}{t_1}$$

$$\mathsf{C.}\, t_2 = t_1 + \frac{2}{t_1}$$

D.
$$t_2 = \, - \, t_1 - rac{2}{t_1}$$

3. The negation of the proposition $(\pi mplies extstyle q) \wedge (q \Rightarrow extstyle p)$ is

A.
$$p \wedge q$$

B.
$$p \lor q$$

C. ~
$$(p \wedge q)$$

D. ~
$$(p \lor q)$$

Answer: A

4. If $lpha,eta,\gamma$ are the roots of $x^3+ax^2+b=0$

then the determinant $\Delta=egin{array}{c|c} lpha & eta & \gamma & \ eta & \gamma & lpha & \ eta & \gamma & lpha & \ eta & lpha & eta & \ \end{array}$ equals

A.
$$-a^{3}$$

B.
$$a^3 - 3b$$

C.
$$a^2 - 3b$$

D.
$$a^3$$

Answer: D

5. The domain of the function

$$f(x) = \exp\Bigl(\sqrt{5x-3-2x^2}\Bigr)$$
 is

A.
$$[3/2,\infty)$$

B.
$$[1, 3/2]$$

C.
$$(-\infty, 1]$$

D.
$$(1, 3/2]$$

Answer: B

6. The number of non empty subsets of the set

{1,2,3,4} I

A. 15

B. 14

C. 16

D. 17

Answer: A

7. The product of the length of the perpendiculars from the two foci on any tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- A. a^2
- B. $2a^{2}$
- $C. b^2$
- D. $2b^2$

Answer: C

8. One percent of the population suffers from a certain disease. There is blood test for this disease, and it is 99% accurate, in other words, the probability that it gives the correct anwer is 0.99, regardless of whether the person is sick or healthy. A person takes the blood test, and the result says that he has the disease. The probability that he actualy has the disease is

A. 0.99~%

B. 25~%

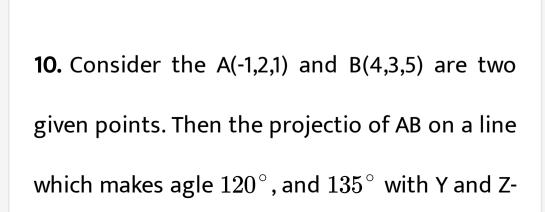
C. $50\,\%$

D. 75%

Answer: C

View Text Solution

9. If a line passing through (-2,1,b) and (4,1,2) is perpendicular to the vector $\hat{i}+3\hat{j}-2\hat{k}$ and is parallel to the plane containing the vectors $\hat{i}+c\hat{k}$ and $c\hat{j}+b\hat{k}$, then ordered pair (b,c) can be


C.
$$(-1,0)$$
D. $\left(1,\frac{1}{2}\right)$

View Text Solution

Answer: C

A. $\left(-1, \frac{-1}{2}\right)$

B. (1, -6)

axis respectively and an acute angle with X-axis is

A.
$$\left(2-2\sqrt{2}\right)$$
 units

B.
$$\left(2+2\sqrt{2}\right)$$
 units

C.
$$\left(2+3\sqrt{2}\right)$$
 units

D.
$$\left(2+\sqrt{2}\right)$$
 units

Answer: A

The

value

of

$$\lim_{x\,
ightarrow\,\pi\,/\,6}\,\left(4-3\sin x\,-\,2\cos^2x
ight)^{rac{1}{2\sin x\,-\,1}}$$
 is

- **A.** 1
- B. 6
- C. \sqrt{e}
- D. $e^{-1/2}$

Answer: D

12. If $x \in R^+$ and $n \in N$, we can uniquely write x = mn + r where $m \in W$ and $0 \le r < n$. We define x mod n=r for example 10.3 mod 3.1.3. The number of points of discontinuty of the function $f(x) = (x \mod 2)^2 + (x \mod 4)$ in the interval 0 < x < 9 is

A. 0

B. 2

C. 4

D. None of these

Answer: C

View Text Solution

13.

For

$$x > -1$$

let

$$f(x) = \int_0^{\pi/4} \log_e (1+x an z) dz$$
 . Then value

of
$$f\left(\frac{1}{2}\right) - f\left(\frac{1}{3}\right)$$
 equals

A.
$$\frac{\pi}{4}\log_e\left(\frac{9}{8}\right)$$

B.
$$\frac{\pi}{8}\log_e\left(\frac{9}{8}\right)$$

C.
$$\frac{\pi}{9}\log_e\left(\frac{8}{9}\right)$$

D.
$$\frac{\pi}{8} \log_e \left(\frac{3}{2} \right)$$

Answer: B

View Text Solution

14. The length of the diameter of the circle which passes through the point (2,3) and touches the x-axis at the point (1,0) is

