©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 37

Mathematics

1. The coefficient of x^{10} in the expansion of:
$\left(3 x^{2}-\frac{1}{x^{2}}\right)^{15}$ is:
A. $\frac{15!}{10!5!} 3^{10}$
B. $-\frac{15!}{10!5!} 3^{10}$
C. $-\frac{15!3^{5}}{10!5!}$
D. $\frac{15!}{7!8!} 3^{8}$

Answer: B

D View Text Solution

2. Given that z_{1}, z_{2} and z_{3} are complex numbers
with
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1, z_{1}+z_{2}+z_{3}=1$ and
$z_{1} z_{2} z_{3}=1$, then $\left|\left(z_{1}+2\right)\left(z_{2}+2\right)\left(z_{3}+2\right)\right|$ is equal to:
A. 14
B. 15
C. 20
D. 9

Answer: B

D View Text Solution
3. Let $f(x)=\ln \left(x+\sqrt{x^{2}+1}\right.$, then the
value

$$
\left|\begin{array}{lll}
f(\sin 2017 \pi) & f\left(\frac{\sin \pi}{6}\right) & f\left(e^{x}\right) \\
f\left(\frac{\cos (2 \pi)}{3}\right) & f\left(\frac{\cos (2017 \pi)}{2}\right) & f\left(\frac{\tan \pi}{3}\right) \\
f\left(-e^{x}\right) & f\left(\frac{\cot (5 \pi)}{6}\right) & f(0)
\end{array}\right| \text { is: }
$$ determinant:

A. 0
B. $\sqrt{3}$
C. $e^{\sqrt{3}}$
D. π
4. Which of the following is correct ?
A. f A and B are square matrices of order 3
such that $|A|=-1,|B|=3$, then the determinant of $3 A B$ is equal to 27 .
B. If A is an invertible matrix, then $\operatorname{det}($
A^{-1}) is equal to $\operatorname{det}(\mathrm{A})$
C. If A and B are matrices of the same
$(A+B)^{2}=A^{2}+2 A B+B^{2}$
possible if $A B=1$.
D. None of these

Answer: D

D View Text Solution

5. A line is drawn from $A(-4,0)$ to intersect the curve $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ at P and Q above z^{-} axis. If $\frac{1}{A P}+\frac{1}{A Q} \geq \frac{\sqrt{3}}{2}$, then the maximum value of the slope of line is:
A. $2 \sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{4}{5}$
D. $\sqrt{3}$

Answer: B

D View Text Solution

6. If $n(A)=1000, n(B)=500$ and if $n(A \cap B) \geq 1$ and $n(A \cup B)=p$, then
A. $500 \leq p \leq 1000$
B. $1001 \leq p \leq 1498$
C. $1000 \leq p \leq 1498$
D. $1000 \leq p \leq 1499$

Answer: D

D View Text Solution
7. A circle passes through the points of intersection of the parabola $y+1=(x-4)^{2}$
and x-axis. Then the length of tangent from

origin to the circle is:

A. 8
B. 15
C. $\sqrt{8}$
D. $\sqrt{15}$

Answer: D

D View Text Solution
8. An equilateral triangle is inscribed in ellipse whose equation is $x^{2}+4 y^{2}=4$, one vertex of triangle is $(0,1)$ and one altitude is contained in y -axis and length of each side is $\sqrt{\frac{m}{n}}$ (where m and n are relatively prime), then $\mathrm{m}+$ n is:
A. 937
B. 973
C. 793
D. 739

Answer: A

D View Text Solution

9. The number of integral values of a for which
three distinct chords of the ellipse
$\frac{x^{2}}{2 a^{2}}+\frac{y^{2}}{a^{2}}=1$ passing through the point $\left(20 a,-\frac{a^{2}}{2}\right)$ are bisected by the parabola $y^{2}=4 a x$ is:
A. 14
B. 8
C. 6
D. 20

Answer: A

D View Text Solution

10. If $a x^{2}+2 h x y-a y^{2}=0, a>0$,
represents a pair of straight lines forming
with $2 x+3 y=-8$ an isosceles triangle which is right angled at origin, then $(a+h)$ is:
A. 7
B. 17
C. -7
D. -17

Answer: C

D View Text Solution

11. If $x \cos \alpha+y \sin \alpha=p$ is tangent to the
curve $y=-\sqrt{x}$, then range of a is:
A. $\cup_{n \in N}(2 n \pi,(2 n+1) \pi)$
B. $\cup_{n \in N}\left(n \pi,\left(n+\frac{1}{2}\right) \pi\right)$
C. $\cup_{n \in N}\left(\frac{n \pi}{2},(n+1) \frac{\pi}{2}\right)$
D. $(-\infty, \infty)$

