©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 124

Mathematics

1. In the expansion of $\left[\sqrt{\left(\frac{x}{3}\right)}+\frac{\sqrt{3}}{x^{2}}\right]^{10}$, the constant term is
A. $\frac{5}{3}$
B. $\frac{4}{5}$
C. 6
D. $\frac{1}{2}$

Answer: A

- View Text Solution

2. The number of point(s) of minima of the polynomial $y=10 x^{6}-24 x^{5}+15^{4}-40 x^{2}+108$ is(are) equal to
A. 1
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

3. How many 5-digit telephone numbers can be formed using the digits 0 to 9 , if each number starts with 67 and repetition is not allowed.
A. 334
B. 336
C. 338
D. 348

Answer: B

- View Text Solution

4. The system of linear equations
$x+y+z=1$,
$x+2 y+4 z=\lambda, x+4 y+10 z=\lambda^{2}$ has a solution if it satisfies the following
A. $\lambda=-1$
B. $\lambda \neq 1$
C. $\lambda=2$
D. $\lambda \in \phi$

- View Text Solution

5. If there exists a plane containing the lines $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}$ and $\frac{x-1}{1}=\frac{y-1}{3}=\frac{z-1}{5}$. Then which o the following is the equation of the plane:
A. $x-2 y+z=2$
B. $x+2 y+3 z=3$
C. $x-2 y+z=0$
D. $x+2 y+z=4$

Answer: C
6. If $f(x)=\frac{\sin 3 x}{\sin x}, x \neq n \pi$, then number of integers in the range of $f(x)$ is
A. 5
B. 4
C. 3
D. 2

Answer: C

- View Text Solution

7. If the latus rectum of a hyperbola through one focus, subtends an angle 60° at the other focus, then its
\qquad
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{5}$
D. $\sqrt{6}$

Answer: B

- View Text Solution

8. Let $g(x)=|x-2|$ and $h(x)=g(g(x))$, then find the value of the expression
$h^{\prime}(-1)+h^{\prime}(1)+h^{\prime}(3)+h^{\prime}(5) \quad$ (where denotes
derivative).
A. 2
B. -1
C. 0
D. 1

Answer: C

- View Text Solution

9. The probability of getting a score of exactly 9 twice when a pair of fair dice is thrown independently three times. is
A. $\frac{8}{729}$
B. $\frac{8}{243}$
C. $\frac{1}{729}$
D. $\frac{8}{9}$

Answer: B

- View Text Solution

10. The void relation on a set A is
A. Reflexive
B. Symmetric and transitive
C. Reflexive and symmetric
D. Reflexive and transitive

D View Text Solution

11. The function $f: R \rightarrow R$ defined by $f(x)=|x|$ is :
A. One-one only
B. Onto only
C. Both one-one and onto
D. Neither one-one nor onto

Answer: D

- View Text Solution

12. Statement 1: The range of the function $y=\frac{a x+b}{c x+d}$ $(a d-b c \neq 0)$ does not include the value $\frac{a}{c}$.

Statement 2: The domain of the
function $g(y)=\frac{b-d y}{c y-a}$ does not include the value $\frac{a}{c}$.
A. Statement 1 is true, statement 2 is true, statement 2
is not the correct explanation for statement 1
B. Statement 1 is true, statement 2 is false.
C. Statement 1 is false, statement 2 is true.
D. Statement 1 is true, statement 2 is true, statement 2
is the correct explanation for statement 1

Answer: D
13. Lagrange's mean value theorem is not applicable to which of the following functions in the interval [1, 3] (where [.] represents greatest integer function) :
A. $f(x)= \begin{cases}(x-1)^{2}, & x \leq 2 \\ 2 x-3, & x>2\end{cases}$
B. $f(x)= \begin{cases}\left|x-\frac{3}{2}\right|, & x \leq 2 \\ x, & x>2\end{cases}$
C. $f(x)=|x|$
D. $f(x)=\left[\frac{x}{4}\right]$

Answer: B

- View Text Solution

14. Which of the following options is most relevant?

Statement 1: The tangents drawn to a parabola at points
$(1,2)$ and $(3,4)$ intersect at the point $(-2,-3)$. The slope of the axis of the parabola is $\frac{3}{2}$.