A.
$$\frac{5}{3}$$
B. $\frac{6}{5}$

$$\frac{6}{5}$$

C.
$$\frac{10}{3}$$
D. $\frac{3}{5}$

D.
$$\frac{3}{5}$$

Answer: C

View Text Solution

15. If
$$P = \frac{\sin 300^{\circ} \cdot \tan 330^{\circ} \cdot \sec 420^{\circ}}{\tan 135^{\circ} \cdot \sin 210^{\circ} \cdot \sec 315^{\circ}}$$

$$\sec 480^{\circ} \cdot \cos ec 570^{\circ} \cdot \tan 330^{\circ}$$

$$Q=rac{\sec 480^{\circ}.\cos ec570^{\circ}. an330^{\circ}}{\sin 600^{\circ}.\cos 660^{\circ}.\cot 405^{\circ}}$$
 then I

and Q are respectively.

A. 2,16

$$\mathsf{B.}\,\sqrt{S}(2),\,\frac{16}{3}$$

C.
$$-2, \frac{3}{16}$$

D. None of these

Answer: B

View Text Solution

16. For
$$x \in [0,a)$$

$$4x + 8\cos x - 4\log[\cos x(1+\sin x)]$$
 then

 $+\tan x - 2\sec x \geq 6$ largest value of a is

equal to

A.
$$\pi/3$$

B.
$$\pi/4$$

$$\mathsf{C.}\,3\pi/4$$

D.
$$\pi/6$$

Answer: D

View Text Solution

17. The value of

$$an^{-1}\left|rac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}
ight|,|x|<rac{1}{2}$$
 x is

$$eq 0$$
 equal to

A.
$$\displaystyle rac{\pi}{4} + rac{1}{2} \cos^{-1} x^2$$

B.
$$\frac{\pi}{4}-\cos^{-1}x^2$$

C.
$$\displaystyle rac{\pi}{4} - rac{1}{2} \mathrm{cos}^{-1} \, x^2$$

D.
$$rac{\pi}{4}+\cos^{-1}x^2$$

Answer: A

18. The locus of the point (h,k) for which the circle having centre at origin and radius equals to 2 touches the line hx+ky=1 is

- A. Circle
- B. Parabola
- C. Ellipse
- D. Hyperbola

Answer: A

19. The number of real roots of he equation

$$1 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

where $|x|<rac{1}{3}$ and $|a_n|<2$ is

A. n if n is even

B. O for any natural number n

C. 1 if n is odd

D. None of these

Answer: B

20. For al $n \in N$ and $n \geq 3, 2^{4n} - 2^n(7n+1)$

is not divisible by

- A. 196
- B. 98
- C. 49
- D. 48

Answer: D

21. If the 4 th term in expansion of

$$\left(\sqrt{rac{1}{rac{1}{x^{\log_{10}x+1}}}}+x^{rac{1}{12}}
ight)^6$$
 is $200,\ orall x>1$, then

find the value of x

View Text Solution

22. Let the words formed by the letters of word OPTS be arranged in dictionary order. The ranks of words SPOT, POTS, STOP and POST are p,q,r,s respectively then evaluate q-s+r-p

23. Matrix M_r is defined as

$$M_r=egin{bmatrix} r & r-1 \ r-1 & r \end{bmatrix}, r\in N.$$
 If

$$\sum_{r=0}^{2007} \det(M_r) = (2000 + \lambda)^2$$
, then find the

value of λ

View Text Solution

24. If the sum of the first n terms of the series

$$\sqrt{5}+\sqrt{125}+\sqrt{405}+\sqrt{845}+\ldots$$
 is $276\sqrt{5}$

then find the value of n.

View Text Solution

View Text Solution

25. Two points A and B in argand plane represent z and $z_1=2ig(z+\sqrt{3}+iig)$ respectively. If A moves on a circle with centre at origin and radius $\sqrt{3}$ and $\max.(argz_1)-\min.(argz_1)=m\pi$ find $\frac{1}{m}$

$$\int \frac{6x+3}{\sqrt{3-6x-9x^2}} dx = -\frac{2}{3}f(x) + g(x) + c$$

Then the domain of the function f+g is $\left[a,b
ight]$ then $\left|rac{a}{b}
ight|=$

View Text Solution

27. Let $f(x)=\left[\frac{x^2}{64}+2\right]$. Find the area in sq. units bounded by line y=x-1, curve y=f(x), lines x=0,y=0 ([] represents the greatest integer function.)

View Text Solution

28. For the following observations 2,3,5,6,8,10,2,17,20,25. Find the mean deviation about median.

View Text Solution

29. Consider the differential equation

$$rac{x + rac{x^2}{3!} + rac{x^5}{5!} + \dots}{1 + rac{x^2}{2!} + rac{x^4}{4!} + \dots} = rac{dx - dy}{dx + dy}.$$

y(0)=1 and the solution of the differential

If

equation is of the form

 $2yf(x)=me^{2x}+n$. Evaluate (m+n)f(0).