Answer: C

D View Text Solution

12. Let $\mathrm{P}=(-1,0), \mathrm{Q}=(0,0)$ and $R=(3,3 \sqrt{3})$ be
three point. The equation of the bisector of the angle PQR is:
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

D View Text Solution

13. If $\sum_{n=1}^{k}\left[\frac{1}{3}+\frac{n}{90}\right]=21$, where $[\mathrm{x}]$ denotes
the integral part of x, then is equal to
A. 84
B. 80
C. 85
D. 86

Answer: B

D View Text Solution

14. If the tangent at any point on the curve $x^{4}+y^{4}=a^{4}$ cuts off intercepts p and q on
the co-ordinate axes then the value of

$$
p^{-4 / 3}+q^{-4 / 3} \text { is: }
$$

A. $a^{-4 / 3}$
B. $a^{-1 / 2}$
C. $a^{1 / 2}$

D. None

Answer: A

D View Text Solution
15. A continuous function $f: R \rightarrow R$ satisfies
the differential equation
$f(x)=\left(1+x^{2}\right)\left[1+\frac{f_{0}^{x}(f(t))^{2}}{1+t^{2}} d t\right], \quad$ then $f(-3)$ is:
A. $\frac{13}{10}$
B. $\frac{8}{5}$
C. $\frac{10}{13}$
D. $\frac{5}{8}$

Answer: C
16.
$\int \sqrt{2} \sqrt{1+\sin x} d x=-4 \cos (a x+b)+C$ then the value of (a, b) is :
A. $\left(\frac{1}{2}, \frac{\pi}{4}\right)$
B. $\left(1, \frac{\pi}{2}\right)$
C. $(1,1)$
D. None of these

- View Text Solution

17. p : Every quadratic equation has one real root and q Every quadratic equation has two real roots, then truth value of p and q are:
A. p is true and q is false
B. p is false and q is true
C. pand q both true
D. p and g both false
18. The S.D. of the following data is nearly:

x_{i}	140	145	150	155	160	165
f_{i}	4	6	15	30	36	24

A. 8.64
B. 7.26
C. 7.05
D. None

D View Text Solution

19. Number of solutions of the equation

$$
\frac{\sqrt{6}-\sqrt{2}}{\sin x}+\frac{\sqrt{2}+\sqrt{6}}{\cos x}=8 \quad \text { in } \quad\left(0, \frac{\pi}{2}\right)
$$

is/are:
A. 1
B. 0
C. 2
D. 4
20. Number of solutions of the equation $\sin ^{-1}(\sin 6 x)=x$ in $x \in[0, \pi]$ is:
A. 4
B. 5
C. 6
D. 7

Answer: A
21. The tens digit of $1!+2!+3!+\ldots+49!$ Is:

D View Text Solution

22. Let k_{1} and k_{2} are two values of k for which
the equation $4 x^{2}-4(5 x+1)+k^{2}=0$ has one root equals to two more than the other, then find the value of: $\left(k_{1}^{2}-k_{2}^{2}\right)$
23. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\quad|\vec{b}|=2|\vec{a}|$ and $3|\vec{a}|$.The Angle between each pair of vectors is 60° such that $|\vec{a}+2 \vec{b}+3 \vec{c}|=\sqrt{21}$, then $\sqrt{7}|\vec{c}|$ is equal to:

D View Text Solution

24. Let $(\lim)_{h \rightarrow 0}\left(\frac{1}{h \sqrt[3]{8+h}}-\frac{1}{2 h}\right)=k$,
then find $96 k+3$.
25. Let $L=\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} e^{\frac{k}{n}}$, then find the value of e-L

D View Text Solution

26. If $f(x) \geq 0 \forall x \in(0,2)$ and $\mathrm{y}=\mathrm{f}(\mathrm{x})$ makes
positive intercepts having length 2 and 1
unit(s) on coordinate axes respectively and encloses an area of $\frac{3}{4}$ sq. units with axes, then the value of $3-4 \int_{0}^{2} x f(x) d x$ is:

D View Text Solution

27.

Find
$f(x)=\left(a^{x}-1\right)^{3}$
$f(x)=\frac{}{\sin (x \log a) \log \left(1+x^{2} \log a^{2}\right)}$
and
$f(0)=m \log a$. Find m such that f is continuous at $x=0$.

D View Text Solution

28. If $x=9$ is the chord of contact of the
hyperbola $x^{2}-y^{2}=9$, then the equation of
the pair of tangents forming the chord of contact is $a x^{2}-b y^{2}-18 x+9=0$. Find the value of $a+b$.

D View Text Solution

29. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, then
$2 \cos ^{2}\left(\theta-\frac{\pi}{4}\right)$ is:

D View Text Solution
30. An urn contains 6 white and 4 black balls. A
fair die is rolled and that number of balls are
chosen from the urn. Find the probability that balls selected are white.

D View Text Solution