Statement 2: The line joining the points of intersection of tangents and normals at the extremities of the focal chord of a parabola is parallel to the axis of the parabola.
A. Statement 1 is true, Statement 2 is true, Statement

2 is the correct explanation for Statement 1
B. Statement 1 is true, Statement 2 is true, Statement 2
is NOT the correct explanation for Statement 1
C. Statement 1 is true, Statement 2 is false
D. Statement 1 is false, Statement 2 is true

- View Text Solution

15. The value of the integral
$\int \frac{\operatorname{cosec} \mathrm{x}}{\cos ^{2}\left(1+\log \tan \frac{x}{2}\right)} d x$ is equal to (where, c is the constant of integration)
A. $\sin ^{2}\left[1+\log \tan \frac{x}{2}\right]+c$
B. $\tan \left[1+\log \tan \frac{x}{2}\right]+c$
C. $\sec ^{2}\left[1+\log \tan \frac{\pi}{2}\right]+c$
D. $-\tan \left[1+\log \tan \frac{\pi}{2}\right]+c$

- View Text Solution

16. Find the value of $\int_{0}^{2 \pi} \sin ^{4} x d x$
A. $2 \int_{0}^{\pi} \sin ^{4} x d x$
B. $8 \int_{0}^{\frac{\pi}{4}} \sin ^{4} x d x$
C. $-4 \int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$
D. $3 \int_{0}^{\frac{2 \pi}{0}} \sin ^{4} x d x$

Answer: A

- View Text Solution

17. An arc of a bridge is semi-elliptical with major axis horizontal. If the length of the base is 9 m and highest part of the bridge is 3 m from the base, then what will be the best approximation of the height of the arch 2 m from the centre of the base?
A. $\frac{11}{4} m$
B. $\frac{8}{3} m$
C. $\frac{7}{2} m$
D. $2 m$

Answer: B

- View Text Solution

18. Suppose L be the line which lies in the family of straight lines
$(a+2 b) x+(a-3 b) y+a-8 b=0, a, b \in R$,
which is farthest from the point $(2,2)$, then find the area enclosed by the line Land the coordinate axes
A. $\frac{4}{3}$ sq. units
B. $\frac{9}{2}$ sq. units
C. $\frac{49}{8}$ sq. units
D. $\frac{11}{2}$ sq. units

Answer: C

- View Text Solution

19. If $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}, y(1)=1$ and $y\left(x_{0}\right)=e$, then $x_{0}=$
A. $\sqrt{3 e}$
B. $\sqrt{3} e$
C. $\sqrt{2\left(e^{2}-1\right)}$
D. e

Answer: B

- View Text Solution

20. If the quadratic equations
$k\left(6 x^{2}+3\right)+r x+2 x^{2}-1=0$ and
$6 k\left(2 x^{2}+1\right)+p x+4 x^{2}-2=0$
have both the roots common, then $2 r-p$ is equal to
A. 0
B. 1
C. 2
D. None of these

Answer: A

- View Text Solution

21. If $p=\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots \infty$, find $p^{2}+2 p-4$.
22. If one of the roots of the equation $6 x^{2}+k x+6=0, k>0$, is square of the other, then find the value of k

D View Text Solution

23. Let $a_{1}, a_{2}, a_{3}, \ldots$ be A.P. and $g_{1}, g_{2}, g_{3}, \ldots$ be in G. P.

If $a_{1}=g_{1}=3$ and $a_{8}=g_{4}=24$, then find $\frac{g_{7}}{a_{4}}$.

D View Text Solution

24. If $|x+4|^{2}-|z-4|^{2}=8$, then find $\operatorname{Re}(z)$
25. Evaluate $\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}$

D View Text Solution

26. If $\int \frac{d x}{5+4 \cos x}=\frac{m}{n} \operatorname{Arctan}\left[\frac{p}{q}\left(g\left(\frac{x}{2}\right)\right)\right]$ then +x the value of $g\left(\frac{q m \pi}{8 p n}\right)$ is :

D View Text Solution

27. The area bounded by the curves
$y=\ln x, y=\ln |x|, y=|\ln x|$ and $y|\ln | x|\mid, \quad$ for
$x \in(-1,1)$ is (in sq. units)
28. If $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{3 x}\right)+\tan ^{-1}\left(\frac{3}{4}\right)=\frac{\pi}{2}$,
then the value of $\sin \left(\pi-2 \tan ^{-1} x\right)$ is $\frac{m}{n}$, where m and n are natural numbers, n coprime to each other, then ($\mathrm{n}+$ $m)$ is

D View Text Solution

29. A circle touching both the coordinates axes, having centre in the first quadrant and also touching the line $4 x+3 y=12$ is given by $x^{2}+y^{2}-2 c x-2 x y+c^{2}=0$. Find the sum of all possible values of c.
30. Two teams A and B have the same mean and their coefficients of variations are 6,2 respectively. If σ_{A}, σ_{B} are the standard deviations of teams A, B respectively. Evaluate λ if $\sigma_{A}=\lambda \sigma_{B}$.
